2
0
mirror of git://gcc.gnu.org/git/gcc.git synced 2024-12-24 07:08:58 +08:00
gcc/libstdc++/stl/stl_algo.h
Jason Merrill df9262681b algorithm [...]: Update to SGI STL 3.11.
* algorithm alloc.h defalloc.h hash_map.h hash_set.h iterator
	memory pthread_alloc pthread_alloc.h rope ropeimpl.h stl_algo.h
	stl_algobase.h stl_alloc.h stl_bvector.h stl_config.h
	stl_construct.h stl_deque.h stl_function.h stl_hash_fun.h
	stl_hash_map.h stl_hash_set.h stl_hashtable.h stl_heap.h
	stl_iterator.h stl_list.h stl_map.h stl_multimap.h stl_multiset.h
	stl_numeric.h stl_pair.h stl_queue.h stl_raw_storage_iter.h
	stl_relops.h stl_rope.h stl_set.h stl_slist.h stl_stack.h
	stl_tempbuf.h stl_tree.h stl_uninitialized.h stl_vector.h
	tempbuf.h type_traits.h: Update to SGI STL 3.11.

From-SVN: r22190
1998-09-02 13:25:15 -04:00

2895 lines
90 KiB
C++

/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_ALGO_H
#define __SGI_STL_INTERNAL_ALGO_H
#include <stl_heap.h>
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1209
#endif
// __median (an extension, not present in the C++ standard).
template <class _Tp>
inline const _Tp& __median(const _Tp& __a, const _Tp& __b, const _Tp& __c) {
if (__a < __b)
if (__b < __c)
return __b;
else if (__a < __c)
return __c;
else
return __a;
else if (__a < __c)
return __a;
else if (__b < __c)
return __c;
else
return __b;
}
template <class _Tp, class _Compare>
inline const _Tp&
__median(const _Tp& __a, const _Tp& __b, const _Tp& __c, _Compare __comp) {
if (__comp(__a, __b))
if (__comp(__b, __c))
return __b;
else if (__comp(__a, __c))
return __c;
else
return __a;
else if (__comp(__a, __c))
return __a;
else if (__comp(__b, __c))
return __c;
else
return __b;
}
// for_each. Apply a function to every element of a range.
template <class _InputIter, class _Function>
_Function for_each(_InputIter __first, _InputIter __last, _Function __f) {
for ( ; __first != __last; ++__first)
__f(*__first);
return __f;
}
// find and find_if.
template <class _InputIter, class _Tp>
inline _InputIter find(_InputIter __first, _InputIter __last,
const _Tp& __val,
input_iterator_tag)
{
while (__first != __last && *__first != __val)
++__first;
return __first;
}
template <class _InputIter, class _Predicate>
inline _InputIter find_if(_InputIter __first, _InputIter __last,
_Predicate __pred,
input_iterator_tag)
{
while (__first != __last && !__pred(*__first))
++__first;
return __first;
}
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _RandomAccessIter, class _Tp>
_RandomAccessIter find(_RandomAccessIter __first, _RandomAccessIter __last,
const _Tp& __val,
random_access_iterator_tag)
{
typename iterator_traits<_RandomAccessIter>::difference_type __trip_count
= (__last - __first) >> 2;
for ( ; __trip_count > 0 ; --__trip_count) {
if (*__first == __val) return __first;
++__first;
if (*__first == __val) return __first;
++__first;
if (*__first == __val) return __first;
++__first;
if (*__first == __val) return __first;
++__first;
}
switch(__last - __first) {
case 3:
if (*__first == __val) return __first;
++__first;
case 2:
if (*__first == __val) return __first;
++__first;
case 1:
if (*__first == __val) return __first;
++__first;
case 0:
default:
return __last;
}
}
template <class _RandomAccessIter, class _Predicate>
_RandomAccessIter find_if(_RandomAccessIter __first, _RandomAccessIter __last,
_Predicate __pred,
random_access_iterator_tag)
{
typename iterator_traits<_RandomAccessIter>::difference_type __trip_count
= (__last - __first) >> 2;
for ( ; __trip_count > 0 ; --__trip_count) {
if (__pred(*__first)) return __first;
++__first;
if (__pred(*__first)) return __first;
++__first;
if (__pred(*__first)) return __first;
++__first;
if (__pred(*__first)) return __first;
++__first;
}
switch(__last - __first) {
case 3:
if (__pred(*__first)) return __first;
++__first;
case 2:
if (__pred(*__first)) return __first;
++__first;
case 1:
if (__pred(*__first)) return __first;
++__first;
case 0:
default:
return __last;
}
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
template <class _InputIter, class _Tp>
inline _InputIter find(_InputIter __first, _InputIter __last,
const _Tp& __val)
{
return find(__first, __last, __val, __ITERATOR_CATEGORY(__first));
}
template <class _InputIter, class _Predicate>
inline _InputIter find_if(_InputIter __first, _InputIter __last,
_Predicate __pred) {
return find_if(__first, __last, __pred, __ITERATOR_CATEGORY(__first));
}
// adjacent_find.
