gcc/libstdc++-v3/include/bits/std_complex.h
Brendan Kehoe ba317c5236 [multiple changes]
2001-08-19  Brendan Kehoe  <brendan@zen.org>

        * include/bits/std_complex.h: Default initialize second argument
	of polar to 0, as specified in Library DR #79

2001-10-19  Brendan Kehoe  <brendan@zen.org>

        * include/bits/stl_raw_storage_iter.h (operator=): Fix to call
	_Construct instead of construct.

2001-10-19  Brendan Kehoe  <brendan@zen.org>

        * include/bits/basic_string.tcc (find_first_not_of): Take out check for
        __n being non-zero, since the standard does not mandate that.
        e.g., a search for "" in "" should yield position 0, not npos.
        (find_last_not_of): Likewise.

2001-10-19  Brendan Kehoe  <brendan@zen.org>

        * include/bits/stl_bvector.h (vector<bool>::_M_range_check): Fix
	to throw out_of_range, not range_error, thus sayeth $23.1.1.13.

2001-10-19  Brendan Kehoe  <brendan@zen.org>

        * include/bits/stl_iterator.h (reverse_iterator::current): Rename
        member from _M_current, and change all uses; thus sayeth $24.4.1.1.

2001-10-19  Brendan Kehoe  <brendan@zen.org>

        * include/bits/stl_algo.h (partial_sort): Add missing `>' on the
        template parameter _ValueType.

2001-10-19  Brendan Kehoe  <brendan@zen.org>

	* include/bits/std_limits.h: Clean up extra semicolons.
        * include/bits/locale_facets.h: Likewise.
        * include/bits/type_traits.h: Likewise.

2001-10-19  Brendan Kehoe  <brendan@zen.org>

        * include/bits/localefwd.h (locale::combine): Add const for lib DR 14.
        * include/bits/locale_facets.tcc (locale::combine): Likewise.

