mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-04-25 22:41:59 +08:00
2005-03-04 Bryce McKinlay <mckinlay@redhat.com> * verify-glue.c (vfy_is_assignable_from): Perform static check using can_widen_reference_to if the C++ ABI is in use. (vfy_get_interface_count, vfy_get_interface): Remove unused functions. * verify-impl.c (debug_print, make_utf8_const, init_type, copy_type, type_isresolved, init_state, set_pc, state_get_pc, _Jv_BytecodeVerifier): Clean up unused and disabled functions. (verify_fail): Report the current PC from the verifier context. (free_state): Remove #if 0 block to enable this function. (free_verifier_context): Call free_state on state_list iterator values before freeing them. * expr.c (pop_type_0): Pop correct type for error message when stack contains a multi-word type. 2005-03-04 Ranjit Mathew <rmathew@hotmail.com> * expr.c (build_java_array_length_access): Remove !flag_new_verifier for known NULL array length access. From-SVN: r96044
3309 lines
82 KiB
C
3309 lines
82 KiB
C
/* Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation
|
|
|
|
This file is part of libgcj.
|
|
|
|
This software is copyrighted work licensed under the terms of the
|
|
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
|
details. */
|
|
|
|
/* Written by Tom Tromey <tromey@redhat.com> */
|
|
|
|
/* Uncomment this to enable debugging output. */
|
|
/* #define VERIFY_DEBUG */
|
|
|
|
#include "config.h"
|
|
|
|
#include "verify.h"
|
|
|
|
/* Hack to work around namespace pollution from java-tree.h. */
|
|
#undef current_class
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
#include <stdio.h>
|
|
#endif /* VERIFY_DEBUG */
|
|
|
|
/* This is used to mark states which are not scheduled for
|
|
verification. */
|
|
#define INVALID_STATE ((state *) -1)
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
static void
|
|
debug_print (const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_start (ap, fmt);
|
|
vfprintf (stderr, fmt, ap);
|
|
va_end (ap);
|
|
}
|
|
#else
|
|
static void
|
|
debug_print (const char *fmt ATTRIBUTE_UNUSED, ...)
|
|
{
|
|
}
|
|
#endif /* VERIFY_DEBUG */
|
|
|
|
/* This started as a fairly ordinary verifier, and for the most part
|
|
it remains so. It works in the obvious way, by modeling the effect
|
|
of each opcode as it is encountered. For most opcodes, this is a
|
|
straightforward operation.
|
|
|
|
This verifier does not do type merging. It used to, but this
|
|
results in difficulty verifying some relatively simple code
|
|
involving interfaces, and it pushed some verification work into the
|
|
interpreter.
|
|
|
|
Instead of merging reference types, when we reach a point where two
|
|
flows of control merge, we simply keep the union of reference types
|
|
from each branch. Then, when we need to verify a fact about a
|
|
reference on the stack (e.g., that it is compatible with the
|
|
argument type of a method), we check to ensure that all possible
|
|
types satisfy the requirement.
|
|
|
|
Another area this verifier differs from the norm is in its handling
|
|
of subroutines. The JVM specification has some confusing things to
|
|
say about subroutines. For instance, it makes claims about not
|
|
allowing subroutines to merge and it rejects recursive subroutines.
|
|
For the most part these are red herrings; we used to try to follow
|
|
these things but they lead to problems. For example, the notion of
|
|
"being in a subroutine" is not well-defined: is an exception
|
|
handler in a subroutine? If you never execute the `ret' but
|
|
instead `goto 1' do you remain in the subroutine?
|
|
|
|
For clarity on what is really required for type safety, read
|
|
"Simple Verification Technique for Complex Java Bytecode
|
|
Subroutines" by Alessandro Coglio. Among other things this paper
|
|
shows that recursive subroutines are not harmful to type safety.
|
|
We implement something similar to what he proposes. Note that this
|
|
means that this verifier will accept code that is rejected by some
|
|
other verifiers.
|
|
|
|
For those not wanting to read the paper, the basic observation is
|
|
that we can maintain split states in subroutines. We maintain one
|
|
state for each calling `jsr'. In other words, we re-verify a
|
|
subroutine once for each caller, using the exact types held by the
|
|
callers (as opposed to the old approach of merging types and
|
|
keeping a bitmap registering what did or did not change). This
|
|
approach lets us continue to verify correctly even when a
|
|
subroutine is exited via `goto' or `athrow' and not `ret'.
|
|
|
|
In some other areas the JVM specification is (mildly) incorrect,
|
|
so we diverge. For instance, you cannot
|
|
violate type safety by allocating an object with `new' and then
|
|
failing to initialize it, no matter how one branches or where one
|
|
stores the uninitialized reference. See "Improving the official
|
|
specification of Java bytecode verification" by Alessandro Coglio.
|
|
|
|
Note that there's no real point in enforcing that padding bytes or
|
|
the mystery byte of invokeinterface must be 0, but we do that
|
|
regardless.
|
|
|
|
The verifier is currently neither completely lazy nor eager when it
|
|
comes to loading classes. It tries to represent types by name when
|
|
possible, and then loads them when it needs to verify a fact about
|
|
the type. Checking types by name is valid because we only use
|
|
names which come from the current class' constant pool. Since all
|
|
such names are looked up using the same class loader, there is no
|
|
danger that we might be fooled into comparing different types with
|
|
the same name.
|
|
|
|
In the future we plan to allow for a completely lazy mode of
|
|
operation, where the verifier will construct a list of type
|
|
assertions to be checked later.
|
|
|
|
Some test cases for the verifier live in the "verify" module of the
|
|
Mauve test suite. However, some of these are presently
|
|
(2004-01-20) believed to be incorrect. (More precisely the notion
|
|
of "correct" is not well-defined, and this verifier differs from
|
|
others while remaining type-safe.) Some other tests live in the
|
|
libgcj test suite.
|
|
|
|
This verifier is also written to be pluggable. This means that it
|
|
is intended for use in a variety of environments, not just libgcj.
|
|
As a result the verifier expects a number of type and method
|
|
declarations to be declared in "verify.h". The intent is that you
|
|
recompile the verifier for your particular environment. This
|
|
approach was chosen so that operations could be inlined in verify.h
|
|
as much as possible.
|
|
|
|
See the verify.h that accompanies this copy of the verifier to see
|
|
what types, preprocessor defines, and functions must be declared.
|
|
The interface is ad hoc, but was defined so that it could be
|
|
implemented to connect to a pure C program.
|
|
*/
|
|
|
|
#define FLAG_INSN_START 1
|
|
#define FLAG_BRANCH_TARGET 2
|
|
#define FLAG_INSN_SEEN 4
|
|
|
|
struct state;
|
|
struct type;
|
|
struct ref_intersection;
|
|
|
|
typedef struct state state;
|
|
typedef struct type type;
|
|
typedef struct ref_intersection ref_intersection;
|
|
|
|
/*typedef struct state_list state_list;*/
|
|
|
|
typedef struct state_list
|
|
{
|
|
state *val;
|
|
struct state_list *next;
|
|
} state_list;
|
|
|
|
typedef struct vfy_string_list
|
|
{
|
|
vfy_string val;
|
|
struct vfy_string_list *next;
|
|
} vfy_string_list;
|
|
|
|
typedef struct verifier_context
|
|
{
|
|
/* The current PC. */
|
|
int PC;
|
|
/* The PC corresponding to the start of the current instruction. */
|
|
int start_PC;
|
|
|
|
/* The current state of the stack, locals, etc. */
|
|
state *current_state;
|
|
|
|
/* At each branch target we keep a linked list of all the states we
|
|
can process at that point. We'll only have multiple states at a
|
|
given PC if they both have different return-address types in the
|
|
same stack or local slot. This array is indexed by PC and holds
|
|
the list of all such states. */
|
|
state_list **states;
|
|
|
|
/* We keep a linked list of all the states which we must reverify.
|
|
This is the head of the list. */
|
|
state *next_verify_state;
|
|
|
|
/* We keep some flags for each instruction. The values are the
|
|
FLAG_* constants defined above. This is an array indexed by PC. */
|
|
char *flags;
|
|
|
|
/* The bytecode itself. */
|
|
const unsigned char *bytecode;
|
|
/* The exceptions. */
|
|
vfy_exception *exception;
|
|
|
|
/* Defining class. */
|
|
vfy_jclass current_class;
|
|
/* This method. */
|
|
vfy_method *current_method;
|
|
|
|
/* A linked list of utf8 objects we allocate. */
|
|
vfy_string_list *utf8_list;
|
|
|
|
/* A linked list of all ref_intersection objects we allocate. */
|
|
ref_intersection *isect_list;
|
|
} verifier_context;
|
|
|
|
/* The current verifier's state data. This is maintained by
|
|
{push/pop}_verifier_context to provide a shorthand form to access
|
|
the verification state. */
|
|
static GTY(()) verifier_context *vfr;
|
|
|
|
/* Local function declarations. */
|
|
bool type_initialized (type *t);
|
|
int ref_count_dimensions (ref_intersection *ref);
|
|
|
|
static void
|
|
verify_fail_pc (const char *s, int pc)
|
|
{
|
|
vfy_fail (s, pc, vfr->current_class, vfr->current_method);
|
|
}
|
|
|
|
static void
|
|
verify_fail (const char *s)
|
|
{
|
|
verify_fail_pc (s, vfr->PC);
|
|
}
|
|
|
|
/* This enum holds a list of tags for all the different types we
|
|
need to handle. Reference types are treated specially by the
|
|
type class. */
|
|
typedef enum type_val
|
|
{
|
|
void_type,
|
|
|
|
/* The values for primitive types are chosen to correspond to values
|
|
specified to newarray. */
|
|
boolean_type = 4,
|
|
char_type = 5,
|
|
float_type = 6,
|
|
double_type = 7,
|
|
byte_type = 8,
|
|
short_type = 9,
|
|
int_type = 10,
|
|
long_type = 11,
|
|
|
|
/* Used when overwriting second word of a double or long in the
|
|
local variables. Also used after merging local variable states
|
|
to indicate an unusable value. */
|
|
unsuitable_type,
|
|
return_address_type,
|
|
/* This is the second word of a two-word value, i.e., a double or
|
|
a long. */
|
|
continuation_type,
|
|
|
|
/* Everything after `reference_type' must be a reference type. */
|
|
reference_type,
|
|
null_type,
|
|
uninitialized_reference_type
|
|
} type_val;
|
|
|
|
/* This represents a merged class type. Some verifiers (including
|
|
earlier versions of this one) will compute the intersection of
|
|
two class types when merging states. However, this loses
|
|
critical information about interfaces implemented by the various
|
|
classes. So instead we keep track of all the actual classes that
|
|
have been merged. */
|
|
struct ref_intersection
|
|
{
|
|
/* Whether or not this type has been resolved. */
|
|
bool is_resolved;
|
|
|
|
/* Actual type data. */
|
|
union
|
|
{
|
|
/* For a resolved reference type, this is a pointer to the class. */
|
|
vfy_jclass klass;
|
|
/* For other reference types, this it the name of the class. */
|
|
vfy_string name;
|
|
} data;
|
|
|
|
/* Link to the next reference in the intersection. */
|
|
ref_intersection *ref_next;
|
|
|
|
/* This is used to keep track of all the allocated
|
|
ref_intersection objects, so we can free them.