template <class _ForwardIter>
_ForwardIter adjacent_find(_ForwardIter __first, _ForwardIter __last) {
if (__first == __last)
return __last;
_ForwardIter __next = __first;
while(++__next != __last) {
if (*__first == *__next)
return __first;
__first = __next;
}
return __last;
}
template <class _ForwardIter, class _BinaryPredicate>
_ForwardIter adjacent_find(_ForwardIter __first, _ForwardIter __last,
_BinaryPredicate __binary_pred) {
if (__first == __last)
return __last;
_ForwardIter __next = __first;
while(++__next != __last) {
if (__binary_pred(*__first, *__next))
return __first;
__first = __next;
}
return __last;
}
// count and count_if. There are two version of each, one whose return type
// type is void and one (present only if we have partial specialization)
// whose return type is iterator_traits<_InputIter>::difference_type. The
// C++ standard only has the latter version, but the former, which was present
// in the HP STL, is retained for backward compatibility.
template <class _InputIter, class _Tp, class _Size>
void count(_InputIter __first, _InputIter __last, const _Tp& __value,
_Size& __n) {
for ( ; __first != __last; ++__first)
if (*__first == __value)
++__n;
}
template <class _InputIter, class _Predicate, class _Size>
void count_if(_InputIter __first, _InputIter __last, _Predicate __pred,
_Size& __n) {
for ( ; __first != __last; ++__first)
if (__pred(*__first))
++__n;
}
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _InputIter, class _Tp>
typename iterator_traits<_InputIter>::difference_type
count(_InputIter __first, _InputIter __last, const _Tp& __value) {
typename iterator_traits<_InputIter>::difference_type __n = 0;
for ( ; __first != __last; ++__first)
if (*__first == __value)
++__n;
return __n;
}
template <class _InputIter, class _Predicate>
typename iterator_traits<_InputIter>::difference_type
count_if(_InputIter __first, _InputIter __last, _Predicate __pred) {
typename iterator_traits<_InputIter>::difference_type __n = 0;
for ( ; __first != __last; ++__first)
if (__pred(*__first))
++__n;
return __n;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// search.
template <class _ForwardIter1, class _ForwardIter2>
_ForwardIter1 search(_ForwardIter1 __first1, _ForwardIter1 __last1,
_ForwardIter2 __first2, _ForwardIter2 __last2)
{
// Test for empty ranges
if (__first1 == __last1 || __first2 == __last2)
return __first1;
// Test for a pattern of length 1.
_ForwardIter2 __tmp(__first2);
++__tmp;
if (__tmp == __last2)
return find(__first1, __last1, *__first2);
// General case.
_ForwardIter2 __p1, __p;
__p1 = __first2; ++__p1;
_ForwardIter1 __current = __first1;
while (__first1 != __last1) {
__first1 = find(__first1, __last1, *__first2);
if (__first1 == __last1)
return __last1;
__p = __p1;
__current = __first1;
if (++__current == __last1)
return __last1;
while (*__current == *__p) {
if (++__p == __last2)
return __first1;
if (++__current == __last1)
return __last1;
}
++__first1;
}
return __first1;
}
template <class _ForwardIter1, class _ForwardIter2, class _BinaryPred>
_ForwardIter1 search(_ForwardIter1 __first1, _ForwardIter1 __last1,
_ForwardIter2 __first2, _ForwardIter2 __last2,
_BinaryPred __predicate)
{
// Test for empty ranges
if (__first1 == __last1 || __first2 == __last2)
return __first1;
// Test for a pattern of length 1.
_ForwardIter2 __tmp(__first2);
++__tmp;
if (__tmp == __last2)
return find(__first1, __last1, *__first2);
// General case.
_ForwardIter2 __p1, __p;
__p1 = __first2; ++__p1;
_ForwardIter1 __current = __first1;
while (__first1 != __last1) {
while (__first1 != __last1) {
if (__predicate(*__first1, *__first2))
break;
++__first1;
}
while (__first1 != __last1 && !__predicate(*__first1, *__first2))
++__first1;
if (__first1 == __last1)
return __last1;
__p = __p1;
__current = __first1;
if (++__current == __last1) return __last1;
while (__predicate(*__current, *__p)) {
if (++__p == __last2)
return __first1;
if (++__current == __last1)
return __last1;
}
++__first1;
}
return __first1;
}
// search_n. Search for __count consecutive copies of __val.