From-SVN: r46353
2001-10-19 18:39:00 +00:00

1026 lines
26 KiB
C++

// The template and inlines for the -*- C++ -*- complex number classes.
// Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
//
// ISO C++ 14882: 26.2 Complex Numbers
// Note: this is not a conforming implementation.
// Initially implemented by Ulrich Drepper <drepper@cygnus.com>
// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
//
#ifndef _CPP_COMPLEX
#define _CPP_COMPLEX 1
#pragma GCC system_header
#include <bits/c++config.h>
#include <bits/std_cmath.h>
#include <bits/std_sstream.h>
namespace std
{
// Forward declarations
template<typename _Tp> class complex;
template<> class complex<float>;
template<> class complex<double>;
template<> class complex<long double>;
template<typename _Tp> _Tp abs(const complex<_Tp>&);
template<typename _Tp> _Tp arg(const complex<_Tp>&);
template<typename _Tp> _Tp norm(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);
// Transcendentals:
template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&,
const complex<_Tp>&);
template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);
// 26.2.2 Primary template class complex
template<typename _Tp>
class complex
{
public:
typedef _Tp value_type;
complex(const _Tp& = _Tp(), const _Tp & = _Tp());
// Let's the compiler synthetize the copy constructor
// complex (const complex<_Tp>&);
template<typename _Up>
complex(const complex<_Up>&);
_Tp real() const;
_Tp imag() const;
complex<_Tp>& operator=(const _Tp&);
complex<_Tp>& operator+=(const _Tp&);
complex<_Tp>& operator-=(const _Tp&);
complex<_Tp>& operator*=(const _Tp&);
complex<_Tp>& operator/=(const _Tp&);
// Let's the compiler synthetize the
// copy and assignment operator
// complex<_Tp>& operator= (const complex<_Tp>&);
template<typename _Up>
complex<_Tp>& operator=(const complex<_Up>&);
template<typename _Up>
complex<_Tp>& operator+=(const complex<_Up>&);
template<typename _Up>
complex<_Tp>& operator-=(const complex<_Up>&);
template<typename _Up>
complex<_Tp>& operator*=(const complex<_Up>&);
template<typename _Up>
complex<_Tp>& operator/=(const complex<_Up>&);
private:
_Tp _M_real, _M_imag;
};
template<typename _Tp>
inline _Tp
complex<_Tp>::real() const { return _M_real; }
template<typename _Tp>
inline _Tp
complex<_Tp>::imag() const { return _M_imag; }
template<typename _Tp>
inline
complex<_Tp>::complex(const _Tp& __r, const _Tp& __i)
: _M_real(__r), _M_imag(__i) { }
template<typename _Tp>
template<typename _Up>
inline
complex<_Tp>::complex(const complex<_Up>& __z)
: _M_real(__z.real()), _M_imag(__z.imag()) { }
template<typename _Tp>
complex<_Tp>&
complex<_Tp>::operator=(const _Tp& __t)
{
_M_real = __t;
_M_imag = _Tp();
return *this;
}
// 26.2.5/1
template<typename _Tp>
inline complex<_Tp>&
complex<_Tp>::operator+=(const _Tp& __t)
{
_M_real += __t;
return *this;
}
// 26.2.5/3
template<typename _Tp>
inline complex<_Tp>&
complex<_Tp>::operator-=(const _Tp& __t)
{
_M_real -= __t;
return *this;
}
// 26.2.5/5
template<typename _Tp>
complex<_Tp>&
complex<_Tp>::operator*=(const _Tp& __t)
{
_M_real *= __t;
_M_imag *= __t;
return *this;
}
// 26.2.5/7
template<typename _Tp>
complex<_Tp>&
complex<_Tp>::operator/=(const _Tp& __t)
{
_M_real /= __t;
_M_imag /= __t;
return *this;
}
template<typename _Tp>
template<typename _Up>
complex<_Tp>&
complex<_Tp>::operator=(const complex<_Up>& __z)
{
_M_real = __z.real();
_M_imag = __z.imag();
return *this;
}
// 26.2.5/9
template<typename _Tp>
template<typename _Up>
complex<_Tp>&
complex<_Tp>::operator+=(const complex<_Up>& __z)
{
_M_real += __z.real();
_M_imag += __z.imag();
return *this;
}
// 26.2.5/11
template<typename _Tp>
template<typename _Up>
complex<_Tp>&
complex<_Tp>::operator-=(const complex<_Up>& __z)
{
_M_real -= __z.real();
_M_imag -= __z.imag();
return *this;
}
// 26.2.5/13
// XXX: This is a grammar school implementation.
template<typename _Tp>
template<typename _Up>
complex<_Tp>&
complex<_Tp>::operator*=(const complex<_Up>& __z)
{
const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();
_M_imag = _M_real * __z.imag() + _M_imag * __z.real();
_M_real = __r;
return *this;
}
// 26.2.5/15
// XXX: This is a grammar school implementation.