|
|
FIXME: we should allocate these in chunks. */
|
|
ref_intersection *alloc_next;
|
|
};
|
|
|
|
static ref_intersection *
|
|
make_ref (void)
|
|
{
|
|
ref_intersection *new_ref =
|
|
(ref_intersection *) vfy_alloc (sizeof (ref_intersection));
|
|
|
|
new_ref->alloc_next = vfr->isect_list;
|
|
vfr->isect_list = new_ref;
|
|
return new_ref;
|
|
}
|
|
|
|
static ref_intersection *
|
|
clone_ref (ref_intersection *dup)
|
|
{
|
|
ref_intersection *new_ref = make_ref ();
|
|
|
|
new_ref->is_resolved = dup->is_resolved;
|
|
new_ref->data = dup->data;
|
|
return new_ref;
|
|
}
|
|
|
|
static void
|
|
resolve_ref (ref_intersection *ref)
|
|
{
|
|
if (ref->is_resolved)
|
|
return;
|
|
ref->data.klass = vfy_find_class (vfr->current_class, ref->data.name);
|
|
ref->is_resolved = true;
|
|
}
|
|
|
|
static bool
|
|
refs_equal (ref_intersection *ref1, ref_intersection *ref2)
|
|
{
|
|
if (! ref1->is_resolved && ! ref2->is_resolved
|
|
&& vfy_strings_equal (ref1->data.name, ref2->data.name))
|
|
return true;
|
|
if (! ref1->is_resolved)
|
|
resolve_ref (ref1);
|
|
if (! ref2->is_resolved)
|
|
resolve_ref (ref2);
|
|
return ref1->data.klass == ref2->data.klass;
|
|
}
|
|
|
|
/* Merge REF1 type into REF2, returning the result. This will
|
|
return REF2 if all the classes in THIS already appear in
|
|
REF2. */
|
|
static ref_intersection *
|
|
merge_refs (ref_intersection *ref1, ref_intersection *ref2)
|
|
{
|
|
ref_intersection *tail = ref2;
|
|
for (; ref1 != NULL; ref1 = ref1->ref_next)
|
|
{
|
|
bool add = true;
|
|
ref_intersection *iter;
|
|
for (iter = ref2; iter != NULL; iter = iter->ref_next)
|
|
{
|
|
if (refs_equal (ref1, iter))
|
|
{
|
|
add = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (add)
|
|
{
|
|
ref_intersection *new_tail = clone_ref (ref1);
|
|
new_tail->ref_next = tail;
|
|
tail = new_tail;
|
|
}
|
|
}
|
|
return tail;
|
|
}
|
|
|
|
/* See if an object of type SOURCE can be assigned to an object of
|
|
type TARGET. This might resolve classes in one chain or the other. */
|
|
static bool
|
|
ref_compatible (ref_intersection *target, ref_intersection *source)
|
|
{
|
|
for (; target != NULL; target = target->ref_next)
|
|
{
|
|
ref_intersection *source_iter = source;
|
|
|
|
for (; source_iter != NULL; source_iter = source_iter->ref_next)
|
|
{
|
|
/* Avoid resolving if possible. */
|
|
if (! target->is_resolved
|
|
&& ! source_iter->is_resolved
|
|
&& vfy_strings_equal (target->data.name,
|
|
source_iter->data.name))
|
|
continue;
|
|
|
|
if (! target->is_resolved)
|
|
resolve_ref (target);
|
|
if (! source_iter->is_resolved)
|
|
resolve_ref (source_iter);
|
|
|
|
if (! vfy_is_assignable_from (target->data.klass,
|
|
source_iter->data.klass))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
ref_isarray (ref_intersection *ref)
|
|
{
|
|
/* assert (ref_next == NULL); */
|
|
if (ref->is_resolved)
|
|
return vfy_is_array (ref->data.klass);
|
|
else
|
|
return vfy_string_bytes (ref->data.name)[0] == '[';
|
|
}
|
|
|
|
static bool
|
|
ref_isinterface (ref_intersection *ref)
|
|
{
|
|
/* assert (ref_next == NULL); */
|
|
if (! ref->is_resolved)
|
|
resolve_ref (ref);
|
|
return vfy_is_interface (ref->data.klass);
|
|
}
|
|
|
|
static bool
|
|
ref_isabstract (ref_intersection *ref)
|
|
{
|
|
/* assert (ref_next == NULL); */
|
|
if (! ref->is_resolved)
|
|
resolve_ref (ref);
|
|
return vfy_is_abstract (ref->data.klass);
|
|
}
|
|
|
|
static vfy_jclass
|
|
ref_getclass (ref_intersection *ref)
|
|
{
|
|
if (! ref->is_resolved)
|
|
resolve_ref (ref);
|
|
return ref->data.klass;
|
|
}
|
|
|
|
int
|
|
ref_count_dimensions (ref_intersection *ref)
|
|
{
|
|
int ndims = 0;
|
|
if (ref->is_resolved)
|
|
{
|
|
vfy_jclass k = ref->data.klass;
|
|
while (vfy_is_array (k))
|
|
{
|
|
k = vfy_get_component_type (k);
|
|
++ndims;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const char *p = vfy_string_bytes (ref->data.name);
|
|
while (*p++ == '[')
|
|
++ndims;
|
|
}
|
|
return ndims;
|
|
}
|
|
|
|
/* Return the type_val corresponding to a primitive signature
|
|
character. For instance `I' returns `int.class'. */
|
|
static type_val
|
|
get_type_val_for_signature (char sig)
|
|
{
|
|
type_val rt;
|
|
switch (sig)
|
|
{
|
|
case 'Z':
|
|
rt = boolean_type;
|
|
break;
|
|
case 'B':
|
|
rt = byte_type;
|
|
break;
|
|
case 'C':
|
|
rt = char_type;
|
|
break;
|
|
case 'S':
|
|
rt = short_type;
|
|
break;
|
|
case 'I':
|
|
rt = int_type;
|
|
break;
|
|
case 'J':
|
|
rt = long_type;
|
|
break;
|
|
case 'F':
|
|
rt = float_type;
|
|
break;
|
|
case 'D':
|
|
rt = double_type;
|
|
break;
|
|
case 'V':
|
|
rt = void_type;
|
|
break;
|
|
default:
|
|
verify_fail ("invalid signature");
|
|
return null_type;
|
|
}
|
|
return rt;
|
|
}
|
|
|
|
/* Return the type_val corresponding to a primitive class. */
|
|
static type_val
|
|
get_type_val_for_primtype (vfy_jclass k)
|
|
{
|
|
return get_type_val_for_signature (vfy_get_primitive_char (k));
|
|
}
|
|
|
|
/* The `type' class is used to represent a single type in the verifier. */
|
|
struct type
|
|
{
|
|
/* The type key. */
|
|
type_val key;
|
|
|
|
/* For reference types, the representation of the type. */
|
|
ref_intersection *klass;
|
|
|
|
/* This is used in two situations.
|
|
|
|
First, when constructing a new object, it is the PC of the
|
|
`new' instruction which created the object. We use the special
|
|
value UNINIT to mean that this is uninitialized. The special
|
|
value SELF is used for the case where the current method is
|
|
itself the <init> method. the special value EITHER is used
|
|
when we may optionally allow either an uninitialized or
|
|
initialized reference to match.
|
|
|
|
Second, when the key is return_address_type, this holds the PC
|
|
of the instruction following the `jsr'. */
|
|
int pc;
|
|
|
|
#define UNINIT -2
|
|
#define SELF -1
|
|
#define EITHER -3
|
|
};
|
|
|
|
/* Make a new instance given the type tag. We assume a generic
|
|
`reference_type' means Object. */
|
|
static void
|
|
init_type_from_tag (type *t, type_val k)
|
|
{
|
|
t->key = k;
|
|
/* For reference_type, if KLASS==NULL then that means we are
|
|
looking for a generic object of any kind, including an
|
|
uninitialized reference. */
|
|
t->klass = NULL;
|
|
t->pc = UNINIT;
|
|
}
|
|
|
|
/* Make a type for the given type_val tag K. */
|
|
static type
|
|
make_type (type_val k)
|
|
{
|
|
type t;
|
|
init_type_from_tag (&t, k);
|
|
return t;
|
|
}
|
|
|
|
/* Make a new instance given a class. */
|
|
static void
|
|
init_type_from_class (type *t, vfy_jclass k)
|
|
{
|
|
t->key = reference_type;
|
|
t->klass = make_ref ();
|
|
t->klass->is_resolved = true;
|
|
t->klass->data.klass = k;
|
|
t->klass->ref_next = NULL;
|
|
t->pc = UNINIT;
|
|
}
|
|
|
|
static type
|
|
make_type_from_class (vfy_jclass k)
|
|
{
|
|
type t;
|
|
init_type_from_class (&t, k);
|
|
return t;
|
|
}
|
|
|
|
static void
|
|
init_type_from_string (type *t, vfy_string n)
|
|
{
|
|
t->key = reference_type;
|
|
t->klass = make_ref ();
|
|
t->klass->is_resolved = false;
|
|
t->klass->data.name = n;
|
|
t->klass->ref_next = NULL;
|
|
t->pc = UNINIT;
|
|
}
|
|
|
|
static type
|
|
make_type_from_string (vfy_string n)
|
|
{
|
|
type t;
|
|
init_type_from_string (&t, n);
|
|
return t;
|
|
}
|
|
|
|
/* Promote a numeric type. */
|
|
static void
|
|
vfy_promote_type (type *t)
|
|
{
|
|
if (t->key == boolean_type || t->key == char_type
|
|
|| t->key == byte_type || t->key == short_type)
|
|
t->key = int_type;
|
|
}
|
|
#define promote_type vfy_promote_type
|
|
|
|
/* Mark this type as the uninitialized result of `new'. */
|
|
static void
|
|
type_set_uninitialized (type *t, int npc)
|
|
{
|
|
if (t->key == reference_type)
|
|
t->key = uninitialized_reference_type;
|
|
else
|
|
verify_fail ("internal error in type::uninitialized");
|
|
t->pc = npc;
|
|
}
|
|
|
|
/* Mark this type as now initialized. */
|
|
static void
|
|
type_set_initialized (type *t, int npc)
|
|
{
|
|
if (npc != UNINIT && t->pc == npc && t->key == uninitialized_reference_type)
|
|
{
|
|
t->key = reference_type;
|
|
t->pc = UNINIT;
|
|
}
|
|
}
|
|
|
|
/* Mark this type as a particular return address. */
|
|
static void type_set_return_address (type *t, int npc)
|
|
{
|
|
t->pc = npc;
|
|
}
|
|
|
|
/* Return true if this type and type OTHER are considered
|
|
mergeable for the purposes of state merging. This is related
|
|
to subroutine handling. For this purpose two types are
|
|
considered unmergeable if they are both return-addresses but
|
|
have different PCs. */
|
|
static bool
|
|
type_state_mergeable_p (type *t1, type *t2)
|
|
{
|
|
return (t1->key != return_address_type
|
|
|| t2->key != return_address_type
|
|
|| t1->pc == t2->pc);
|
|
}
|
|
|
|
/* Return true if an object of type K can be assigned to a variable
|
|
of type T. Handle various special cases too. Might modify
|
|
T or K. Note however that this does not perform numeric
|
|
promotion. */
|
|
static bool
|
|
types_compatible (type *t, type *k)
|
|
{
|
|
/* Any type is compatible with the unsuitable type. */
|
|
if (k->key == unsuitable_type)
|
|
return true;
|
|
|
|
if (t->key < reference_type || k->key < reference_type)
|
|
return t->key == k->key;
|
|
|
|
/* The `null' type is convertible to any initialized reference
|
|
type. */
|
|
if (t->key == null_type)
|
|
return k->key != uninitialized_reference_type;
|
|
if (k->key == null_type)
|
|
return t->key != uninitialized_reference_type;
|
|
|
|
/* A special case for a generic reference. */
|
|
if (t->klass == NULL)
|
|
return true;
|
|
if (k->klass == NULL)
|
|
verify_fail ("programmer error in type::compatible");
|
|
|
|
/* Handle the special 'EITHER' case, which is only used in a
|
|
special case of 'putfield'. Note that we only need to handle
|
|
this on the LHS of a check. */
|
|
if (! type_initialized (t) && t->pc == EITHER)
|
|
{
|
|
/* If the RHS is uninitialized, it must be an uninitialized
|
|
'this'. */
|
|
if (! type_initialized (k) && k->pc != SELF)
|
|
return false;
|
|
}
|
|
else if (type_initialized (t) != type_initialized (k))
|
|
{
|
|
/* An initialized type and an uninitialized type are not
|
|
otherwise compatible. */
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
/* Two uninitialized objects are compatible if either:
|
|
* The PCs are identical, or
|
|
* One PC is UNINIT. */
|
|
if (type_initialized (t))
|
|
{
|
|
if (t->pc != k->pc && t->pc != UNINIT && k->pc != UNINIT)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return ref_compatible (t->klass, k->klass);
|
|
}
|
|
|
|
/* Return true if two types are equal. Only valid for reference
|
|
types. */
|
|
static bool
|
|
types_equal (type *t1, type *t2)
|
|
{
|
|
if ((t1->key != reference_type && t1->key != uninitialized_reference_type)
|
|
|| (t2->key != reference_type
|
|
&& t2->key != uninitialized_reference_type))
|
|
return false;
|
|
/* Only single-ref types are allowed. */
|
|
if (t1->klass->ref_next || t2->klass->ref_next)
|
|
return false;
|
|
return refs_equal (t1->klass, t2->klass);
|
|
}
|
|
|
|
static bool
|
|
type_isvoid (type *t)
|
|
{
|
|
return t->key == void_type;
|
|
}
|
|
|
|
static bool
|
|
type_iswide (type *t)
|
|
{
|
|
return t->key == long_type || t->key == double_type;
|
|
}
|
|
|
|
/* Return number of stack or local variable slots taken by this type. */
|
|
static int
|
|
type_depth (type *t)
|
|
{
|
|
return type_iswide (t) ? 2 : 1;
|
|
}
|
|
|
|
static bool
|
|
type_isarray (type *t)
|
|
{
|
|
/* We treat null_type as not an array. This is ok based on the
|
|
current uses of this method. */
|
|
if (t->key == reference_type)
|
|
return ref_isarray (t->klass);
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
type_isnull (type *t)
|
|
{
|
|
return t->key == null_type;
|
|
}
|
|
|
|