template <class _ForwardIter, class _Integer, class _Tp>
_ForwardIter search_n(_ForwardIter __first, _ForwardIter __last,
_Integer __count, const _Tp& __val) {
if (__count <= 0)
return __first;
else {
__first = find(__first, __last, __val);
while (__first != __last) {
_Integer __n = __count - 1;
_ForwardIter __i = __first;
++__i;
while (__i != __last && __n != 0 && *__i == __val) {
++__i;
--__n;
}
if (__n == 0)
return __first;
else
__first = find(__i, __last, __val);
}
return __last;
}
}
template <class _ForwardIter, class _Integer, class _Tp, class _BinaryPred>
_ForwardIter search_n(_ForwardIter __first, _ForwardIter __last,
_Integer __count, const _Tp& __val,
_BinaryPred __binary_pred) {
if (__count <= 0)
return __first;
else {
while (__first != __last) {
if (__binary_pred(*__first, __val))
break;
++__first;
}
while (__first != __last) {
_Integer __n = __count - 1;
_ForwardIter __i = __first;
++__i;
while (__i != __last && __n != 0 && __binary_pred(*__i, __val)) {
++__i;
--__n;
}
if (__n == 0)
return __first;
else {
while (__i != __last) {
if (__binary_pred(*__i, __val))
break;
++__i;
}
__first = __i;
}
}
return __last;
}
}
// swap_ranges
template <class _ForwardIter1, class _ForwardIter2>
_ForwardIter2 swap_ranges(_ForwardIter1 __first1, _ForwardIter1 __last1,
_ForwardIter2 __first2) {
for ( ; __first1 != __last1; ++__first1, ++__first2)
iter_swap(__first1, __first2);
return __first2;
}
// transform
template <class _InputIter, class _OutputIter, class _UnaryOperation>
_OutputIter transform(_InputIter __first, _InputIter __last,
_OutputIter __result, _UnaryOperation __opr) {
for ( ; __first != __last; ++__first, ++__result)
*__result = __opr(*__first);
return __result;
}
template <class _InputIter1, class _InputIter2, class _OutputIter,
class _BinaryOperation>
_OutputIter transform(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _OutputIter __result,
_BinaryOperation __binary_op) {
for ( ; __first1 != __last1; ++__first1, ++__first2, ++__result)
*__result = __binary_op(*__first1, *__first2);
return __result;
}
// replace, replace_if, replace_copy, replace_copy_if
template <class _ForwardIter, class _Tp>
void replace(_ForwardIter __first, _ForwardIter __last,
const _Tp& __old_value, const _Tp& __new_value) {
for ( ; __first != __last; ++__first)
if (*__first == __old_value)
*__first = __new_value;
}
template <class _ForwardIter, class _Predicate, class _Tp>
void replace_if(_ForwardIter __first, _ForwardIter __last,
_Predicate __pred, const _Tp& __new_value) {
for ( ; __first != __last; ++__first)
if (__pred(*__first))
*__first = __new_value;
}
template <class _InputIter, class _OutputIter, class _Tp>
_OutputIter replace_copy(_InputIter __first, _InputIter __last,
_OutputIter __result,
const _Tp& __old_value, const _Tp& __new_value) {
for ( ; __first != __last; ++__first, ++__result)
*__result = *__first == __old_value ? __new_value : *__first;
return __result;
}
template <class Iterator, class _OutputIter, class _Predicate, class _Tp>
_OutputIter replace_copy_if(Iterator __first, Iterator __last,
_OutputIter __result,
_Predicate __pred, const _Tp& __new_value) {
for ( ; __first != __last; ++__first, ++__result)
*__result = __pred(*__first) ? __new_value : *__first;
return __result;
}
// generate and generate_n
template <class _ForwardIter, class _Generator>
void generate(_ForwardIter __first, _ForwardIter __last, _Generator __gen) {
for ( ; __first != __last; ++__first)
*__first = __gen();
}
template <class _OutputIter, class _Size, class _Generator>
_OutputIter generate_n(_OutputIter __first, _Size __n, _Generator __gen) {
for ( ; __n > 0; --__n, ++__first)
*__first = __gen();
return __first;
}
// remove, remove_if, remove_copy, remove_copy_if
template <class _InputIter, class _OutputIter, class _Tp>
_OutputIter remove_copy(_InputIter __first, _InputIter __last,
_OutputIter __result, const _Tp& __value) {
for ( ; __first != __last; ++__first)
if (*__first != __value) {
*__result = *__first;
++__result;
}
return __result;
}
template <class _InputIter, class _OutputIter, class _Predicate>
_OutputIter remove_copy_if(_InputIter __first, _InputIter __last,
_OutputIter __result, _Predicate __pred) {
for ( ; __first != __last; ++__first)
if (!__pred(*__first)) {
*__result = *__first;
++__result;
}
return __result;
}
template <class _ForwardIter, class _Tp>
_ForwardIter remove(_ForwardIter __first, _ForwardIter __last,
const _Tp& __value) {
__first = find(__first, __last, __value);
_ForwardIter __i = __first;
return __first == __last ? __first
: remove_copy(++__i, __last, __first, __value);
}
template <class _ForwardIter, class _Predicate>
_ForwardIter remove_if(_ForwardIter __first, _ForwardIter __last,
_Predicate __pred) {
__first = find_if(__first, __last, __pred);
_ForwardIter __i = __first;
return __first == __last ? __first
: remove_copy_if(++__i, __last, __first, __pred);
}
// unique and unique_copy
template <class _InputIter, class _OutputIter, class _Tp>
_OutputIter __unique_copy(_InputIter __first, _InputIter __last,
_OutputIter __result, _Tp*) {
_Tp __value = *__first;
*__result = __value;
while (++__first != __last)
if (__value != *__first) {
__value = *__first;
*++__result = __value;
}
return ++__result;
}
template <class _InputIter, class _OutputIter>
inline _OutputIter __unique_copy(_InputIter __first, _InputIter __last,
_OutputIter __result,
output_iterator_tag) {
return __unique_copy(__first, __last, __result, __VALUE_TYPE(__first));
}
template <class _InputIter, class _ForwardIter>
_ForwardIter __unique_copy(_InputIter __first, _InputIter __last,
_ForwardIter __result, forward_iterator_tag) {
*__result = *__first;
while (++__first != __last)
if (*__result != *__first) *++__result = *__first;
return ++__result;
}
template <class _InputIter, class _OutputIter>
inline _OutputIter unique_copy(_InputIter __first, _InputIter __last,
_OutputIter __result) {
if (__first == __last) return __result;
return __unique_copy(__first, __last, __result,