template<typename _Tp>
template<typename _Up>
complex<_Tp>&
complex<_Tp>::operator/=(const complex<_Up>& __z)
{
const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag();
const _Tp __n = norm(__z);
_M_imag = (_M_real * __z.imag() - _M_imag * __z.real()) / __n;
_M_real = __r / __n;
return *this;
}
// Operators:
template<typename _Tp>
inline complex<_Tp>
operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
{ return complex<_Tp> (__x) += __y; }
template<typename _Tp>
inline complex<_Tp>
operator+(const complex<_Tp>& __x, const _Tp& __y)
{ return complex<_Tp> (__x) += __y; }
template<typename _Tp>
inline complex<_Tp>
operator+(const _Tp& __x, const complex<_Tp>& __y)
{ return complex<_Tp> (__y) += __x; }
template<typename _Tp>
inline complex<_Tp>
operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
{ return complex<_Tp> (__x) -= __y; }
template<typename _Tp>
inline complex<_Tp>
operator-(const complex<_Tp>& __x, const _Tp& __y)
{ return complex<_Tp> (__x) -= __y; }
template<typename _Tp>
inline complex<_Tp>
operator-(const _Tp& __x, const complex<_Tp>& __y)
{ return complex<_Tp> (__x) -= __y; }
template<typename _Tp>
inline complex<_Tp>
operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
{ return complex<_Tp> (__x) *= __y; }
template<typename _Tp>
inline complex<_Tp>
operator*(const complex<_Tp>& __x, const _Tp& __y)
{ return complex<_Tp> (__x) *= __y; }
template<typename _Tp>
inline complex<_Tp>
operator*(const _Tp& __x, const complex<_Tp>& __y)
{ return complex<_Tp> (__y) *= __x; }
template<typename _Tp>
inline complex<_Tp>
operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
{ return complex<_Tp> (__x) /= __y; }
template<typename _Tp>
inline complex<_Tp>
operator/(const complex<_Tp>& __x, const _Tp& __y)
{ return complex<_Tp> (__x) /= __y; }
template<typename _Tp>
inline complex<_Tp>
operator/(const _Tp& __x, const complex<_Tp>& __y)
{ return complex<_Tp> (__x) /= __y; }
template<typename _Tp>
inline complex<_Tp>
operator+(const complex<_Tp>& __x)
{ return __x; }
template<typename _Tp>
inline complex<_Tp>
operator-(const complex<_Tp>& __x)
{ return complex<_Tp>(-__x.real(), -__x.imag()); }
template<typename _Tp>
inline bool
operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
{ return __x.real() == __y.real() && __x.imag() == __y.imag(); }
template<typename _Tp>
inline bool
operator==(const complex<_Tp>& __x, const _Tp& __y)
{ return __x.real() == __y && __x.imag() == _Tp(); }
template<typename _Tp>
inline bool
operator==(const _Tp& __x, const complex<_Tp>& __y)
{ return __x == __y.real() && _Tp() == __y.imag(); }
template<typename _Tp>
inline bool
operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
{ return __x.real() != __y.real() || __x.imag() != __y.imag(); }
template<typename _Tp>
inline bool
operator!=(const complex<_Tp>& __x, const _Tp& __y)
{ return __x.real() != __y || __x.imag() != _Tp(); }
template<typename _Tp>
inline bool
operator!=(const _Tp& __x, const complex<_Tp>& __y)
{ return __x != __y.real() || _Tp() != __y.imag(); }
template<typename _Tp, typename _CharT, class _Traits>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
{
_Tp __re_x, __im_x;
_CharT __ch;
__is >> __ch;
if (__ch == '(')
{
__is >> __re_x >> __ch;
if (__ch == ',')
{
__is >> __im_x >> __ch;
if (__ch == ')')
__x = complex<_Tp>(__re_x, __im_x);
else
__is.setstate(ios_base::failbit);
}
else if (__ch == ')')
__x = complex<_Tp>(__re_x, _Tp(0));
else
__is.setstate(ios_base::failbit);
}
else
{
__is.putback(__ch);
__is >> __re_x;
__x = complex<_Tp>(__re_x, _Tp(0));
}
return __is;
}
template<typename _Tp, typename _CharT, class _Traits>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
{
basic_ostringstream<_CharT, _Traits> __s;
__s.flags(__os.flags());
__s.imbue(__os.getloc());
__s.precision(__os.precision());
__s << '(' << __x.real() << "," << __x.imag() << ')';
return __os << __s.str();
}
// Values
template<typename _Tp>
inline _Tp
real(const complex<_Tp>& __z)
{ return __z.real(); }
template<typename _Tp>
inline _Tp
imag(const complex<_Tp>& __z)
{ return __z.imag(); }
template<typename _Tp>
inline _Tp
abs(const complex<_Tp>& __z)
{
_Tp __x = __z.real();
_Tp __y = __z.imag();