static bool
|
|
type_isinterface (type *t)
|
|
{
|
|
if (t->key != reference_type)
|
|
return false;
|
|
return ref_isinterface (t->klass);
|
|
}
|
|
|
|
static bool
|
|
type_isabstract (type *t)
|
|
{
|
|
if (t->key != reference_type)
|
|
return false;
|
|
return ref_isabstract (t->klass);
|
|
}
|
|
|
|
/* Return the element type of an array. */
|
|
static type
|
|
type_array_element (type *t)
|
|
{
|
|
type et;
|
|
vfy_jclass k;
|
|
|
|
if (t->key != reference_type)
|
|
verify_fail ("programmer error in type::element_type()");
|
|
|
|
k = vfy_get_component_type (ref_getclass (t->klass));
|
|
if (vfy_is_primitive (k))
|
|
init_type_from_tag (&et, get_type_val_for_primtype (k));
|
|
else
|
|
init_type_from_class (&et, k);
|
|
return et;
|
|
}
|
|
|
|
/* Return the array type corresponding to an initialized
|
|
reference. We could expand this to work for other kinds of
|
|
types, but currently we don't need to. */
|
|
static type
|
|
type_to_array (type *t)
|
|
{
|
|
type at;
|
|
vfy_jclass k;
|
|
|
|
if (t->key != reference_type)
|
|
verify_fail ("internal error in type::to_array()");
|
|
|
|
k = ref_getclass (t->klass);
|
|
init_type_from_class (&at, vfy_get_array_class (k));
|
|
return at;
|
|
}
|
|
|
|
static bool
|
|
type_isreference (type *t)
|
|
{
|
|
return t->key >= reference_type;
|
|
}
|
|
|
|
static int
|
|
type_get_pc (type *t)
|
|
{
|
|
return t->pc;
|
|
}
|
|
|
|
bool
|
|
type_initialized (type *t)
|
|
{
|
|
return t->key == reference_type || t->key == null_type;
|
|
}
|
|
|
|
static void
|
|
type_verify_dimensions (type *t, int ndims)
|
|
{
|
|
/* The way this is written, we don't need to check isarray(). */
|
|
if (t->key != reference_type)
|
|
verify_fail ("internal error in verify_dimensions:"
|
|
" not a reference type");
|
|
|
|
if (ref_count_dimensions (t->klass) < ndims)
|
|
verify_fail ("array type has fewer dimensions"
|
|
" than required");
|
|
}
|
|
|
|
/* Merge OLD_TYPE into this. On error throw exception. Return
|
|
true if the merge caused a type change. */
|
|
static bool
|
|
merge_types (type *t, type *old_type, bool local_semantics)
|
|
{
|
|
bool changed = false;
|
|
bool refo = type_isreference (old_type);
|
|
bool refn = type_isreference (t);
|
|
if (refo && refn)
|
|
{
|
|
if (old_type->key == null_type)
|
|
;
|
|
else if (t->key == null_type)
|
|
{
|
|
*t = *old_type;
|
|
changed = true;
|
|
}
|
|
else if (type_initialized (t) != type_initialized (old_type))
|
|
verify_fail ("merging initialized and uninitialized types");
|
|
else
|
|
{
|
|
ref_intersection *merged;
|
|
if (! type_initialized (t))
|
|
{
|
|
if (t->pc == UNINIT)
|
|
t->pc = old_type->pc;
|
|
else if (old_type->pc == UNINIT)
|
|
;
|
|
else if (t->pc != old_type->pc)
|
|
verify_fail ("merging different uninitialized types");
|
|
}
|
|
|
|
merged = merge_refs (old_type->klass, t->klass);
|
|
if (merged != t->klass)
|
|
{
|
|
t->klass = merged;
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
else if (refo || refn || t->key != old_type->key)
|
|
{
|
|
if (local_semantics)
|
|
{
|
|
/* If we already have an `unsuitable' type, then we
|
|
don't need to change again. */
|
|
if (t->key != unsuitable_type)
|
|
{
|
|
t->key = unsuitable_type;
|
|
changed = true;
|
|
}
|
|
}
|
|
else
|
|
verify_fail ("unmergeable type");
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
static void
|
|
type_print (type *t)
|
|
{
|
|
char c = '?';
|
|
switch (t->key)
|
|
{
|
|
case boolean_type: c = 'Z'; break;
|
|
case byte_type: c = 'B'; break;
|
|
case char_type: c = 'C'; break;
|
|
case short_type: c = 'S'; break;
|
|
case int_type: c = 'I'; break;
|
|
case long_type: c = 'J'; break;
|
|
case float_type: c = 'F'; break;
|
|
case double_type: c = 'D'; break;
|
|
case void_type: c = 'V'; break;
|
|
case unsuitable_type: c = '-'; break;
|
|
case return_address_type: c = 'r'; break;
|
|
case continuation_type: c = '+'; break;
|
|
case reference_type: c = 'L'; break;
|
|
case null_type: c = '@'; break;
|
|
case uninitialized_reference_type: c = 'U'; break;
|
|
}
|
|
debug_print ("%c", c);
|
|
}
|
|
#endif /* VERIFY_DEBUG */
|
|
|
|
/* This class holds all the state information we need for a given
|
|
location. */
|
|
struct state
|
|
{
|
|
/* The current top of the stack, in terms of slots. */
|
|
int stacktop;
|
|
/* The current depth of the stack. This will be larger than
|
|
STACKTOP when wide types are on the stack. */
|
|
int stackdepth;
|
|
/* The stack. */
|
|
type *stack;
|
|
/* The local variables. */
|
|
type *locals;
|
|
/* We keep track of the type of `this' specially. This is used to
|
|
ensure that an instance initializer invokes another initializer
|
|
on `this' before returning. We must keep track of this
|
|
specially because otherwise we might be confused by code which
|
|
assigns to locals[0] (overwriting `this') and then returns
|
|
without really initializing. */
|
|
type this_type;
|
|
|
|
/* The PC for this state. This is only valid on states which are
|
|
permanently attached to a given PC. For an object like
|
|
`current_state', which is used transiently, this has no
|
|
meaning. */
|
|
int pc;
|
|
/* We keep a linked list of all states requiring reverification.
|
|
If this is the special value INVALID_STATE then this state is
|
|
not on the list. NULL marks the end of the linked list. */
|
|
state *next;
|
|
};
|
|
|
|
/* NO_NEXT is the PC value meaning that a new state must be
|
|
acquired from the verification list. */
|
|
#define NO_NEXT -1
|
|
|
|
static void
|
|
init_state_with_stack (state *s, int max_stack, int max_locals)
|
|
{
|
|
int i;
|
|
s->stacktop = 0;
|
|
s->stackdepth = 0;
|
|
s->stack = (type *) vfy_alloc (max_stack * sizeof (type));
|
|
for (i = 0; i < max_stack; ++i)
|
|
init_type_from_tag (&s->stack[i], unsuitable_type);
|
|
s->locals = (type *) vfy_alloc (max_locals * sizeof (type));
|
|
for (i = 0; i < max_locals; ++i)
|
|
init_type_from_tag (&s->locals[i], unsuitable_type);
|
|
init_type_from_tag (&s->this_type, unsuitable_type);
|
|
s->pc = NO_NEXT;
|
|
s->next = INVALID_STATE;
|
|
}
|
|
|
|
static void
|
|
copy_state (state *s, state *copy, int max_stack, int max_locals)
|
|
{
|
|
int i;
|
|
s->stacktop = copy->stacktop;
|
|
s->stackdepth = copy->stackdepth;
|
|
for (i = 0; i < max_stack; ++i)
|
|
s->stack[i] = copy->stack[i];
|
|
for (i = 0; i < max_locals; ++i)
|
|
s->locals[i] = copy->locals[i];
|
|
|
|
s->this_type = copy->this_type;
|
|
/* Don't modify `next' or `pc'. */
|
|
}
|
|
|
|
static void
|
|
copy_state_with_stack (state *s, state *orig, int max_stack, int max_locals)
|
|
{
|
|
init_state_with_stack (s, max_stack, max_locals);
|
|
copy_state (s, orig, max_stack, max_locals);
|
|
}
|
|
|
|
/* Allocate a new state, copying ORIG. */
|
|
static state *
|
|
make_state_copy (state *orig, int max_stack, int max_locals)
|
|
{
|
|
state *s = vfy_alloc (sizeof (state));
|
|
copy_state_with_stack (s, orig, max_stack, max_locals);
|
|
return s;
|
|
}
|
|
|
|
static state *
|
|
make_state (int max_stack, int max_locals)
|
|
{
|
|
state *s = vfy_alloc (sizeof (state));
|
|
init_state_with_stack (s, max_stack, max_locals);
|
|
return s;
|
|
}
|
|
|
|
static void
|
|
free_state (state *s)
|
|
{
|
|
if (s->stack != NULL)
|
|
vfy_free (s->stack);
|
|
if (s->locals != NULL)
|
|
vfy_free (s->locals);
|
|
}
|
|
|
|
/* Modify this state to reflect entry to an exception handler. */
|
|
static void
|
|
state_set_exception (state *s, type *t, int max_stack)
|
|
{
|
|
int i;
|
|
s->stackdepth = 1;
|
|
s->stacktop = 1;
|
|
s->stack[0] = *t;
|
|
for (i = s->stacktop; i < max_stack; ++i)
|
|
init_type_from_tag (&s->stack[i], unsuitable_type);
|
|
}
|
|
|
|
/* Merge STATE_OLD into this state. Destructively modifies this
|
|
state. Returns true if the new state was in fact changed.
|
|
Will throw an exception if the states are not mergeable. */
|
|
static bool
|
|
merge_states (state *s, state *state_old, int max_locals)
|
|
{
|
|
int i;
|
|
bool changed = false;
|
|
|
|
/* Special handling for `this'. If one or the other is
|
|
uninitialized, then the merge is uninitialized. */
|
|
if (type_initialized (&s->this_type))
|
|
s->this_type = state_old->this_type;
|
|
|
|
/* Merge stacks. */
|
|
if (state_old->stacktop != s->stacktop) /* FIXME stackdepth instead? */
|
|
verify_fail ("stack sizes differ");
|
|
for (i = 0; i < state_old->stacktop; ++i)
|
|
{
|
|
if (merge_types (&s->stack[i], &state_old->stack[i], false))
|
|
changed = true;
|
|
}
|
|
|
|
/* Merge local variables. */
|
|
for (i = 0; i < max_locals; ++i)
|
|
{
|
|
if (merge_types (&s->locals[i], &state_old->locals[i], true))
|
|
changed = true;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Ensure that `this' has been initialized. */
|
|
static void
|
|
state_check_this_initialized (state *s)
|
|
{
|
|
if (type_isreference (&s->this_type) && ! type_initialized (&s->this_type))
|
|
verify_fail ("`this' is uninitialized");
|
|
}
|
|
|
|
/* Set type of `this'. */
|
|
static void
|
|
state_set_this_type (state *s, type *k)
|
|
{
|
|
s->this_type = *k;
|
|
}
|
|
|
|
/* Mark each `new'd object we know of that was allocated at PC as
|
|
initialized. */
|
|
static void
|
|
state_set_initialized (state *s, int pc, int max_locals)
|
|
{
|
|
int i;
|
|
for (i = 0; i < s->stacktop; ++i)
|
|
type_set_initialized (&s->stack[i], pc);
|
|
for (i = 0; i < max_locals; ++i)
|
|
type_set_initialized (&s->locals[i], pc);
|
|
type_set_initialized (&s->this_type, pc);
|
|
}
|
|
|
|
/* This tests to see whether two states can be considered "merge
|
|
compatible". If both states have a return-address in the same
|
|
slot, and the return addresses are different, then they are not
|
|
compatible and we must not try to merge them. */
|
|
static bool
|
|
state_mergeable_p (state *s, state *other, int max_locals)
|
|
|
|
{
|
|
int i;
|
|
|
|
/* This is tricky: if the stack sizes differ, then not only are
|
|
these not mergeable, but in fact we should give an error, as
|
|
we've found two execution paths that reach a branch target
|
|
with different stack depths. FIXME stackdepth instead? */
|
|
if (s->stacktop != other->stacktop)
|
|
verify_fail ("stack sizes differ");
|
|
|
|
for (i = 0; i < s->stacktop; ++i)
|
|
if (! type_state_mergeable_p (&s->stack[i], &other->stack[i]))
|
|
return false;
|
|
for (i = 0; i < max_locals; ++i)
|
|
if (! type_state_mergeable_p (&s->locals[i], &other->locals[i]))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
state_reverify (state *s)
|
|
{
|
|
if (s->next == INVALID_STATE)
|
|
{
|
|
s->next = vfr->next_verify_state;
|
|
vfr->next_verify_state = s;
|
|
}
|
|
}
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
static void
|
|
debug_print_state (state *s, const char *leader, int pc, int max_stack,
|
|
int max_locals)
|
|
{
|
|
int i;
|
|
debug_print ("%s [%4d]: [stack] ", leader, pc);
|
|
for (i = 0; i < s->stacktop; ++i)
|
|
type_print (&s->stack[i]);
|
|
for (; i < max_stack; ++i)
|
|
debug_print (".");
|
|
debug_print (" [local] ");
|
|
for (i = 0; i < max_locals; ++i)
|
|
type_print (&s->locals[i]);
|
|
debug_print (" | %p\n", s);
|
|
}
|
|
#else
|
|
static void
|
|
debug_print_state (state *s ATTRIBUTE_UNUSED,
|
|
const char *leader ATTRIBUTE_UNUSED,
|
|
int pc ATTRIBUTE_UNUSED, int max_stack ATTRIBUTE_UNUSED,
|
|
int max_locals ATTRIBUTE_UNUSED)
|
|
{
|
|
}
|
|
#endif /* VERIFY_DEBUG */
|
|
|
|
static type
|
|
pop_raw (void)
|
|
{
|
|
type r;
|
|
state *s = vfr->current_state;
|
|
if (s->stacktop <= 0)
|
|
verify_fail ("stack empty");
|
|
r = s->stack[--s->stacktop];
|
|
s->stackdepth -= type_depth (&r);
|
|
if (s->stackdepth < 0)
|
|
verify_fail_pc ("stack empty", vfr->start_PC);
|
|
return r;
|
|
}
|
|
|
|
static type
|
|
pop32 (void)
|
|
{
|
|
type r = pop_raw ();
|
|