__ITERATOR_CATEGORY(__result));
}
template <class _InputIter, class _OutputIter, class _BinaryPredicate,
class _Tp>
_OutputIter __unique_copy(_InputIter __first, _InputIter __last,
_OutputIter __result,
_BinaryPredicate __binary_pred, _Tp*) {
_Tp __value = *__first;
*__result = __value;
while (++__first != __last)
if (!__binary_pred(__value, *__first)) {
__value = *__first;
*++__result = __value;
}
return ++__result;
}
template <class _InputIter, class _OutputIter, class _BinaryPredicate>
inline _OutputIter __unique_copy(_InputIter __first, _InputIter __last,
_OutputIter __result,
_BinaryPredicate __binary_pred,
output_iterator_tag) {
return __unique_copy(__first, __last, __result, __binary_pred,
__VALUE_TYPE(__first));
}
template <class _InputIter, class _ForwardIter, class _BinaryPredicate>
_ForwardIter __unique_copy(_InputIter __first, _InputIter __last,
_ForwardIter __result,
_BinaryPredicate __binary_pred,
forward_iterator_tag) {
*__result = *__first;
while (++__first != __last)
if (!__binary_pred(*__result, *__first)) *++__result = *__first;
return ++__result;
}
template <class _InputIter, class _OutputIter, class _BinaryPredicate>
inline _OutputIter unique_copy(_InputIter __first, _InputIter __last,
_OutputIter __result,
_BinaryPredicate __binary_pred) {
if (__first == __last) return __result;
return __unique_copy(__first, __last, __result, __binary_pred,
__ITERATOR_CATEGORY(__result));
}
template <class _ForwardIter>
_ForwardIter unique(_ForwardIter __first, _ForwardIter __last) {
__first = adjacent_find(__first, __last);
return unique_copy(__first, __last, __first);
}
template <class _ForwardIter, class _BinaryPredicate>
_ForwardIter unique(_ForwardIter __first, _ForwardIter __last,
_BinaryPredicate __binary_pred) {
__first = adjacent_find(__first, __last, __binary_pred);
return unique_copy(__first, __last, __first, __binary_pred);
}
// reverse and reverse_copy, and their auxiliary functions
template <class _BidirectionalIter>
void __reverse(_BidirectionalIter __first, _BidirectionalIter __last,
bidirectional_iterator_tag) {
while (true)
if (__first == __last || __first == --__last)
return;
else
iter_swap(__first++, __last);
}
template <class _RandomAccessIter>
void __reverse(_RandomAccessIter __first, _RandomAccessIter __last,
random_access_iterator_tag) {
while (__first < __last)
iter_swap(__first++, --__last);
}
template <class _BidirectionalIter>
inline void reverse(_BidirectionalIter __first, _BidirectionalIter __last) {
__reverse(__first, __last, __ITERATOR_CATEGORY(__first));
}
template <class _BidirectionalIter, class _OutputIter>
_OutputIter reverse_copy(_BidirectionalIter __first,
_BidirectionalIter __last,
_OutputIter __result) {
while (__first != __last) {
--__last;
*__result = *__last;
++__result;
}
return __result;
}
// rotate and rotate_copy, and their auxiliary functions
template <class _EuclideanRingElement>
_EuclideanRingElement __gcd(_EuclideanRingElement __m,
_EuclideanRingElement __n)
{
while (__n != 0) {
_EuclideanRingElement __t = __m % __n;
__m = __n;
__n = __t;
}
return __m;
}
template <class _ForwardIter, class _Distance>
_ForwardIter __rotate(_ForwardIter __first,
_ForwardIter __middle,
_ForwardIter __last,
_Distance*,
forward_iterator_tag) {
if (__first == __middle)
return __last;
if (__last == __middle)
return __first;
_ForwardIter __first2 = __middle;
do {
swap(*__first++, *__first2++);
if (__first == __middle)
__middle = __first2;
} while (__first2 != __last);
_ForwardIter __new_middle = __first;
__first2 = __middle;
while (__first2 != __last) {
swap (*__first++, *__first2++);
if (__first == __middle)
__middle = __first2;
else if (__first2 == __last)
__first2 = __middle;
}
return __new_middle;
}
template <class _BidirectionalIter, class _Distance>
_BidirectionalIter __rotate(_BidirectionalIter __first,
_BidirectionalIter __middle,
_BidirectionalIter __last,
_Distance*,
bidirectional_iterator_tag) {
if (__first == __middle)
return __last;
if (__last == __middle)
return __first;
__reverse(__first, __middle, bidirectional_iterator_tag());
__reverse(__middle, __last, bidirectional_iterator_tag());
while (__first != __middle && __middle != __last)
swap (*__first++, *--__last);
if (__first == __middle) {
__reverse(__middle, __last, bidirectional_iterator_tag());
return __last;
}
else {
__reverse(__first, __middle, bidirectional_iterator_tag());
return __first;
}
}
template <class _RandomAccessIter, class _Distance, class _Tp>
_RandomAccessIter __rotate(_RandomAccessIter __first,
_RandomAccessIter __middle,
_RandomAccessIter __last,
_Distance *, _Tp *) {
_Distance __n = __last - __first;
_Distance __k = __middle - __first;
_Distance __l = __n - __k;
_RandomAccessIter __result = __first + (__last - __middle);
if (__k == __l) {
swap_ranges(__first, __middle, __middle);
return __result;
}
_Distance __d = __gcd(__n, __k);
for (_Distance __i = 0; __i < __d; __i++) {
_Tp __tmp = *__first;
_RandomAccessIter __p = __first;
if (__k < __l) {
for (_Distance __j = 0; __j < __l/__d; __j++) {
if (__p > __first + __l) {
*__p = *(__p - __l);
__p -= __l;
}
*__p = *(__p + __k);
__p += __k;
}
}
else {
for (_Distance __j = 0; __j < __k/__d - 1; __j ++) {
if (__p < __last - __k) {
*__p = *(__p + __k);
__p += __k;
}
*__p = * (__p - __l);
__p -= __l;
}
}
*__p = __tmp;
++__first;
}
return __result;
}
template <class _ForwardIter>
inline _ForwardIter rotate(_ForwardIter __first, _ForwardIter __middle,
_ForwardIter __last) {
return __rotate(__first, __middle, __last,
__DISTANCE_TYPE(__first),
__ITERATOR_CATEGORY(__first));
}
template <class _ForwardIter, class _OutputIter>
_OutputIter rotate_copy(_ForwardIter __first, _ForwardIter __middle,
_ForwardIter __last, _OutputIter __result) {
return copy(__first, __middle, copy(__middle, __last, __result));
}
// Return a random number in the range [0, __n). This function encapsulates
// whether we're using rand (part of the standard C library) or lrand48
// (not standard, but a much better choice whenever it's available).