const _Tp __s = abs(__x) + abs(__y);
if (__s == _Tp()) // well ...
return __s;
__x /= __s;
__y /= __s;
return __s * sqrt(__x * __x + __y * __y);
}
template<typename _Tp>
inline _Tp
arg(const complex<_Tp>& __z)
{ return atan2(__z.imag(), __z.real()); }
template<typename _Tp>
inline _Tp
norm(const complex<_Tp>& __z)
{
_Tp __res = abs(__z);
return __res * __res;
}
template<typename _Tp>
inline complex<_Tp>
polar(const _Tp& __rho, const _Tp& __theta)
{ return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }
template<typename _Tp>
inline complex<_Tp>
conj(const complex<_Tp>& __z)
{ return complex<_Tp>(__z.real(), -__z.imag()); }
// Transcendentals
template<typename _Tp>
inline complex<_Tp>
cos(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
}
template<typename _Tp>
inline complex<_Tp>
cosh(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
}
template<typename _Tp>
inline complex<_Tp>
exp(const complex<_Tp>& __z)
{ return polar(exp(__z.real()), __z.imag()); }
template<typename _Tp>
inline complex<_Tp>
log(const complex<_Tp>& __z)
{ return complex<_Tp>(log(abs(__z)), arg(__z)); }
template<typename _Tp>
inline complex<_Tp>
log10(const complex<_Tp>& __z)
{ return log(__z) / log(_Tp(10.0)); }
template<typename _Tp>
inline complex<_Tp>
sin(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));
}
template<typename _Tp>
inline complex<_Tp>
sinh(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
}
template<typename _Tp>
complex<_Tp>
sqrt(const complex<_Tp>& __z)
{
_Tp __x = __z.real();
_Tp __y = __z.imag();
if (__x == _Tp())
{
_Tp __t = sqrt(abs(__y) / 2);
return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);
}
else
{
_Tp __t = sqrt(2 * (abs(__z) + abs(__x)));
_Tp __u = __t / 2;
return __x > _Tp()
? complex<_Tp>(__u, __y / __t)
: complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);
}
}
template<typename _Tp>
inline complex<_Tp>
tan(const complex<_Tp>& __z)
{
return sin(__z) / cos(__z);
}
template<typename _Tp>
inline complex<_Tp>
tanh(const complex<_Tp>& __z)
{
return sinh(__z) / cosh(__z);
}
template<typename _Tp>
inline complex<_Tp>
pow(const complex<_Tp>& __z, int __n)
{
return __pow_helper(__z, __n);
}
template<typename _Tp>
inline complex<_Tp>
pow(const complex<_Tp>& __x, const _Tp& __y)
{
return exp(__y * log(__x));
}
template<typename _Tp>
inline complex<_Tp>
pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
return exp(__y * log(__x));
}
template<typename _Tp>
inline complex<_Tp>
pow(const _Tp& __x, const complex<_Tp>& __y)
{
return exp(__y * log(__x));
}
// 26.2.3 complex specializations
// complex<float> specialization
template<> class complex<float>
{
public:
typedef float value_type;
complex(float = 0.0f, float = 0.0f);
#ifdef _GLIBCPP_BUGGY_COMPLEX
complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
explicit complex(const complex<double>&);
explicit complex(const complex<long double>&);
float real() const;
float imag() const;
complex<float>& operator=(float);
complex<float>& operator+=(float);
complex<float>& operator-=(float);
complex<float>& operator*=(float);
complex<float>& operator/=(float);
// Let's the compiler synthetize the copy and assignment
// operator. It always does a pretty good job.
// complex& operator= (const complex&);
template<typename _Tp>
complex<float>&operator=(const complex<_Tp>&);
template<typename _Tp>
complex<float>& operator+=(const complex<_Tp>&);
template<class _Tp>
complex<float>& operator-=(const complex<_Tp>&);
template<class _Tp>
complex<float>& operator*=(const complex<_Tp>&);
template<class _Tp>
complex<float>&operator/=(const complex<_Tp>&);
private:
typedef __complex__ float _ComplexT;
_ComplexT _M_value;
complex(_ComplexT __z) : _M_value(__z) { }
friend class complex<double>;
friend class complex<long double>;
};
inline float
complex<float>::real() const
{ return __real__ _M_value; }
inline float
complex<float>::imag() const
{ return __imag__ _M_value; }
inline
complex<float>::complex(float r, float i)
{
__real__ _M_value = r;
__imag__ _M_value = i;
}
inline complex<float>&
complex<float>::operator=(float __f)
{
__real__ _M_value = __f;
__imag__ _M_value = 0.0f;
return *this;
}
inline complex<float>&