if (type_iswide (&r))
|
|
verify_fail ("narrow pop of wide type");
|
|
return r;
|
|
}
|
|
|
|
static type
|
|
vfy_pop_type_t (type match)
|
|
{
|
|
type t;
|
|
vfy_promote_type (&match);
|
|
t = pop_raw ();
|
|
if (! types_compatible (&match, &t))
|
|
verify_fail ("incompatible type on stack");
|
|
return t;
|
|
}
|
|
|
|
static type
|
|
vfy_pop_type (type_val match)
|
|
{
|
|
type t = make_type (match);
|
|
return vfy_pop_type_t (t);
|
|
}
|
|
|
|
#define pop_type vfy_pop_type
|
|
#define pop_type_t vfy_pop_type_t
|
|
|
|
/* Pop a reference which is guaranteed to be initialized. MATCH
|
|
doesn't have to be a reference type; in this case this acts like
|
|
pop_type. */
|
|
static type
|
|
pop_init_ref_t (type match)
|
|
{
|
|
type t = pop_raw ();
|
|
if (type_isreference (&t) && ! type_initialized (&t))
|
|
verify_fail ("initialized reference required");
|
|
else if (! types_compatible (&match, &t))
|
|
verify_fail ("incompatible type on stack");
|
|
return t;
|
|
}
|
|
|
|
static type
|
|
pop_init_ref (type_val match)
|
|
{
|
|
type t = make_type (match);
|
|
return pop_init_ref_t (t);
|
|
}
|
|
|
|
/* Pop a reference type or a return address. */
|
|
static type
|
|
pop_ref_or_return (void)
|
|
{
|
|
type t = pop_raw ();
|
|
if (! type_isreference (&t) && t.key != return_address_type)
|
|
verify_fail ("expected reference or return address on stack");
|
|
return t;
|
|
}
|
|
|
|
static void
|
|
vfy_push_type_t (type t)
|
|
{
|
|
int depth;
|
|
state *s = vfr->current_state;
|
|
/* If T is a numeric type like short, promote it to int. */
|
|
promote_type (&t);
|
|
|
|
depth = type_depth (&t);
|
|
|
|
if (s->stackdepth + depth > vfr->current_method->max_stack)
|
|
verify_fail ("stack overflow");
|
|
s->stack[s->stacktop++] = t;
|
|
s->stackdepth += depth;
|
|
}
|
|
|
|
static void
|
|
vfy_push_type (type_val tval)
|
|
{
|
|
type t = make_type (tval);
|
|
vfy_push_type_t (t);
|
|
}
|
|
|
|
#define push_type vfy_push_type
|
|
#define push_type_t vfy_push_type_t
|
|
|
|
static void
|
|
set_variable (int index, type t)
|
|
{
|
|
int depth;
|
|
state *s = vfr->current_state;
|
|
/* If T is a numeric type like short, promote it to int. */
|
|
promote_type (&t);
|
|
|
|
depth = type_depth (&t);
|
|
if (index > vfr->current_method->max_locals - depth)
|
|
verify_fail ("invalid local variable");
|
|
s->locals[index] = t;
|
|
|
|
if (depth == 2)
|
|
init_type_from_tag (&s->locals[index + 1], continuation_type);
|
|
if (index > 0 && type_iswide (&s->locals[index - 1]))
|
|
init_type_from_tag (&s->locals[index - 1], unsuitable_type);
|
|
}
|
|
|
|
static type
|
|
get_variable_t (int index, type *t)
|
|
{
|
|
state *s = vfr->current_state;
|
|
int depth = type_depth (t);
|
|
if (index > vfr->current_method->max_locals - depth)
|
|
verify_fail ("invalid local variable");
|
|
if (! types_compatible (t, &s->locals[index]))
|
|
verify_fail ("incompatible type in local variable");
|
|
if (depth == 2)
|
|
{
|
|
type cont = make_type (continuation_type);
|
|
if (! types_compatible (&s->locals[index + 1], &cont))
|
|
verify_fail ("invalid local variable");
|
|
}
|
|
return s->locals[index];
|
|
}
|
|
|
|
static type
|
|
get_variable (int index, type_val v)
|
|
{
|
|
type t = make_type (v);
|
|
return get_variable_t (index, &t);
|
|
}
|
|
|
|
/* Make sure ARRAY is an array type and that its elements are
|
|
compatible with type ELEMENT. Returns the actual element type. */
|
|
static type
|
|
require_array_type_t (type array, type element)
|
|
{
|
|
type t;
|
|
/* An odd case. Here we just pretend that everything went ok. If
|
|
the requested element type is some kind of reference, return
|
|
the null type instead. */
|
|
if (type_isnull (&array))
|
|
return type_isreference (&element) ? make_type (null_type) : element;
|
|
|
|
if (! type_isarray (&array))
|
|
verify_fail ("array required");
|
|
|
|
t = type_array_element (&array);
|
|
if (! types_compatible (&element, &t))
|
|
{
|
|
/* Special case for byte arrays, which must also be boolean
|
|
arrays. */
|
|
bool ok = true;
|
|
if (element.key == byte_type)
|
|
{
|
|
type e2 = make_type (boolean_type);
|
|
ok = types_compatible (&e2, &t);
|
|
}
|
|
if (! ok)
|
|
verify_fail ("incompatible array element type");
|
|
}
|
|
|
|
/* Return T and not ELEMENT, because T might be specialized. */
|
|
return t;
|
|
}
|
|
|
|
static type
|
|
require_array_type (type array, type_val element)
|
|
{
|
|
type t = make_type (element);
|
|
return require_array_type_t (array, t);
|
|
}
|
|
|
|
static jint
|
|
get_byte (void)
|
|
{
|
|
if (vfr->PC >= vfr->current_method->code_length)
|
|
verify_fail ("premature end of bytecode");
|
|
return (jint) vfr->bytecode[vfr->PC++] & 0xff;
|
|
}
|
|
|
|
static jint
|
|
get_ushort (void)
|
|
{
|
|
jint b1 = get_byte ();
|
|
jint b2 = get_byte ();
|
|
return (jint) ((b1 << 8) | b2) & 0xffff;
|
|
}
|
|
|
|
static jint
|
|
get_short (void)
|
|
{
|
|
signed char b1 = (signed char) get_byte ();
|
|
jint b2 = get_byte ();
|
|
jshort s = (b1 << 8) | b2;
|
|
return (jint) s;
|
|
}
|
|
|
|
static jint
|
|
get_int (void)
|
|
{
|
|
jint b1 = get_byte ();
|
|
jint b2 = get_byte ();
|
|
jint b3 = get_byte ();
|
|
jint b4 = get_byte ();
|
|
jword result = (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
|
|
/* In the compiler, 'jint' might have more than 32 bits, so we must
|
|
sign extend. */
|
|
return WORD_TO_INT (result);
|
|
}
|
|
|
|
static int
|
|
compute_jump (int offset)
|
|
{
|
|
int npc = vfr->start_PC + offset;
|
|
if (npc < 0 || npc >= vfr->current_method->code_length)
|
|
verify_fail_pc ("branch out of range", vfr->start_PC);
|
|
return npc;
|
|
}
|
|
|
|
/* Add a new state to the state list at NPC. */
|
|
static state *
|
|
add_new_state (int npc, state *old_state)
|
|
{
|
|
state_list *nlink;
|
|
vfy_method *current_method = vfr->current_method;
|
|
state *new_state = make_state_copy (old_state, current_method->max_stack,
|
|
current_method->max_locals);
|
|
debug_print ("== New state in add_new_state\n");
|
|
debug_print_state (new_state, "New", npc, current_method->max_stack,
|
|
current_method->max_locals);
|
|
|
|
nlink = vfy_alloc (sizeof (state_list));
|
|
nlink->val = new_state;
|
|
nlink->next = vfr->states[npc];
|
|
vfr->states[npc] = nlink;
|
|
new_state->pc = npc;
|
|
return new_state;
|
|
}
|
|
|
|
/* Merge the indicated state into the state at the branch target and
|
|
schedule a new PC if there is a change. NPC is the PC of the
|
|
branch target, and FROM_STATE is the state at the source of the
|
|
branch. This method returns true if the destination state
|
|
changed and requires reverification, false otherwise. */
|
|
static void
|
|
merge_into (int npc, state *from_state)
|
|
{
|
|
/* Iterate over all target states and merge our state into each,
|
|
if applicable. FIXME one improvement we could make here is
|
|
"state destruction". Merging a new state into an existing one
|
|
might cause a return_address_type to be merged to
|
|
unsuitable_type. In this case the resulting state may now be
|
|
mergeable with other states currently held in parallel at this
|
|
location. So in this situation we could pairwise compare and
|
|
reduce the number of parallel states. */
|
|
state_list *iter;
|
|
bool applicable = false;
|
|
for (iter = vfr->states[npc]; iter != NULL; iter = iter->next)
|
|
{
|
|
state *new_state = iter->val;
|
|
vfy_method *current_method = vfr->current_method;
|
|
|
|
if (state_mergeable_p (new_state, from_state,
|
|
current_method->max_locals))
|
|
{
|
|
bool changed;
|
|
applicable = true;
|
|
|
|
debug_print ("== Merge states in merge_into\n");
|
|
debug_print_state (from_state, "Frm", vfr->start_PC, current_method->max_stack,
|
|
current_method->max_locals);
|
|
debug_print_state (new_state, " To", npc, current_method->max_stack,
|
|
current_method->max_locals);
|
|
changed = merge_states (new_state, from_state,
|
|
current_method->max_locals);
|
|
debug_print_state (new_state, "New", npc, current_method->max_stack,
|
|
current_method->max_locals);
|
|
|
|
if (changed)
|
|
state_reverify (new_state);
|
|
}
|
|
}
|
|
|
|
if (! applicable)
|
|
{
|
|
/* Either we don't yet have a state at NPC, or we have a
|
|
return-address type that is in conflict with all existing
|
|
state. So, we need to create a new entry. */
|
|
state *new_state = add_new_state (npc, from_state);
|
|
/* A new state added in this way must always be reverified. */
|
|
state_reverify (new_state);
|
|
}
|
|
}
|
|
|
|
static void
|
|
push_jump (int offset)
|
|
{
|
|
int npc = compute_jump (offset);
|
|
/* According to the JVM Spec, we need to check for uninitialized
|
|
objects here. However, this does not actually affect type
|
|
safety, and the Eclipse java compiler generates code that
|
|
violates this constraint. */
|
|
merge_into (npc, vfr->current_state);
|
|
}
|
|
|
|
static void
|
|
push_exception_jump (type t, int pc)
|
|
{
|
|
state s;
|
|
/* According to the JVM Spec, we need to check for uninitialized
|
|
objects here. However, this does not actually affect type
|
|
safety, and the Eclipse java compiler generates code that
|
|
violates this constraint. */
|
|
copy_state_with_stack (&s, vfr->current_state,
|
|
vfr->current_method->max_stack,
|
|
vfr->current_method->max_locals);
|
|
if (vfr->current_method->max_stack < 1)
|
|
verify_fail ("stack overflow at exception handler");
|
|
state_set_exception (&s, &t, vfr->current_method->max_stack);
|
|
merge_into (pc, &s);
|
|
/* FIXME: leak.. need free_state or GC */
|
|
}
|
|
|
|
static state *
|
|
pop_jump (void)
|
|
{
|
|
state *new_state = vfr->next_verify_state;
|
|
if (new_state == INVALID_STATE)
|
|
verify_fail ("programmer error in pop_jump");
|
|
if (new_state != NULL)
|
|
{
|
|
vfr->next_verify_state = new_state->next;
|
|
new_state->next = INVALID_STATE;
|
|
}
|
|
return new_state;
|
|
}
|
|
|
|
static void
|
|
invalidate_pc (void)
|
|
{
|
|
vfr->PC = NO_NEXT;
|
|
}
|
|
|
|
static void
|
|
note_branch_target (int pc)
|
|
{
|
|
/* Don't check `pc <= PC', because we've advanced PC after
|
|
fetching the target and we haven't yet checked the next
|
|
instruction. */
|
|
if (pc < vfr->PC && ! (vfr->flags[pc] & FLAG_INSN_START))
|
|
verify_fail_pc ("branch not to instruction start", vfr->start_PC);
|
|
vfr->flags[pc] |= FLAG_BRANCH_TARGET;
|
|
}
|
|
|
|
static void
|
|
skip_padding (void)
|
|
{
|
|
while ((vfr->PC % 4) > 0)
|
|
if (get_byte () != 0)
|
|
verify_fail ("found nonzero padding byte");
|
|
}
|
|
|
|
/* Do the work for a `ret' instruction. INDEX is the index into the
|
|
local variables. */
|
|
static void
|
|
handle_ret_insn (int index)
|
|
{
|
|
type ret = make_type (return_address_type);
|
|
type ret_addr = get_variable_t (index, &ret);
|
|
/* It would be nice if we could do this. However, the JVM Spec
|
|
doesn't say that this is what happens. It is implied that
|
|
reusing a return address is invalid, but there's no actual
|
|
prohibition against it. */
|
|
/* set_variable (index, unsuitable_type); */
|
|
|
|
int npc = type_get_pc (&ret_addr);
|
|
/* We might be returning to a `jsr' that is at the end of the
|
|
bytecode. This is ok if we never return from the called
|
|
subroutine, but if we see this here it is an error. */
|
|
if (npc >= vfr->current_method->code_length)
|
|
verify_fail ("fell off end");
|
|
|
|
/* According to the JVM Spec, we need to check for uninitialized
|
|
objects here. However, this does not actually affect type
|
|
safety, and the Eclipse java compiler generates code that
|
|
violates this constraint. */
|
|
merge_into (npc, vfr->current_state);
|
|
invalidate_pc ();
|
|
}
|
|
|
|
static void handle_jsr_insn (int offset)
|
|
{
|
|
type ret_addr;
|
|
int npc = compute_jump (offset);
|
|
|
|