template <class _Distance>
inline _Distance __random_number(_Distance __n) {
#ifdef __STL_NO_DRAND48
return rand() % __n;
#else
return lrand48() % __n;
#endif
}
// random_shuffle
template <class _RandomAccessIter>
inline void random_shuffle(_RandomAccessIter __first,
_RandomAccessIter __last) {
if (__first == __last) return;
for (_RandomAccessIter __i = __first + 1; __i != __last; ++__i)
iter_swap(__i, __first + __random_number((__i - __first) + 1));
}
template <class _RandomAccessIter, class _RandomNumberGenerator>
void random_shuffle(_RandomAccessIter __first, _RandomAccessIter __last,
_RandomNumberGenerator& __rand) {
if (__first == __last) return;
for (_RandomAccessIter __i = __first + 1; __i != __last; ++__i)
iter_swap(__i, __first + __rand((__i - __first) + 1));
}
// random_sample and random_sample_n (extensions, not part of the standard).
template <class _ForwardIter, class _OutputIter, class _Distance>
_OutputIter random_sample_n(_ForwardIter __first, _ForwardIter __last,
_OutputIter __out, const _Distance __n)
{
_Distance __remaining = 0;
distance(__first, __last, __remaining);
_Distance __m = min(__n, __remaining);
while (__m > 0) {
if (__random_number(__remaining) < __m) {
*__out = *__first;
++__out;
--__m;
}
--__remaining;
++__first;
}
return __out;
}
template <class _ForwardIter, class _OutputIter, class _Distance,
class _RandomNumberGenerator>
_OutputIter random_sample_n(_ForwardIter __first, _ForwardIter __last,
_OutputIter __out, const _Distance __n,
_RandomNumberGenerator& __rand)
{
_Distance __remaining = 0;
distance(__first, __last, __remaining);
_Distance __m = min(__n, __remaining);
while (__m > 0) {
if (__rand(__remaining) < __m) {
*__out = *__first;
++__out;
--__m;
}
--__remaining;
++__first;
}
return __out;
}
template <class _InputIter, class _RandomAccessIter, class _Distance>
_RandomAccessIter __random_sample(_InputIter __first, _InputIter __last,
_RandomAccessIter __out,
const _Distance __n)
{
_Distance __m = 0;
_Distance __t = __n;
for ( ; __first != __last && __m < __n; ++__m, ++__first)
__out[__m] = *__first;
while (__first != __last) {
++__t;
_Distance __M = __random_number(__t);
if (__M < __n)
__out[__M] = *__first;
++__first;
}
return __out + __m;
}
template <class _InputIter, class _RandomAccessIter,
class _RandomNumberGenerator, class _Distance>
_RandomAccessIter __random_sample(_InputIter __first, _InputIter __last,
_RandomAccessIter __out,
_RandomNumberGenerator& __rand,
const _Distance __n)
{
_Distance __m = 0;
_Distance __t = __n;
for ( ; __first != __last && __m < __n; ++__m, ++__first)
__out[__m] = *__first;
while (__first != __last) {
++__t;
_Distance __M = __rand(__t);
if (__M < __n)
__out[__M] = *__first;
++__first;
}
return __out + __m;
}
template <class _InputIter, class _RandomAccessIter>
inline _RandomAccessIter
random_sample(_InputIter __first, _InputIter __last,
_RandomAccessIter __out_first, _RandomAccessIter __out_last)
{
return __random_sample(__first, __last,
__out_first, __out_last - __out_first);
}
template <class _InputIter, class _RandomAccessIter,
class _RandomNumberGenerator>
inline _RandomAccessIter
random_sample(_InputIter __first, _InputIter __last,
_RandomAccessIter __out_first, _RandomAccessIter __out_last,
_RandomNumberGenerator& __rand)
{
return __random_sample(__first, __last,
__out_first, __rand,
__out_last - __out_first);
}
// partition, stable_partition, and their auxiliary functions
template <class _ForwardIter, class _Predicate>
_ForwardIter __partition(_ForwardIter __first,
_ForwardIter __last,
_Predicate __pred,
forward_iterator_tag) {
if (__first == __last) return __first;
while (__pred(*__first))
if (++__first == __last) return __first;
_ForwardIter __next = __first;