complex<float>::operator+=(float __f)
{
__real__ _M_value += __f;
return *this;
}
inline complex<float>&
complex<float>::operator-=(float __f)
{
__real__ _M_value -= __f;
return *this;
}
inline complex<float>&
complex<float>::operator*=(float __f)
{
_M_value *= __f;
return *this;
}
inline complex<float>&
complex<float>::operator/=(float __f)
{
_M_value /= __f;
return *this;
}
template<typename _Tp>
inline complex<float>&
complex<float>::operator=(const complex<_Tp>& __z)
{
__real__ _M_value = __z.real();
__imag__ _M_value = __z.imag();
return *this;
}
template<typename _Tp>
inline complex<float>&
complex<float>::operator+=(const complex<_Tp>& __z)
{
__real__ _M_value += __z.real();
__imag__ _M_value += __z.imag();
return *this;
}
template<typename _Tp>
inline complex<float>&
complex<float>::operator-=(const complex<_Tp>& __z)
{
__real__ _M_value -= __z.real();
__imag__ _M_value -= __z.imag();
return *this;
}
template<typename _Tp>
inline complex<float>&
complex<float>::operator*=(const complex<_Tp>& __z)
{
_ComplexT __t;
__real__ __t = __z.real();
__imag__ __t = __z.imag();
_M_value *= __t;
return *this;
}
template<typename _Tp>
inline complex<float>&
complex<float>::operator/=(const complex<_Tp>& __z)
{
_ComplexT __t;
__real__ __t = __z.real();
__imag__ __t = __z.imag();
_M_value /= __t;
return *this;
}
// 26.2.3 complex specializations
// complex<double> specialization
template<> class complex<double>
{
public:
typedef double value_type;
complex(double =0.0, double =0.0);
#ifdef _GLIBCPP_BUGGY_COMPLEX
complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
complex(const complex<float>&);
explicit complex(const complex<long double>&);
double real() const;
double imag() const;
complex<double>& operator=(double);
complex<double>& operator+=(double);
complex<double>& operator-=(double);
complex<double>& operator*=(double);
complex<double>& operator/=(double);
// The compiler will synthetize this, efficiently.
// complex& operator= (const complex&);
template<typename _Tp>
complex<double>& operator=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator+=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator-=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator*=(const complex<_Tp>&);
template<typename _Tp>
complex<double>& operator/=(const complex<_Tp>&);
private:
typedef __complex__ double _ComplexT;
_ComplexT _M_value;
complex(_ComplexT __z) : _M_value(__z) { }
friend class complex<float>;
friend class complex<long double>;
};
inline double
complex<double>::real() const
{ return __real__ _M_value; }
inline double
complex<double>::imag() const
{ return __imag__ _M_value; }
inline
complex<double>::complex(double __r, double __i)
{
__real__ _M_value = __r;
__imag__ _M_value = __i;
}
inline complex<double>&
complex<double>::operator=(double __d)
{
__real__ _M_value = __d;
__imag__ _M_value = 0.0;
return *this;
}
inline complex<double>&
complex<double>::operator+=(double __d)
{
__real__ _M_value += __d;
return *this;
}
inline complex<double>&
complex<double>::operator-=(double __d)
{
__real__ _M_value -= __d;
return *this;
}
inline complex<double>&
complex<double>::operator*=(double __d)
{
_M_value *= __d;
return *this;
}
inline complex<double>&
complex<double>::operator/=(double __d)
{
_M_value /= __d;
return *this;
}
template<typename _Tp>
inline complex<double>&
complex<double>::operator=(const complex<_Tp>& __z)
{
__real__ _M_value = __z.real();
__imag__ _M_value = __z.imag();
return *this;
}
template<typename _Tp>
inline complex<double>&
complex<double>::operator+=(const complex<_Tp>& __z)
{
__real__ _M_value += __z.real();
__imag__ _M_value += __z.imag();
return *this;
}
template<typename _Tp>
inline complex<double>&
complex<double>::operator-=(const complex<_Tp>& __z)
{
__real__ _M_value -= __z.real();
__imag__ _M_value -= __z.imag();
return *this;
}
template<typename _Tp>
inline complex<double>&
complex<double>::operator*=(const complex<_Tp>& __z)
{
_ComplexT __t;
__real__ __t = __z.real();
__imag__ __t = __z.imag();
_M_value *= __t;
return *this;
}
template<typename _Tp>
inline complex<double>&
complex<double>::operator/=(const complex<_Tp>& __z)
{
_ComplexT __t;