/* According to the JVM Spec, we need to check for uninitialized
|
|
objects here. However, this does not actually affect type
|
|
safety, and the Eclipse java compiler generates code that
|
|
violates this constraint. */
|
|
|
|
/* Modify our state as appropriate for entry into a subroutine. */
|
|
ret_addr = make_type (return_address_type);
|
|
type_set_return_address (&ret_addr, vfr->PC);
|
|
vfy_push_type_t (ret_addr);
|
|
merge_into (npc, vfr->current_state);
|
|
invalidate_pc ();
|
|
}
|
|
|
|
static vfy_jclass
|
|
construct_primitive_array_type (type_val prim)
|
|
{
|
|
vfy_jclass k = NULL;
|
|
switch (prim)
|
|
{
|
|
case boolean_type:
|
|
case char_type:
|
|
case float_type:
|
|
case double_type:
|
|
case byte_type:
|
|
case short_type:
|
|
case int_type:
|
|
case long_type:
|
|
k = vfy_get_primitive_type ((int) prim);
|
|
break;
|
|
|
|
/* These aren't used here but we call them out to avoid
|
|
warnings. */
|
|
case void_type:
|
|
case unsuitable_type:
|
|
case return_address_type:
|
|
case continuation_type:
|
|
case reference_type:
|
|
case null_type:
|
|
case uninitialized_reference_type:
|
|
default:
|
|
verify_fail ("unknown type in construct_primitive_array_type");
|
|
}
|
|
k = vfy_get_array_class (k);
|
|
return k;
|
|
}
|
|
|
|
/* This pass computes the location of branch targets and also
|
|
instruction starts. */
|
|
static void
|
|
branch_prepass (void)
|
|
{
|
|
int i, pc;
|
|
vfr->flags = (char *) vfy_alloc (vfr->current_method->code_length);
|
|
|
|
for (i = 0; i < vfr->current_method->code_length; ++i)
|
|
vfr->flags[i] = 0;
|
|
|
|
vfr->PC = 0;
|
|
while (vfr->PC < vfr->current_method->code_length)
|
|
{
|
|
java_opcode opcode;
|
|
/* Set `start_PC' early so that error checking can have the
|
|
correct value. */
|
|
vfr->start_PC = vfr->PC;
|
|
vfr->flags[vfr->PC] |= FLAG_INSN_START;
|
|
|
|
opcode = (java_opcode) vfr->bytecode[vfr->PC++];
|
|
switch (opcode)
|
|
{
|
|
case op_nop:
|
|
case op_aconst_null:
|
|
case op_iconst_m1:
|
|
case op_iconst_0:
|
|
case op_iconst_1:
|
|
case op_iconst_2:
|
|
case op_iconst_3:
|
|
case op_iconst_4:
|
|
case op_iconst_5:
|
|
case op_lconst_0:
|
|
case op_lconst_1:
|
|
case op_fconst_0:
|
|
case op_fconst_1:
|
|
case op_fconst_2:
|
|
case op_dconst_0:
|
|
case op_dconst_1:
|
|
case op_iload_0:
|
|
case op_iload_1:
|
|
case op_iload_2:
|
|
case op_iload_3:
|
|
case op_lload_0:
|
|
case op_lload_1:
|
|
case op_lload_2:
|
|
case op_lload_3:
|
|
case op_fload_0:
|
|
case op_fload_1:
|
|
case op_fload_2:
|
|
case op_fload_3:
|
|
case op_dload_0:
|
|
case op_dload_1:
|
|
case op_dload_2:
|
|
case op_dload_3:
|
|
case op_aload_0:
|
|
case op_aload_1:
|
|
case op_aload_2:
|
|
case op_aload_3:
|
|
case op_iaload:
|
|
case op_laload:
|
|
case op_faload:
|
|
case op_daload:
|
|
case op_aaload:
|
|
case op_baload:
|
|
case op_caload:
|
|
case op_saload:
|
|
case op_istore_0:
|
|
case op_istore_1:
|
|
case op_istore_2:
|
|
case op_istore_3:
|
|
case op_lstore_0:
|
|
case op_lstore_1:
|
|
case op_lstore_2:
|
|
case op_lstore_3:
|
|
case op_fstore_0:
|
|
case op_fstore_1:
|
|
case op_fstore_2:
|
|
case op_fstore_3:
|
|
case op_dstore_0:
|
|
case op_dstore_1:
|
|
case op_dstore_2:
|
|
case op_dstore_3:
|
|
case op_astore_0:
|
|
case op_astore_1:
|
|
case op_astore_2:
|
|
case op_astore_3:
|
|
case op_iastore:
|
|
case op_lastore:
|
|
case op_fastore:
|
|
case op_dastore:
|
|
case op_aastore:
|
|
case op_bastore:
|
|
case op_castore:
|
|
case op_sastore:
|
|
case op_pop:
|
|
case op_pop2:
|
|
case op_dup:
|
|
case op_dup_x1:
|
|
case op_dup_x2:
|
|
case op_dup2:
|
|
case op_dup2_x1:
|
|
case op_dup2_x2:
|
|
case op_swap:
|
|
case op_iadd:
|
|
case op_isub:
|
|
case op_imul:
|
|
case op_idiv:
|
|
case op_irem:
|
|
case op_ishl:
|
|
case op_ishr:
|
|
case op_iushr:
|
|
case op_iand:
|
|
case op_ior:
|
|
case op_ixor:
|
|
case op_ladd:
|
|
case op_lsub:
|
|
case op_lmul:
|
|
case op_ldiv:
|
|
case op_lrem:
|
|
case op_lshl:
|
|
case op_lshr:
|
|
case op_lushr:
|
|
case op_land:
|
|
case op_lor:
|
|
case op_lxor:
|
|
case op_fadd:
|
|
case op_fsub:
|
|
case op_fmul:
|
|
case op_fdiv:
|
|
case op_frem:
|
|
case op_dadd:
|
|
case op_dsub:
|
|
case op_dmul:
|
|
case op_ddiv:
|
|
case op_drem:
|
|
case op_ineg:
|
|
case op_i2b:
|
|
case op_i2c:
|
|
case op_i2s:
|
|
case op_lneg:
|
|
case op_fneg:
|
|
case op_dneg:
|
|
case op_i2l:
|
|
case op_i2f:
|
|
case op_i2d:
|
|
case op_l2i:
|
|
case op_l2f:
|
|
case op_l2d:
|
|
case op_f2i:
|
|
case op_f2l:
|
|
case op_f2d:
|
|
case op_d2i:
|
|
case op_d2l:
|
|
case op_d2f:
|
|
case op_lcmp:
|
|
case op_fcmpl:
|
|
case op_fcmpg:
|
|
case op_dcmpl:
|
|
case op_dcmpg:
|
|
case op_monitorenter:
|
|
case op_monitorexit:
|
|
case op_ireturn:
|
|
case op_lreturn:
|
|
case op_freturn:
|
|
case op_dreturn:
|
|
case op_areturn:
|
|
case op_return:
|
|
case op_athrow:
|
|
case op_arraylength:
|
|
break;
|
|
|
|
case op_bipush:
|
|
case op_ldc:
|
|
case op_iload:
|
|
case op_lload:
|
|
case op_fload:
|
|
case op_dload:
|
|
case op_aload:
|
|
case op_istore:
|
|
case op_lstore:
|
|
case op_fstore:
|
|
case op_dstore:
|
|
case op_astore:
|
|
case op_ret:
|
|
case op_newarray:
|
|
get_byte ();
|
|
break;
|
|
|
|
case op_iinc:
|
|
case op_sipush:
|
|
case op_ldc_w:
|
|
case op_ldc2_w:
|
|
case op_getstatic:
|
|
case op_getfield:
|
|
case op_putfield:
|
|
case op_putstatic:
|
|
case op_new:
|
|
case op_anewarray:
|
|
case op_instanceof:
|
|
case op_checkcast:
|
|
case op_invokespecial:
|
|
case op_invokestatic:
|
|
case op_invokevirtual:
|
|
get_short ();
|
|
break;
|
|
|
|
case op_multianewarray:
|
|
get_short ();
|
|
get_byte ();
|
|
break;
|
|
|
|
case op_jsr:
|
|
case op_ifeq:
|
|
case op_ifne:
|
|
case op_iflt:
|
|
case op_ifge:
|
|
case op_ifgt:
|
|
case op_ifle:
|
|
case op_if_icmpeq:
|
|
case op_if_icmpne:
|
|
case op_if_icmplt:
|
|
case op_if_icmpge:
|
|
case op_if_icmpgt:
|
|
case op_if_icmple:
|
|
case op_if_acmpeq:
|
|
case op_if_acmpne:
|
|
case op_ifnull:
|
|
case op_ifnonnull:
|
|
case op_goto:
|
|
note_branch_target (compute_jump (get_short ()));
|
|
break;
|
|
|
|
case op_tableswitch:
|
|
{
|
|
jint low, hi;
|
|
skip_padding ();
|
|
note_branch_target (compute_jump (get_int ()));
|
|
low = get_int ();
|
|
hi = get_int ();
|
|
if (low > hi)
|
|
verify_fail_pc ("invalid tableswitch", vfr->start_PC);
|
|
for (i = low; i <= hi; ++i)
|
|
note_branch_target (compute_jump (get_int ()));
|
|
}
|
|
break;
|
|
|
|
case op_lookupswitch:
|
|
{
|
|
int npairs;
|
|
skip_padding ();
|
|
note_branch_target (compute_jump (get_int ()));
|
|
npairs = get_int ();
|
|
if (npairs < 0)
|
|
verify_fail_pc ("too few pairs in lookupswitch", vfr->start_PC);
|
|
while (npairs-- > 0)
|
|
{
|
|
get_int ();
|
|
note_branch_target (compute_jump (get_int ()));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case op_invokeinterface:
|
|
get_short ();
|
|
get_byte ();
|
|
get_byte ();
|
|
break;
|
|
|
|
case op_wide:
|
|
{
|
|
opcode = (java_opcode) get_byte ();
|
|
get_short ();
|
|
if (opcode == op_iinc)
|
|
get_short ();
|
|
}
|
|
break;
|
|
|
|
case op_jsr_w:
|
|
case op_goto_w:
|
|
note_branch_target (compute_jump (get_int ()));
|
|
break;
|
|
|
|
#if 0
|
|
/* These are unused here, but we call them out explicitly
|
|
so that -Wswitch-enum doesn't complain. */
|
|
case op_putfield_1:
|
|
case op_putfield_2:
|
|
case op_putfield_4:
|
|
case op_putfield_8:
|
|
case op_putfield_a:
|
|
case op_putstatic_1:
|
|
case op_putstatic_2:
|
|
case op_putstatic_4:
|
|
case op_putstatic_8:
|
|
case op_putstatic_a:
|
|
case op_getfield_1:
|
|
case op_getfield_2s:
|
|
case op_getfield_2u:
|
|
case op_getfield_4:
|
|
case op_getfield_8:
|
|
case op_getfield_a:
|
|
case op_getstatic_1:
|
|
case op_getstatic_2s:
|
|
case op_getstatic_2u:
|
|
case op_getstatic_4:
|
|
case op_getstatic_8:
|
|
case op_getstatic_a:
|
|
#endif /* VFY_FAST_OPCODES */
|
|
default:
|
|
verify_fail_pc ("unrecognized instruction in branch_prepass",
|
|
vfr->start_PC);
|
|
}
|
|
|
|
/* See if any previous branch tried to branch to the middle of
|
|
this instruction. */
|
|
for (pc = vfr->start_PC + 1; pc < vfr->PC; ++pc)
|
|
{
|
|
if ((vfr->flags[pc] & FLAG_BRANCH_TARGET))
|
|
verify_fail_pc ("branch to middle of instruction", pc);
|
|
}
|
|
}
|
|
|
|
/* Verify exception handlers. */
|
|
for (i = 0; i < vfr->current_method->exc_count; ++i)
|
|
{
|
|
int handler, start, end, htype;
|
|
vfy_get_exception (vfr->exception, i, &handler, &start, &end, &htype);
|
|
if (! (vfr->flags[handler] & FLAG_INSN_START))
|
|
verify_fail_pc ("exception handler not at instruction start",
|
|
handler);
|
|
if (! (vfr->flags[start] & FLAG_INSN_START))
|
|
verify_fail_pc ("exception start not at instruction start", start);
|
|
if (end != vfr->current_method->code_length
|
|
&& ! (vfr->flags[end] & FLAG_INSN_START))
|
|
verify_fail_pc ("exception end not at instruction start", end);
|
|
|
|
vfr->flags[handler] |= FLAG_BRANCH_TARGET;
|
|
}
|
|
}
|
|
|
|
static void
|
|
check_pool_index (int index)
|
|
{
|
|
if (index < 0 || index >= vfy_get_constants_size (vfr->current_class))
|
|
verify_fail_pc ("constant pool index out of range", vfr->start_PC);
|
|
}
|
|
|
|
static type
|
|
check_class_constant (int index)
|
|
{
|
|
type t;
|
|
vfy_constants *pool;
|
|
|
|
check_pool_index (index);
|
|
pool = vfy_get_constants (vfr->current_class);
|
|
if (vfy_tag (pool, index) == JV_CONSTANT_ResolvedClass)
|
|
init_type_from_class (&t, vfy_get_pool_class (pool, index));
|
|
else if (vfy_tag (pool, index) == JV_CONSTANT_Class)
|
|
init_type_from_string (&t, vfy_get_pool_string (pool, index));
|
|
else
|
|
verify_fail_pc ("expected class constant", vfr->start_PC);
|
|
return t;
|
|
}
|
|
|
|
static type
|
|
check_constant (int index)
|
|
{
|
|
type t;
|
|
vfy_constants *pool;
|
|
|
|
check_pool_index (index);
|
|
pool = vfy_get_constants (vfr->current_class);
|
|
if (vfy_tag (pool, index) == JV_CONSTANT_ResolvedString
|
|
|| vfy_tag (pool, index) == JV_CONSTANT_String)
|
|
init_type_from_class (&t, vfy_string_type ());
|
|
else if (vfy_tag (pool, index) == JV_CONSTANT_Integer)
|
|
init_type_from_tag (&t, int_type);
|
|
else if (vfy_tag (pool, index) == JV_CONSTANT_Float)
|
|
init_type_from_tag (&t, float_type);
|
|
else
|
|
verify_fail_pc ("String, int, or float constant expected", vfr->start_PC);
|
|
return t;
|
|
}
|
|
|
|
static type
|
|
check_wide_constant (int index)
|
|
{
|
|
type t;
|
|
vfy_constants *pool;
|
|
|
|
check_pool_index (index);
|
|
pool = vfy_get_constants (vfr->current_class);
|
|
if (vfy_tag (pool, index) == JV_CONSTANT_Long)
|
|
init_type_from_tag (&t, long_type);
|
|
else if (vfy_tag (pool, index) == JV_CONSTANT_Double)
|
|
init_type_from_tag (&t, double_type);
|
|
else
|
|
verify_fail_pc ("long or double constant expected", vfr->start_PC);
|
|
return t;
|
|
}
|
|
|
|
/* Helper for both field and method. These are laid out the same in
|
|
the constant pool. */
|
|
static type
|
|
handle_field_or_method (int index, int expected,
|
|
vfy_string *name, vfy_string *fmtype)
|
|
{
|
|
vfy_uint_16 class_index, name_and_type_index;
|
|
vfy_uint_16 name_index, desc_index;
|
|
vfy_constants *pool;
|
|
|
|
check_pool_index (index);
|
|
pool = vfy_get_constants (vfr->current_class);
|
|
if (vfy_tag (pool, index) != expected)
|
|
verify_fail_pc ("didn't see expected constant", vfr->start_PC);
|
|
/* Once we know we have a Fieldref or Methodref we assume that it
|
|
is correctly laid out in the constant pool. I think the code
|
|
in defineclass.cc guarantees this. */
|
|
vfy_load_indexes (pool, index, &class_index, &name_and_type_index);
|
|
vfy_load_indexes (pool, name_and_type_index, &name_index, &desc_index);
|
|
|
|
*name = vfy_get_pool_string (pool, name_index);
|
|
*fmtype = vfy_get_pool_string (pool, desc_index);