while (++__next != __last)
if (__pred(*__next)) {
swap(*__first, *__next);
++__first;
}
return __first;
}
template <class _BidirectionalIter, class _Predicate>
_BidirectionalIter __partition(_BidirectionalIter __first,
_BidirectionalIter __last,
_Predicate __pred,
bidirectional_iterator_tag) {
while (true) {
while (true)
if (__first == __last)
return __first;
else if (__pred(*__first))
++__first;
else
break;
--__last;
while (true)
if (__first == __last)
return __first;
else if (!__pred(*__last))
--__last;
else
break;
iter_swap(__first, __last);
++__first;
}
}
template <class _ForwardIter, class _Predicate>
inline _ForwardIter partition(_ForwardIter __first,
_ForwardIter __last,
_Predicate __pred) {
return __partition(__first, __last, __pred, __ITERATOR_CATEGORY(__first));
}
template <class _ForwardIter, class _Predicate, class _Distance>
_ForwardIter __inplace_stable_partition(_ForwardIter __first,
_ForwardIter __last,
_Predicate __pred, _Distance __len) {
if (__len == 1)
return __pred(*__first) ? __last : __first;
_ForwardIter __middle = __first;
advance(__middle, __len / 2);
return rotate(__inplace_stable_partition(__first, __middle, __pred,
__len / 2),
__middle,
__inplace_stable_partition(__middle, __last, __pred,
__len - __len / 2));
}
template <class _ForwardIter, class _Pointer, class _Predicate,
class _Distance>
_ForwardIter __stable_partition_adaptive(_ForwardIter __first,
_ForwardIter __last,
_Predicate __pred, _Distance __len,
_Pointer __buffer,
_Distance __buffer_size)
{
if (__len <= __buffer_size) {
_ForwardIter __result1 = __first;
_Pointer __result2 = __buffer;
for ( ; __first != __last ; ++__first)
if (__pred(*__first)) {
*__result1 = *__first;
++__result1;
}
else {
*__result2 = *__first;
++__result2;
}
copy(__buffer, __result2, __result1);
return __result1;
}
else {
_ForwardIter __middle = __first;
advance(__middle, __len / 2);
return rotate(__stable_partition_adaptive(
__first, __middle, __pred,
__len / 2, __buffer, __buffer_size),
__middle,
__stable_partition_adaptive(
__middle, __last, __pred,
__len - __len / 2, __buffer, __buffer_size));
}
}
template <class _ForwardIter, class _Predicate, class _Tp, class _Distance>
inline _ForwardIter
__stable_partition_aux(_ForwardIter __first, _ForwardIter __last,
_Predicate __pred, _Tp*, _Distance*)
{
_Temporary_buffer<_ForwardIter, _Tp> __buf(__first, __last);
if (__buf.size() > 0)
return __stable_partition_adaptive(__first, __last, __pred,
_Distance(__buf.requested_size()),
__buf.begin(), __buf.size());
else
return __inplace_stable_partition(__first, __last, __pred,
_Distance(__buf.requested_size()));
}
template <class _ForwardIter, class _Predicate>
inline _ForwardIter stable_partition(_ForwardIter __first,
_ForwardIter __last,
_Predicate __pred) {
if (__first == __last)
return __first;
else
return __stable_partition_aux(__first, __last, __pred,
__VALUE_TYPE(__first),
__DISTANCE_TYPE(__first));
}
template <class _RandomAccessIter, class _Tp>
_RandomAccessIter __unguarded_partition(_RandomAccessIter __first,
_RandomAccessIter __last,
_Tp __pivot)
{
while (true) {
while (*__first < __pivot)
++__first;
--__last;
while (__pivot < *__last)
--__last;
if (!(__first < __last))
return __first;
iter_swap(__first, __last);
++__first;
}
}
template <class _RandomAccessIter, class _Tp, class _Compare>
_RandomAccessIter __unguarded_partition(_RandomAccessIter __first,
_RandomAccessIter __last,
_Tp __pivot, _Compare __comp)
{
while (true) {
while (__comp(*__first, __pivot))
++__first;
--__last;
while (__comp(__pivot, *__last))
--__last;
if (!(__first < __last))
return __first;
iter_swap(__first, __last);
++__first;
}
}
const int __stl_threshold = 16;
// sort() and its auxiliary functions.