__real__ __t = __z.real();
__imag__ __t = __z.imag();
_M_value /= __t;
return *this;
}
// 26.2.3 complex specializations
// complex<long double> specialization
template<> class complex<long double>
{
public:
typedef long double value_type;
complex(long double = 0.0L, long double = 0.0L);
#ifdef _GLIBCPP_BUGGY_COMPLEX
complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
complex(const complex<float>&);
complex(const complex<double>&);
long double real() const;
long double imag() const;
complex<long double>& operator= (long double);
complex<long double>& operator+= (long double);
complex<long double>& operator-= (long double);
complex<long double>& operator*= (long double);
complex<long double>& operator/= (long double);
// The compiler knows how to do this efficiently
// complex& operator= (const complex&);
template<typename _Tp>
complex<long double>& operator=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator+=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator-=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator*=(const complex<_Tp>&);
template<typename _Tp>
complex<long double>& operator/=(const complex<_Tp>&);
private:
typedef __complex__ long double _ComplexT;
_ComplexT _M_value;
complex(_ComplexT __z) : _M_value(__z) { }
friend class complex<float>;
friend class complex<double>;
};
inline
complex<long double>::complex(long double __r, long double __i)
{
__real__ _M_value = __r;
__imag__ _M_value = __i;
}
inline long double
complex<long double>::real() const
{ return __real__ _M_value; }
inline long double
complex<long double>::imag() const
{ return __imag__ _M_value; }
inline complex<long double>&
complex<long double>::operator=(long double __r)
{
__real__ _M_value = __r;
__imag__ _M_value = 0.0L;
return *this;
}
inline complex<long double>&
complex<long double>::operator+=(long double __r)
{
__real__ _M_value += __r;
return *this;
}
inline complex<long double>&
complex<long double>::operator-=(long double __r)
{
__real__ _M_value -= __r;
return *this;
}
inline complex<long double>&
complex<long double>::operator*=(long double __r)
{
_M_value *= __r;
return *this;
}
inline complex<long double>&
complex<long double>::operator/=(long double __r)
{
_M_value /= __r;
return *this;
}
template<typename _Tp>
inline complex<long double>&
complex<long double>::operator=(const complex<_Tp>& __z)
{
__real__ _M_value = __z.real();
__imag__ _M_value = __z.imag();
return *this;
}
template<typename _Tp>
inline complex<long double>&
complex<long double>::operator+=(const complex<_Tp>& __z)
{
__real__ _M_value += __z.real();
__imag__ _M_value += __z.imag();
return *this;
}
template<typename _Tp>
inline complex<long double>&
complex<long double>::operator-=(const complex<_Tp>& __z)
{
__real__ _M_value -= __z.real();
__imag__ _M_value -= __z.imag();
return *this;
}
template<typename _Tp>
inline complex<long double>&
complex<long double>::operator*=(const complex<_Tp>& __z)
{
_ComplexT __t;
__real__ __t = __z.real();
__imag__ __t = __z.imag();
_M_value *= __t;
return *this;
}
template<typename _Tp>
inline complex<long double>&
complex<long double>::operator/=(const complex<_Tp>& __z)
{
_ComplexT __t;
__real__ __t = __z.real();
__imag__ __t = __z.imag();
_M_value /= __t;
return *this;
}
// These bits have to be at the end of this file, so that the
// specializations have all been defined.
// ??? No, they have to be there because of compiler limitation at
// inlining. It suffices that class specializations be defined.
inline
complex<float>::complex(const complex<double>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
inline
complex<float>::complex(const complex<long double>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
inline
complex<double>::complex(const complex<float>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
inline
complex<double>::complex(const complex<long double>& __z)
{
__real__ _M_value = __z.real();
__imag__ _M_value = __z.imag();
}
inline
complex<long double>::complex(const complex<float>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
inline
complex<long double>::complex(const complex<double>& __z)
: _M_value(_ComplexT(__z._M_value)) { }
} // namespace std
#endif /* _CPP_COMPLEX */