|
|
|
|
return check_class_constant (class_index);
|
|
}
|
|
|
|
/* Return field's type, compute class' type if requested. If
|
|
PUTFIELD is true, use the special 'putfield' semantics. */
|
|
static type
|
|
check_field_constant (int index, type *class_type, bool putfield)
|
|
{
|
|
vfy_string name, field_type;
|
|
const char *typec;
|
|
int len;
|
|
type t;
|
|
|
|
type ct = handle_field_or_method (index,
|
|
JV_CONSTANT_Fieldref,
|
|
&name, &field_type);
|
|
if (class_type)
|
|
*class_type = ct;
|
|
typec = vfy_string_bytes (field_type);
|
|
len = vfy_string_length (field_type);
|
|
if (typec[0] == '[' || typec[0] == 'L')
|
|
init_type_from_string (&t, field_type);
|
|
else
|
|
init_type_from_tag (&t, get_type_val_for_signature (typec[0]));
|
|
|
|
/* We have an obscure special case here: we can use `putfield' on a
|
|
field declared in this class, even if `this' has not yet been
|
|
initialized. */
|
|
if (putfield
|
|
&& ! type_initialized (&vfr->current_state->this_type)
|
|
&& vfr->current_state->this_type.pc == SELF
|
|
&& types_equal (&vfr->current_state->this_type, &ct)
|
|
&& vfy_class_has_field (vfr->current_class, name, field_type))
|
|
/* Note that we don't actually know whether we're going to match
|
|
against 'this' or some other object of the same type. So,
|
|
here we set things up so that it doesn't matter. This relies
|
|
on knowing what our caller is up to. */
|
|
type_set_uninitialized (class_type, EITHER);
|
|
|
|
return t;
|
|
}
|
|
|
|
static type
|
|
check_method_constant (int index, bool is_interface,
|
|
vfy_string *method_name,
|
|
vfy_string *method_signature)
|
|
{
|
|
return handle_field_or_method (index,
|
|
(is_interface
|
|
? JV_CONSTANT_InterfaceMethodref
|
|
: JV_CONSTANT_Methodref),
|
|
method_name, method_signature);
|
|
}
|
|
|
|
static char *
|
|
get_one_type (char *p, type *t)
|
|
{
|
|
const char *start = p;
|
|
vfy_jclass k;
|
|
type_val rt;
|
|
char v;
|
|
|
|
int arraycount = 0;
|
|
while (*p == '[')
|
|
{
|
|
++arraycount;
|
|
++p;
|
|
}
|
|
|
|
v = *p++;
|
|
|
|
if (v == 'L')
|
|
{
|
|
vfy_string name;
|
|
while (*p != ';')
|
|
++p;
|
|
++p;
|
|
name = vfy_get_string (start, p - start);
|
|
*t = make_type_from_string (name);
|
|
return p;
|
|
}
|
|
|
|
/* Casting to jchar here is ok since we are looking at an ASCII
|
|
character. */
|
|
rt = get_type_val_for_signature (v);
|
|
|
|
if (arraycount == 0)
|
|
{
|
|
/* Callers of this function eventually push their arguments on
|
|
the stack. So, promote them here. */
|
|
type new_t = make_type (rt);
|
|
vfy_promote_type (&new_t);
|
|
*t = new_t;
|
|
return p;
|
|
}
|
|
|
|
k = construct_primitive_array_type (rt);
|
|
while (--arraycount > 0)
|
|
k = vfy_get_array_class (k);
|
|
*t = make_type_from_class (k);
|
|
return p;
|
|
}
|
|
|
|
static void
|
|
compute_argument_types (vfy_string signature, type *types)
|
|
{
|
|
int i;
|
|
char *p = (char *) vfy_string_bytes (signature);
|
|
|
|
/* Skip `('. */
|
|
++p;
|
|
|
|
i = 0;
|
|
while (*p != ')')
|
|
p = get_one_type (p, &types[i++]);
|
|
}
|
|
|
|
static type
|
|
compute_return_type (vfy_string signature)
|
|
{
|
|
char *p = (char *) vfy_string_bytes (signature);
|
|
type t;
|
|
while (*p != ')')
|
|
++p;
|
|
++p;
|
|
get_one_type (p, &t);
|
|
return t;
|
|
}
|
|
|
|
static void
|
|
check_return_type (type onstack)
|
|
{
|
|
type rt = compute_return_type (vfy_get_signature (vfr->current_method));
|
|
if (! types_compatible (&rt, &onstack))
|
|
verify_fail ("incompatible return type");
|
|
}
|
|
|
|
/* Initialize the stack for the new method. Returns true if this
|
|
method is an instance initializer. */
|
|
static bool
|
|
initialize_stack (void)
|
|
{
|
|
int arg_count, i;
|
|
int var = 0;
|
|
bool is_init = vfy_strings_equal (vfy_get_method_name (vfr->current_method),
|
|
vfy_init_name());
|
|
bool is_clinit = vfy_strings_equal (vfy_get_method_name (vfr->current_method),
|
|
vfy_clinit_name());
|
|
|
|
if (! vfy_is_static (vfr->current_method))
|
|
{
|
|
type kurr = make_type_from_class (vfr->current_class);
|
|
if (is_init)
|
|
{
|
|
type_set_uninitialized (&kurr, SELF);
|
|
is_init = true;
|
|
}
|
|
else if (is_clinit)
|
|
verify_fail ("<clinit> method must be static");
|
|
set_variable (0, kurr);
|
|
state_set_this_type (vfr->current_state, &kurr);
|
|
++var;
|
|
}
|
|
else
|
|
{
|
|
if (is_init)
|
|
verify_fail ("<init> method must be non-static");
|
|
}
|
|
|
|
/* We have to handle wide arguments specially here. */
|
|
arg_count = vfy_count_arguments (vfy_get_signature (vfr->current_method));
|
|
{
|
|
type *arg_types = (type *) vfy_alloc (arg_count * sizeof (type));
|
|
compute_argument_types (vfy_get_signature (vfr->current_method), arg_types);
|
|
for (i = 0; i < arg_count; ++i)
|
|
{
|
|
set_variable (var, arg_types[i]);
|
|
++var;
|
|
if (type_iswide (&arg_types[i]))
|
|
++var;
|
|
}
|
|
vfy_free (arg_types);
|
|
}
|
|
|
|
return is_init;
|
|
}
|
|
|
|
static void
|
|
verify_instructions_0 (void)
|
|
{
|
|
int i;
|
|
bool this_is_init;
|
|
|
|
vfr->current_state = make_state (vfr->current_method->max_stack,
|
|
vfr->current_method->max_locals);
|
|
|
|
vfr->PC = 0;
|
|
vfr->start_PC = 0;
|
|
|
|
/* True if we are verifying an instance initializer. */
|
|
this_is_init = initialize_stack ();
|
|
|
|
vfr->states = (state_list **) vfy_alloc (sizeof (state_list *)
|
|
* vfr->current_method->code_length);
|
|
|
|
for (i = 0; i < vfr->current_method->code_length; ++i)
|
|
vfr->states[i] = NULL;
|
|
|
|
vfr->next_verify_state = NULL;
|
|
|
|
while (true)
|
|
{
|
|
java_opcode opcode;
|
|
|
|
/* If the PC was invalidated, get a new one from the work list. */
|
|
if (vfr->PC == NO_NEXT)
|
|
{
|
|
state *new_state = pop_jump ();
|
|
/* If it is null, we're done. */
|
|
if (new_state == NULL)
|
|
break;
|
|
|
|
vfr->PC = new_state->pc;
|
|
debug_print ("== State pop from pending list\n");
|
|
/* Set up the current state. */
|
|
copy_state (vfr->current_state, new_state,
|
|
vfr->current_method->max_stack, vfr->current_method->max_locals);
|
|
}
|
|
else
|
|
{
|
|
/* We only have to do this checking in the situation where
|
|
control flow falls through from the previous
|
|
instruction. Otherwise merging is done at the time we
|
|
push the branch. */
|
|
if (vfr->states[vfr->PC] != NULL)
|
|
{
|
|
/* We've already visited this instruction. So merge
|
|
the states together. It is simplest, but not most
|
|
efficient, to just always invalidate the PC here. */
|
|
merge_into (vfr->PC, vfr->current_state);
|
|
invalidate_pc ();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Control can't fall off the end of the bytecode. We need to
|
|
check this in both cases, not just the fall-through case,
|
|
because we don't check to see whether a `jsr' appears at
|
|
the end of the bytecode until we process a `ret'. */
|
|
if (vfr->PC >= vfr->current_method->code_length)
|
|
verify_fail ("fell off end");
|
|
vfr->flags[vfr->PC] |= FLAG_INSN_SEEN;
|
|
|
|
/* We only have to keep saved state at branch targets. If
|
|
we're at a branch target and the state here hasn't been set
|
|
yet, we set it now. You might notice that `ret' targets
|
|
won't necessarily have FLAG_BRANCH_TARGET set. This
|
|
doesn't matter, since those states will be filled in by
|
|
merge_into. */
|
|
/* Note that other parts of the compiler assume that there is a
|
|
label with a type map at PC=0. */
|
|
if (vfr->states[vfr->PC] == NULL
|
|
&& (vfr->PC == 0 || (vfr->flags[vfr->PC] & FLAG_BRANCH_TARGET) != 0))
|
|
add_new_state (vfr->PC, vfr->current_state);
|
|
|
|
/* Set this before handling exceptions so that debug output is
|
|
sane. */
|
|
vfr->start_PC = vfr->PC;
|
|
|
|
/* Update states for all active exception handlers. Ordinarily
|
|
there are not many exception handlers. So we simply run
|
|
through them all. */
|
|
for (i = 0; i < vfr->current_method->exc_count; ++i)
|
|
{
|
|
int hpc, start, end, htype;
|
|
vfy_get_exception (vfr->exception, i, &hpc, &start, &end, &htype);
|
|
if (vfr->PC >= start && vfr->PC < end)
|
|
{
|
|
type handler = make_type_from_class (vfy_throwable_type ());
|
|
if (htype != 0)
|
|
handler = check_class_constant (htype);
|
|
push_exception_jump (handler, hpc);
|
|
}
|
|
}
|
|
|
|
|
|
debug_print_state (vfr->current_state, " ", vfr->PC,
|
|
vfr->current_method->max_stack,
|
|
vfr->current_method->max_locals);
|
|
opcode = (java_opcode) vfr->bytecode[vfr->PC++];
|
|
switch (opcode)
|
|
{
|
|
case op_nop:
|
|
break;
|
|
|
|
case op_aconst_null:
|
|
push_type (null_type);
|
|
break;
|
|
|
|
case op_iconst_m1:
|
|
case op_iconst_0:
|
|
case op_iconst_1:
|
|
case op_iconst_2:
|
|
case op_iconst_3:
|
|
case op_iconst_4:
|
|
case op_iconst_5:
|
|
push_type (int_type);
|
|
break;
|
|
|
|
case op_lconst_0:
|
|
case op_lconst_1:
|
|
push_type (long_type);
|
|
break;
|
|
|
|
case op_fconst_0:
|
|
case op_fconst_1:
|
|
case op_fconst_2:
|
|
push_type (float_type);
|
|
break;
|
|
|
|
case op_dconst_0:
|
|
case op_dconst_1:
|
|
push_type (double_type);
|
|
break;
|
|
|
|
case op_bipush:
|
|
get_byte ();
|
|
push_type (int_type);
|
|
break;
|
|
|
|
case op_sipush:
|
|
get_short ();
|
|
push_type (int_type);
|
|
break;
|
|
|
|
case op_ldc:
|
|
push_type_t (check_constant (get_byte ()));
|
|
break;
|
|
case op_ldc_w:
|
|
push_type_t (check_constant (get_ushort ()));
|
|
break;
|
|
case op_ldc2_w:
|
|
push_type_t (check_wide_constant (get_ushort ()));
|
|
break;
|
|
|
|
case op_iload:
|
|
push_type_t (get_variable (get_byte (), int_type));
|
|
break;
|
|
case op_lload:
|
|
push_type_t (get_variable (get_byte (), long_type));
|
|
break;
|
|
case op_fload:
|
|
push_type_t (get_variable (get_byte (), float_type));
|
|
break;
|
|
case op_dload:
|
|
push_type_t (get_variable (get_byte (), double_type));
|
|
break;
|
|
case op_aload:
|
|
push_type_t (get_variable (get_byte (), reference_type));
|
|
break;
|
|
|
|
case op_iload_0:
|
|
case op_iload_1:
|
|
case op_iload_2:
|
|
case op_iload_3:
|
|
push_type_t (get_variable (opcode - op_iload_0, int_type));
|
|
break;
|
|
case op_lload_0:
|
|
case op_lload_1:
|
|
case op_lload_2:
|
|
case op_lload_3:
|
|
push_type_t (get_variable (opcode - op_lload_0, long_type));
|
|
break;
|
|
case op_fload_0:
|
|
case op_fload_1:
|
|
case op_fload_2:
|
|
case op_fload_3:
|
|
push_type_t (get_variable (opcode - op_fload_0, float_type));
|
|
break;
|
|
case op_dload_0:
|
|
case op_dload_1:
|
|
case op_dload_2:
|
|
case op_dload_3:
|
|
push_type_t (get_variable (opcode - op_dload_0, double_type));
|
|
break;
|
|
case op_aload_0:
|
|
case op_aload_1:
|
|
case op_aload_2:
|
|
case op_aload_3:
|
|
push_type_t (get_variable (opcode - op_aload_0, reference_type));
|
|
break;
|
|
case op_iaload:
|
|
pop_type (int_type);
|
|
push_type_t (require_array_type (pop_init_ref (reference_type),
|
|
int_type));
|
|
break;
|
|
case op_laload:
|
|
pop_type (int_type);
|
|
push_type_t (require_array_type (pop_init_ref (reference_type),
|
|
long_type));
|
|
break;
|
|
case op_faload:
|
|
pop_type (int_type);
|
|
push_type_t (require_array_type (pop_init_ref (reference_type),
|
|
float_type));
|
|
break;
|
|
case op_daload:
|
|
pop_type (int_type);
|
|
push_type_t (require_array_type (pop_init_ref (reference_type),
|
|
double_type));
|
|
break;
|
|
case op_aaload:
|
|
pop_type (int_type);
|
|
push_type_t (require_array_type (pop_init_ref (reference_type),
|
|
reference_type));
|
|
break;
|
|
case op_baload:
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), byte_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_caload:
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), char_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_saload:
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), short_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_istore:
|
|
set_variable (get_byte (), pop_type (int_type));
|
|
break;
|
|
case op_lstore:
|
|
set_variable (get_byte (), pop_type (long_type));
|
|
break;
|
|
case op_fstore:
|
|
set_variable (get_byte (), pop_type (float_type));
|
|
break;
|
|
case op_dstore:
|
|
set_variable (get_byte (), pop_type (double_type));
|
|
break;
|
|
case op_astore:
|
|
set_variable (get_byte (), pop_ref_or_return ());
|
|
break;
|
|
case op_istore_0:
|
|
case op_istore_1:
|
|
case op_istore_2:
|
|
case op_istore_3:
|
|
set_variable (opcode - op_istore_0, pop_type (int_type));
|
|
break;
|
|
case op_lstore_0:
|
|
case op_lstore_1:
|
|
case op_lstore_2:
|
|
case op_lstore_3:
|
|
set_variable (opcode - op_lstore_0, pop_type (long_type));
|
|
break;
|
|
case op_fstore_0:
|
|
case op_fstore_1:
|
|
case op_fstore_2:
|
|
case op_fstore_3:
|
|
set_variable (opcode - op_fstore_0, pop_type (float_type));
|
|
break;
|
|
case op_dstore_0:
|
|
case op_dstore_1:
|
|
case op_dstore_2:
|
|
case op_dstore_3:
|
|
set_variable (opcode - op_dstore_0, pop_type (double_type));
|
|
break;
|
|
case op_astore_0:
|
|
case op_astore_1:
|
|
case op_astore_2:
|
|
case op_astore_3:
|
|
set_variable (opcode - op_astore_0, pop_ref_or_return ());
|
|
break;
|
|
case op_iastore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), int_type);
|
|
break;
|
|
case op_lastore:
|
|
pop_type (long_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), long_type);
|
|
break;
|
|
case op_fastore:
|
|
pop_type (float_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), float_type);
|
|
break;
|
|
case op_dastore:
|
|
pop_type (double_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), double_type);
|
|
break;
|
|
case op_aastore:
|
|
pop_type (reference_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), reference_type);
|
|
break;
|
|
case op_bastore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), byte_type);
|
|
break;
|
|
case op_castore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), char_type);
|
|
break;
|
|
case op_sastore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), short_type);
|
|
break;
|
|
case op_pop:
|
|
pop32 ();
|
|
break;
|
|
case op_pop2:
|
|
{
|
|
type t = pop_raw ();
|
|
if (! type_iswide (&t))
|
|
pop32 ();
|
|
}
|
|
break;
|
|
case op_dup:
|
|
{
|
|
type t = pop32 ();
|
|
push_type_t (t);
|
|
push_type_t (t);
|
|
}
|
|
break;
|
|
case op_dup_x1:
|
|
{
|
|
type t1 = pop32 ();
|
|
type t2 = pop32 ();
|
|
push_type_t (t1);
|
|
push_type_t (t2);
|
|
push_type_t (t1);
|
|
}
|
|
break;
|
|
case op_dup_x2:
|
|
{
|
|
type t1 = pop32 ();
|
|
type t2 = pop_raw ();
|
|
if (! type_iswide (&t2))
|
|
{
|
|
type t3 = pop32 ();
|
|
push_type_t (t1);
|
|
push_type_t (t3);
|
|
}
|
|
else
|
|
push_type_t (t1);
|
|
push_type_t (t2);
|
|
push_type_t (t1);
|
|
}
|
|
break;
|
|
case op_dup2:
|
|
{
|
|
type t = pop_raw ();
|
|
if (! type_iswide (&t))
|
|
{
|
|
type t2 = pop32 ();
|
|
push_type_t (t2);
|
|
push_type_t (t);
|
|
push_type_t (t2);
|
|
}
|
|
else
|
|
push_type_t (t);
|
|
push_type_t (t);
|
|
}
|
|
break;
|
|
case op_dup2_x1:
|
|
{
|
|
type t1 = pop_raw ();
|
|
type t2 = pop32 ();
|
|
if (! type_iswide (&t1))
|
|
{
|
|
type t3 = pop32 ();
|
|
push_type_t (t2);
|
|
push_type_t (t1);
|
|
push_type_t (t3);
|
|
}
|
|
else
|
|
push_type_t (t1);
|
|
push_type_t (t2);
|
|
push_type_t (t1);
|
|
}
|
|
break;
|
|
case op_dup2_x2:
|
|
{
|
|
type t1 = pop_raw ();
|
|
if (type_iswide (&t1))
|
|
{
|
|
type t2 = pop_raw ();
|
|
if (type_iswide (&t2))
|
|
{
|
|
push_type_t (t1);
|
|
push_type_t (t2);
|
|
}
|
|
else
|
|
{
|
|
type t3 = pop32 ();
|
|
push_type_t (t1);
|
|
push_type_t (t3);
|
|
push_type_t (t2);
|
|
}
|
|
push_type_t (t1);
|
|
}
|
|
else
|
|
{
|
|
type t2 = pop32 ();
|
|
type t3 = pop_raw ();
|
|
if (type_iswide (&t3))
|
|
{
|
|
push_type_t (t2);
|
|
push_type_t (t1);
|
|
}
|
|
else
|
|
{
|
|
type t4 = pop32 ();
|
|
push_type_t (t2);
|
|
push_type_t (t1);
|
|
push_type_t (t4);
|
|
}
|
|
push_type_t (t3);
|
|
push_type_t (t2);
|
|
push_type_t (t1);
|
|
}
|
|
}
|
|
break;
|
|
case op_swap:
|
|
{
|
|
type t1 = pop32 ();
|
|
type t2 = pop32 ();
|
|
push_type_t (t1);
|
|
push_type_t (t2);
|
|
}
|
|
break;
|
|
case op_iadd:
|
|
case op_isub:
|
|
case op_imul:
|
|
case op_idiv:
|
|
case op_irem:
|
|
case op_ishl:
|
|
case op_ishr:
|
|
case op_iushr:
|
|
case op_iand:
|
|
case op_ior:
|
|
case op_ixor:
|
|
pop_type (int_type);
|
|
push_type_t (pop_type (int_type));
|
|
break;
|
|
case op_ladd:
|
|
case op_lsub:
|
|
case op_lmul:
|
|
case op_ldiv:
|
|
case op_lrem:
|
|
case op_land:
|
|
case op_lor:
|
|
case op_lxor:
|
|
pop_type (long_type);
|
|
push_type_t (pop_type (long_type));
|
|
break;
|
|
case op_lshl:
|
|
case op_lshr:
|
|
case op_lushr:
|
|
pop_type (int_type);
|
|
push_type_t (pop_type (long_type));
|
|
break;
|
|
case op_fadd:
|
|
case op_fsub:
|
|
case op_fmul:
|
|
case op_fdiv:
|
|
case op_frem:
|
|
pop_type (float_type);
|
|
push_type_t (pop_type (float_type));
|
|
break;
|
|
case op_dadd:
|
|
case op_dsub:
|
|
case op_dmul:
|
|
case op_ddiv:
|
|
case op_drem:
|
|
pop_type (double_type);
|
|
push_type_t (pop_type (double_type));
|
|
break;
|
|
case op_ineg:
|
|
case op_i2b:
|
|
case op_i2c:
|
|
case op_i2s:
|
|
push_type_t (pop_type (int_type));
|
|
break;
|
|
case op_lneg:
|
|
push_type_t (pop_type (long_type));
|
|
break;
|
|
case op_fneg:
|
|
push_type_t (pop_type (float_type));
|
|
break;
|
|
case op_dneg:
|
|
push_type_t (pop_type (double_type));
|
|
break;
|
|
case op_iinc:
|
|
get_variable (get_byte (), int_type);
|
|
get_byte ();
|
|
break;
|
|
case op_i2l:
|
|
pop_type (int_type);
|
|
push_type (long_type);
|
|
break;
|
|
case op_i2f:
|
|
pop_type (int_type);
|
|
push_type (float_type);
|
|
break;
|
|
case op_i2d:
|
|
pop_type (int_type);
|
|
push_type (double_type);
|
|
break;
|
|
case op_l2i:
|
|
pop_type (long_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_l2f:
|
|
pop_type (long_type);
|
|
push_type (float_type);
|
|
break;
|
|
case op_l2d:
|
|
pop_type (long_type);
|
|
push_type (double_type);
|
|
break;
|
|
case op_f2i:
|
|
pop_type (float_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_f2l:
|
|
pop_type (float_type);
|
|
push_type (long_type);
|
|
break;
|
|
case op_f2d:
|
|
pop_type (float_type);
|
|
push_type (double_type);
|
|
break;
|
|
case op_d2i:
|
|
pop_type (double_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_d2l:
|
|
pop_type (double_type);
|
|
push_type (long_type);
|
|
break;
|
|
case op_d2f:
|
|
pop_type (double_type);
|
|
push_type (float_type);
|
|
break;
|
|
case op_lcmp:
|
|
pop_type (long_type);
|
|
pop_type (long_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_fcmpl:
|
|
case op_fcmpg:
|
|
pop_type (float_type);
|
|
pop_type (float_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_dcmpl:
|
|
case op_dcmpg:
|
|
pop_type (double_type);
|
|
pop_type (double_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_ifeq:
|
|
case op_ifne:
|
|
case op_iflt:
|
|
case op_ifge:
|
|
case op_ifgt:
|
|
case op_ifle:
|
|
pop_type (int_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_if_icmpeq:
|
|
case op_if_icmpne:
|
|
case op_if_icmplt:
|
|
case op_if_icmpge:
|
|
case op_if_icmpgt:
|
|
case op_if_icmple:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_if_acmpeq:
|
|
case op_if_acmpne:
|
|
pop_type (reference_type);
|
|
pop_type (reference_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_goto:
|
|
push_jump (get_short ());
|
|
invalidate_pc ();
|
|
break;
|
|
case op_jsr:
|
|
handle_jsr_insn (get_short ());
|
|
break;
|
|
case op_ret:
|
|
handle_ret_insn (get_byte ());
|
|
break;
|
|
case op_tableswitch:
|
|
{
|
|
int i;
|
|
jint low, high;
|
|
pop_type (int_type);
|
|
skip_padding ();
|
|
push_jump (get_int ());
|
|
low = get_int ();
|
|
high = get_int ();
|
|
/* Already checked LOW -vs- HIGH. */
|
|
for (i = low; i <= high; ++i)
|
|
push_jump (get_int ());
|
|
invalidate_pc ();
|
|
}
|
|
break;
|
|
|
|
case op_lookupswitch:
|
|
{
|
|
int i;
|
|
jint npairs, lastkey;
|
|
|
|
pop_type (int_type);
|
|
skip_padding ();
|
|
push_jump (get_int ());
|
|
npairs = get_int ();
|
|
/* Already checked NPAIRS >= 0. */
|
|
lastkey = 0;
|
|
for (i = 0; i < npairs; ++i)
|
|
{
|
|
jint key = get_int ();
|
|
if (i > 0 && key <= lastkey)
|
|
verify_fail_pc ("lookupswitch pairs unsorted", vfr->start_PC);
|
|
lastkey = key;
|
|
push_jump (get_int ());
|
|
}
|
|
invalidate_pc ();
|
|
}
|
|
break;
|
|
case op_ireturn:
|
|
check_return_type (pop_type (int_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_lreturn:
|
|
check_return_type (pop_type (long_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_freturn:
|
|
check_return_type (pop_type (float_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_dreturn:
|
|
check_return_type (pop_type (double_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_areturn:
|
|
check_return_type (pop_init_ref (reference_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_return:
|
|
/* We only need to check this when the return type is
|
|
void, because all instance initializers return void. */
|
|
if (this_is_init)
|
|
state_check_this_initialized (vfr->current_state);
|
|
check_return_type (make_type (void_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_getstatic:
|
|
push_type_t (check_field_constant (get_ushort (), NULL, false));
|
|
break;
|
|
case op_putstatic:
|
|
pop_type_t (check_field_constant (get_ushort (), NULL, false));
|
|
break;
|
|
case op_getfield:
|
|
{
|
|
type klass;
|
|
type field = check_field_constant (get_ushort (), &klass, false);
|
|
pop_type_t (klass);
|
|
push_type_t (field);
|
|
}
|
|
break;
|
|
case op_putfield:
|
|
{
|
|
type klass;
|
|
type field = check_field_constant (get_ushort (), &klass, true);
|
|
pop_type_t (field);
|
|
pop_type_t (klass);
|
|
}
|
|
break;
|
|
|
|
case op_invokevirtual:
|
|
case op_invokespecial:
|
|
case op_invokestatic:
|
|
case op_invokeinterface:
|
|
{
|
|
vfy_string method_name, method_signature;
|
|
const char *namec;
|
|
int i, arg_count;
|
|
type rt;
|
|
bool is_init = false;
|
|
|
|
type class_type
|
|
= check_method_constant (get_ushort (),
|
|
opcode == op_invokeinterface,
|
|
&method_name,
|
|
&method_signature);
|
|
/* NARGS is only used when we're processing
|
|
invokeinterface. It is simplest for us to compute it
|
|
here and then verify it later. */
|
|
int nargs = 0;
|
|
if (opcode == op_invokeinterface)
|
|
{
|
|
nargs = get_byte ();
|
|
if (get_byte () != 0)
|
|
verify_fail ("invokeinterface dummy byte is wrong");
|
|
}
|
|
|
|
namec = vfy_string_bytes (method_name);
|
|
|
|
if (vfy_strings_equal (method_name, vfy_init_name()))
|
|
{
|
|
is_init = true;
|
|
if (opcode != op_invokespecial)
|
|
verify_fail ("can't invoke <init>");
|
|
}
|
|
else if (namec[0] == '<')
|
|
verify_fail ("can't invoke method starting with `<'");
|
|
|
|
arg_count = vfy_count_arguments (method_signature);
|
|
{
|
|
/* Pop arguments and check types. */
|
|
type *arg_types = (type *) vfy_alloc (arg_count * sizeof (type));
|
|
|
|
compute_argument_types (method_signature, arg_types);
|
|
for (i = arg_count - 1; i >= 0; --i)
|
|
{
|
|
/* This is only used for verifying the byte for
|
|
invokeinterface. */
|
|
nargs -= type_depth (&arg_types[i]);
|
|
pop_init_ref_t (arg_types[i]);
|
|
}
|
|
|
|
vfy_free (arg_types);
|
|
}
|
|
|
|
if (opcode == op_invokeinterface
|
|
&& nargs != 1)
|
|
verify_fail ("wrong argument count for invokeinterface");
|
|
|
|
if (opcode != op_invokestatic)
|
|
{
|
|
type raw;
|
|
type t = class_type;
|
|
if (is_init)
|
|
{
|
|
/* In this case the PC doesn't matter. */
|
|
type_set_uninitialized (&t, UNINIT);
|
|
/* FIXME: check to make sure that the <init>
|
|
call is to the right class.