template <class _RandomAccessIter, class _Tp>
void __unguarded_linear_insert(_RandomAccessIter __last, _Tp __val) {
_RandomAccessIter __next = __last;
--__next;
while (__val < *__next) {
*__last = *__next;
__last = __next;
--__next;
}
*__last = __val;
}
template <class _RandomAccessIter, class _Tp, class _Compare>
void __unguarded_linear_insert(_RandomAccessIter __last, _Tp __val,
_Compare __comp) {
_RandomAccessIter __next = __last;
--__next;
while (__comp(__val, *__next)) {
*__last = *__next;
__last = __next;
--__next;
}
*__last = __val;
}
template <class _RandomAccessIter, class _Tp>
inline void __linear_insert(_RandomAccessIter __first,
_RandomAccessIter __last, _Tp*) {
_Tp __val = *__last;
if (__val < *__first) {
copy_backward(__first, __last, __last + 1);
*__first = __val;
}
else
__unguarded_linear_insert(__last, __val);
}
template <class _RandomAccessIter, class _Tp, class _Compare>
inline void __linear_insert(_RandomAccessIter __first,
_RandomAccessIter __last, _Tp*, _Compare __comp) {
_Tp __val = *__last;
if (__comp(__val, *__first)) {
copy_backward(__first, __last, __last + 1);
*__first = __val;
}
else
__unguarded_linear_insert(__last, __val, __comp);
}
template <class _RandomAccessIter>
void __insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last) {
if (__first == __last) return;
for (_RandomAccessIter __i = __first + 1; __i != __last; ++__i)
__linear_insert(__first, __i, __VALUE_TYPE(__first));
}
template <class _RandomAccessIter, class _Compare>
void __insertion_sort(_RandomAccessIter __first,
_RandomAccessIter __last, _Compare __comp) {
if (__first == __last) return;
for (_RandomAccessIter __i = __first + 1; __i != __last; ++__i)
__linear_insert(__first, __i, __VALUE_TYPE(__first), __comp);
}
template <class _RandomAccessIter, class _Tp>
void __unguarded_insertion_sort_aux(_RandomAccessIter __first,
_RandomAccessIter __last, _Tp*) {
for (_RandomAccessIter __i = __first; __i != __last; ++__i)
__unguarded_linear_insert(__i, _Tp(*__i));
}
template <class _RandomAccessIter>
inline void __unguarded_insertion_sort(_RandomAccessIter __first,
_RandomAccessIter __last) {
__unguarded_insertion_sort_aux(__first, __last, __VALUE_TYPE(__first));
}
template <class _RandomAccessIter, class _Tp, class _Compare>
void __unguarded_insertion_sort_aux(_RandomAccessIter __first,
_RandomAccessIter __last,
_Tp*, _Compare __comp) {
for (_RandomAccessIter __i = __first; __i != __last; ++__i)
__unguarded_linear_insert(__i, _Tp(*__i), __comp);
}
template <class _RandomAccessIter, class _Compare>
inline void __unguarded_insertion_sort(_RandomAccessIter __first,
_RandomAccessIter __last,
_Compare __comp) {
__unguarded_insertion_sort_aux(__first, __last, __VALUE_TYPE(__first),
__comp);
}
template <class _RandomAccessIter>
void __final_insertion_sort(_RandomAccessIter __first,
_RandomAccessIter __last) {
if (__last - __first > __stl_threshold) {
__insertion_sort(__first, __first + __stl_threshold);
__unguarded_insertion_sort(__first + __stl_threshold, __last);
}
else
__insertion_sort(__first, __last);
}
template <class _RandomAccessIter, class _Compare>
void __final_insertion_sort(_RandomAccessIter __first,
_RandomAccessIter __last, _Compare __comp) {
if (__last - __first > __stl_threshold) {
__insertion_sort(__first, __first + __stl_threshold, __comp);
__unguarded_insertion_sort(__first + __stl_threshold, __last, __comp);
}
else
__insertion_sort(__first, __last, __comp);
}
template <class _Size>
inline _Size __lg(_Size __n) {
_Size __k;
for (__k = 0; __n != 1; __n >>= 1) ++__k;
return __k;
}
template <class _RandomAccessIter, class _Tp, class _Size>
void __introsort_loop(_RandomAccessIter __first,
_RandomAccessIter __last, _Tp*,
_Size __depth_limit)
{
while (__last - __first > __stl_threshold) {
if (__depth_limit == 0) {
partial_sort(__first, __last, __last);
return;
}
--__depth_limit;
_RandomAccessIter __cut =
__unguarded_partition(__first, __last,
_Tp(__median(*__first,
*(__first + (__last - __first)/2),
*(__last - 1))));
__introsort_loop(__cut, __last, (_Tp*) 0, __depth_limit);
__last = __cut;
}
}
template <class _RandomAccessIter, class _Tp, class _Size, class _Compare>
void __introsort_loop(_RandomAccessIter __first,
_RandomAccessIter __last, _Tp*,
_Size __depth_limit, _Compare __comp)
{
while (__last - __first > __stl_threshold) {
if (__depth_limit == 0) {
partial_sort(__first, __last, __last, __comp);
return;
}
--__depth_limit;
_RandomAccessIter __cut =
__unguarded_partition(__first, __last,
_Tp(__median(*__first,
*(__first + (__last - __first)/2),
*(__last - 1), __comp)),
__comp);
__introsort_loop(__cut, __last, (_Tp*) 0, __depth_limit, __comp);
__last = __cut;
}
}
template <class _RandomAccessIter>
inline void sort(_RandomAccessIter __first, _RandomAccessIter __last) {
if (__first != __last) {
__introsort_loop(__first, __last,
__VALUE_TYPE(__first),
__lg(__last - __first) * 2);
__final_insertion_sort(__first, __last);
}
}
template <class _RandomAccessIter, class _Compare>
inline void sort(_RandomAccessIter __first, _RandomAccessIter __last,
_Compare __comp) {
if (__first != __last) {
__introsort_loop(__first, __last,
__VALUE_TYPE(__first),
__lg(__last - __first) * 2,
__comp);
__final_insertion_sort(__first, __last, __comp);
}
}
// stable_sort() and its auxiliary functions.