|
|
It must either be super or an exact class
|
|
match. */
|
|
}
|
|
raw = pop_raw ();
|
|
if (! types_compatible (&t, &raw))
|
|
verify_fail ("incompatible type on stack");
|
|
|
|
if (is_init)
|
|
state_set_initialized (vfr->current_state,
|
|
type_get_pc (&raw), vfr->current_method->max_locals);
|
|
}
|
|
|
|
rt = compute_return_type (method_signature);
|
|
if (! type_isvoid (&rt))
|
|
push_type_t (rt);
|
|
}
|
|
break;
|
|
|
|
case op_new:
|
|
{
|
|
type t = check_class_constant (get_ushort ());
|
|
if (type_isarray (&t) || type_isinterface (&t)
|
|
|| type_isabstract (&t))
|
|
verify_fail ("type is array, interface, or abstract");
|
|
type_set_uninitialized (&t, vfr->start_PC);
|
|
push_type_t (t);
|
|
}
|
|
break;
|
|
|
|
case op_newarray:
|
|
{
|
|
int atype = get_byte ();
|
|
type t;
|
|
/* We intentionally have chosen constants to make this
|
|
valid. */
|
|
if (atype < boolean_type || atype > long_type)
|
|
verify_fail_pc ("type not primitive", vfr->start_PC);
|
|
pop_type (int_type);
|
|
init_type_from_class (&t, construct_primitive_array_type (atype));
|
|
push_type_t (t);
|
|
}
|
|
break;
|
|
case op_anewarray:
|
|
{
|
|
type t;
|
|
pop_type (int_type);
|
|
t = check_class_constant (get_ushort ());
|
|
push_type_t (type_to_array (&t));
|
|
}
|
|
break;
|
|
case op_arraylength:
|
|
{
|
|
type t = pop_init_ref (reference_type);
|
|
if (! type_isarray (&t) && ! type_isnull (&t))
|
|
verify_fail ("array type expected");
|
|
push_type (int_type);
|
|
}
|
|
break;
|
|
case op_athrow:
|
|
pop_type_t (make_type_from_class (vfy_throwable_type ()));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_checkcast:
|
|
pop_init_ref (reference_type);
|
|
push_type_t (check_class_constant (get_ushort ()));
|
|
break;
|
|
case op_instanceof:
|
|
pop_init_ref (reference_type);
|
|
check_class_constant (get_ushort ());
|
|
push_type (int_type);
|
|
break;
|
|
case op_monitorenter:
|
|
pop_init_ref (reference_type);
|
|
break;
|
|
case op_monitorexit:
|
|
pop_init_ref (reference_type);
|
|
break;
|
|
case op_wide:
|
|
{
|
|
switch (get_byte ())
|
|
{
|
|
case op_iload:
|
|
push_type_t (get_variable (get_ushort (), int_type));
|
|
break;
|
|
case op_lload:
|
|
push_type_t (get_variable (get_ushort (), long_type));
|
|
break;
|
|
case op_fload:
|
|
push_type_t (get_variable (get_ushort (), float_type));
|
|
break;
|
|
case op_dload:
|
|
push_type_t (get_variable (get_ushort (), double_type));
|
|
break;
|
|
case op_aload:
|
|
push_type_t (get_variable (get_ushort (), reference_type));
|
|
break;
|
|
case op_istore:
|
|
set_variable (get_ushort (), pop_type (int_type));
|
|
break;
|
|
case op_lstore:
|
|
set_variable (get_ushort (), pop_type (long_type));
|
|
break;
|
|
case op_fstore:
|
|
set_variable (get_ushort (), pop_type (float_type));
|
|
break;
|
|
case op_dstore:
|
|
set_variable (get_ushort (), pop_type (double_type));
|
|
break;
|
|
case op_astore:
|
|
set_variable (get_ushort (), pop_init_ref (reference_type));
|
|
break;
|
|
case op_ret:
|
|
handle_ret_insn (get_short ());
|
|
break;
|
|
case op_iinc:
|
|
get_variable (get_ushort (), int_type);
|
|
get_short ();
|
|
break;
|
|
default:
|
|
verify_fail_pc ("unrecognized wide instruction", vfr->start_PC);
|
|
}
|
|
}
|
|
break;
|
|
case op_multianewarray:
|
|
{
|
|
int i;
|
|
type atype = check_class_constant (get_ushort ());
|
|
int dim = get_byte ();
|
|
if (dim < 1)
|
|
verify_fail_pc ("too few dimensions to multianewarray", vfr->start_PC);
|
|
type_verify_dimensions (&atype, dim);
|
|
for (i = 0; i < dim; ++i)
|
|
pop_type (int_type);
|
|
push_type_t (atype);
|
|
}
|
|
break;
|
|
case op_ifnull:
|
|
case op_ifnonnull:
|
|
pop_type (reference_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_goto_w:
|
|
push_jump (get_int ());
|
|
invalidate_pc ();
|
|
break;
|
|
case op_jsr_w:
|
|
handle_jsr_insn (get_int ());
|
|
break;
|
|
|
|
default:
|
|
/* Unrecognized opcode. */
|
|
verify_fail_pc ("unrecognized instruction in verify_instructions_0",
|
|
vfr->start_PC);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This turns a `type' into something suitable for use by the type map
|
|
in the other parts of the compiler. In particular, reference types
|
|
are mapped to Object, primitive types are unchanged, and other
|
|
types are mapped using special functions declared in verify.h. */
|
|
static vfy_jclass
|
|
collapse_type (type *t)
|
|
{
|
|
switch (t->key)
|
|
{
|
|
case void_type:
|
|
case boolean_type:
|
|
case char_type:
|
|
case float_type:
|
|
case double_type:
|
|
case byte_type:
|
|
case short_type:
|
|
case int_type:
|
|
case long_type:
|
|
return vfy_get_primitive_type (t->key);
|
|
|
|
case unsuitable_type:
|
|
case continuation_type:
|
|
return vfy_unsuitable_type ();
|
|
|
|
case return_address_type:
|
|
return vfy_return_address_type ();
|
|
|
|
case null_type:
|
|
return vfy_null_type ();
|
|
|
|
case reference_type:
|
|
case uninitialized_reference_type:
|
|
return vfy_object_type ();
|
|
}
|
|
|
|
abort ();
|
|
}
|
|
|
|
static void
|
|
verify_instructions (void)
|
|
{
|
|
int i;
|
|
|
|
branch_prepass ();
|
|
verify_instructions_0 ();
|
|
|
|
/* Now tell the rest of the compiler about the types we've found. */
|
|
for (i = 0; i < vfr->current_method->code_length; ++i)
|
|
{
|
|
int j, slot;
|
|
struct state *curr;
|
|
|
|
if ((vfr->flags[i] & FLAG_INSN_SEEN) != 0)
|
|
vfy_note_instruction_seen (i);
|
|
|
|
if (! vfr->states[i])
|
|
continue;
|
|
|
|
curr = vfr->states[i]->val;
|
|
vfy_note_stack_depth (vfr->current_method, i, curr->stackdepth);
|
|
|
|
/* Tell the compiler about each local variable. */
|
|
for (j = 0; j < vfr->current_method->max_locals; ++j)
|
|
vfy_note_local_type (vfr->current_method, i, j,
|
|
collapse_type (&curr->locals[j]));
|
|
/* Tell the compiler about each stack slot. */
|
|
for (slot = j = 0; j < curr->stacktop; ++j, ++slot)
|
|
{
|
|
vfy_note_stack_type (vfr->current_method, i, slot,
|
|
collapse_type (&curr->stack[j]));
|
|
if (type_iswide (&curr->stack[j]))
|
|
{
|
|
++slot;
|
|
vfy_note_stack_type (vfr->current_method, i, slot,
|
|
vfy_unsuitable_type ());
|
|
}
|
|
}
|
|
if (slot != curr->stackdepth)
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
static void
|
|
make_verifier_context (vfy_method *m)
|
|
{
|
|
vfr = (verifier_context *) vfy_alloc (sizeof (struct verifier_context));
|
|
|
|
vfr->current_method = m;
|
|
vfr->bytecode = vfy_get_bytecode (m);
|
|
vfr->exception = vfy_get_exceptions (m);
|
|
vfr->current_class = m->defining_class;
|
|
|
|
vfr->states = NULL;
|
|
vfr->flags = NULL;
|
|
vfr->utf8_list = NULL;
|
|
vfr->isect_list = NULL;
|
|
}
|
|
|
|
static void
|
|
free_verifier_context (void)
|
|
{
|
|
vfy_string_list *utf8_list;
|
|
ref_intersection *isect_list;
|
|
|
|
if (vfr->flags)
|
|
vfy_free (vfr->flags);
|
|
|
|
utf8_list = vfr->utf8_list;
|
|
while (utf8_list != NULL)
|
|
{
|
|
vfy_string_list *n = utf8_list->next;
|
|
vfy_free (utf8_list);
|
|
utf8_list = n;
|
|
}
|
|
|
|
isect_list = vfr->isect_list;
|
|
while (isect_list != NULL)
|
|
{
|
|
ref_intersection *next = isect_list->alloc_next;
|
|
vfy_free (isect_list);
|
|
isect_list = next;
|
|
}
|
|
|
|
if (vfr->states != NULL)
|
|
{
|
|
int i;
|
|
for (i = 0; i < vfr->current_method->code_length; ++i)
|
|
{
|
|
state_list *iter = vfr->states[i];
|
|
while (iter != NULL)
|
|
{
|
|
state_list *next = iter->next;
|
|
free_state (iter->val);
|
|
vfy_free (iter->val);
|
|
vfy_free (iter);
|
|
iter = next;
|
|
}
|
|
}
|
|
vfy_free (vfr->states);
|
|
}
|
|
|
|
vfy_free (vfr);
|
|
}
|
|
|
|
int
|
|
verify_method (vfy_method *meth)
|
|
{
|
|
debug_print ("verify_method (%s) %i\n", vfy_string_bytes (meth->name),
|
|
meth->code_length);
|
|
|
|
if (vfr != NULL)
|
|
verify_fail ("verifier re-entered");
|
|
|
|
make_verifier_context (meth);
|
|
verify_instructions ();
|
|
free_verifier_context ();
|
|
vfr = NULL;
|
|
|
|
return 1;
|
|
}
|