template <class _RandomAccessIter>
void __inplace_stable_sort(_RandomAccessIter __first,
_RandomAccessIter __last) {
if (__last - __first < 15) {
__insertion_sort(__first, __last);
return;
}
_RandomAccessIter __middle = __first + (__last - __first) / 2;
__inplace_stable_sort(__first, __middle);
__inplace_stable_sort(__middle, __last);
__merge_without_buffer(__first, __middle, __last,
__middle - __first,
__last - __middle);
}
template <class _RandomAccessIter, class _Compare>
void __inplace_stable_sort(_RandomAccessIter __first,
_RandomAccessIter __last, _Compare __comp) {
if (__last - __first < 15) {
__insertion_sort(__first, __last, __comp);
return;
}
_RandomAccessIter __middle = __first + (__last - __first) / 2;
__inplace_stable_sort(__first, __middle, __comp);
__inplace_stable_sort(__middle, __last, __comp);
__merge_without_buffer(__first, __middle, __last,
__middle - __first,
__last - __middle,
__comp);
}
template <class _RandomAccessIter1, class _RandomAccessIter2,
class _Distance>
void __merge_sort_loop(_RandomAccessIter1 __first,
_RandomAccessIter1 __last,
_RandomAccessIter2 __result, _Distance __step_size) {
_Distance __two_step = 2 * __step_size;
while (__last - __first >= __two_step) {
__result = merge(__first, __first + __step_size,
__first + __step_size, __first + __two_step,
__result);
__first += __two_step;
}
__step_size = min(_Distance(__last - __first), __step_size);
merge(__first, __first + __step_size, __first + __step_size, __last,
__result);
}
template <class _RandomAccessIter1, class _RandomAccessIter2,
class _Distance, class _Compare>
void __merge_sort_loop(_RandomAccessIter1 __first,
_RandomAccessIter1 __last,
_RandomAccessIter2 __result, _Distance __step_size,
_Compare __comp) {
_Distance __two_step = 2 * __step_size;
while (__last - __first >= __two_step) {
__result = merge(__first, __first + __step_size,
__first + __step_size, __first + __two_step,
__result,
__comp);
__first += __two_step;
}
__step_size = min(_Distance(__last - __first), __step_size);
merge(__first, __first + __step_size,
__first + __step_size, __last,
__result,
__comp);
}
const int __stl_chunk_size = 7;
template <class _RandomAccessIter, class _Distance>
void __chunk_insertion_sort(_RandomAccessIter __first,
_RandomAccessIter __last, _Distance __chunk_size)
{
while (__last - __first >= __chunk_size) {
__insertion_sort(__first, __first + __chunk_size);
__first += __chunk_size;
}
__insertion_sort(__first, __last);
}
template <class _RandomAccessIter, class _Distance, class _Compare>
void __chunk_insertion_sort(_RandomAccessIter __first,
_RandomAccessIter __last,
_Distance __chunk_size, _Compare __comp)
{
while (__last - __first >= __chunk_size) {
__insertion_sort(__first, __first + __chunk_size, __comp);
__first += __chunk_size;
}
__insertion_sort(__first, __last, __comp);
}
template <class _RandomAccessIter, class _Pointer, class _Distance>
void __merge_sort_with_buffer(_RandomAccessIter __first,
_RandomAccessIter __last,
_Pointer __buffer, _Distance*) {
_Distance __len = __last - __first;
_Pointer __buffer_last = __buffer + __len;
_Distance __step_size = __stl_chunk_size;
__chunk_insertion_sort(__first, __last, __step_size);
while (__step_size < __len) {
__merge_sort_loop(__first, __last, __buffer, __step_size);
__step_size *= 2;
__merge_sort_loop(__buffer, __buffer_last, __first, __step_size);
__step_size *= 2;
}
}
template <class _RandomAccessIter, class _Pointer, class _Distance,
class _Compare>
void __merge_sort_with_buffer(_RandomAccessIter __first,
_RandomAccessIter __last, _Pointer __buffer,
_Distance*, _Compare __comp) {
_Distance __len = __last - __first;
_Pointer __buffer_last = __buffer + __len;
_Distance __step_size = __stl_chunk_size;
__chunk_insertion_sort(__first, __last, __step_size, __comp);
while (__step_size < __len) {
__merge_sort_loop(__first, __last, __buffer, __step_size, __comp);
__step_size *= 2;
__merge_sort_loop(__buffer, __buffer_last, __first, __step_size, __comp);
__step_size *= 2;
}
}
template <class _RandomAccessIter, class _Pointer, class _Distance>
void __stable_sort_adaptive(_RandomAccessIter __first,
_RandomAccessIter __last, _Pointer __buffer,
_Distance __buffer_size) {
_Distance __len = (__last - __first + 1) / 2;
_RandomAccessIter __middle = __first + __len;
if (__len > __buffer_size) {
__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size);
__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size);
}
else {
__merge_sort_with_buffer(__first, __middle, __buffer, (_Distance*)0);
__merge_sort_with_buffer(__middle, __last, __buffer, (_Distance*)0);
}
__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first),
_Distance(__last - __middle), __buffer, __buffer_size);
}
template <class _RandomAccessIter, class _Pointer, class _Distance,
class _Compare>
void __stable_sort_adaptive(_RandomAccessIter __first,
_RandomAccessIter __last, _Pointer __buffer,
_Distance __buffer_size, _Compare __comp) {
_Distance __len = (__last - __first + 1) / 2;
_RandomAccessIter __middle = __first + __len;
if (__len > __buffer_size) {
__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size,
__comp);
__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size,
__comp);
}
else {
__merge_sort_with_buffer(__first, __middle, __buffer, (_Distance*)0,
__comp);
__merge_sort_with_buffer(__middle, __last, __buffer, (_Distance*)0,
__comp);
}
__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first),
_Distance(__last - __middle), __buffer, __buffer_size,
__comp);
}
template <class _RandomAccessIter, class _Tp, class _Distance>
inline void __stable_sort_aux(_RandomAccessIter __first,
_RandomAccessIter __last, _Tp*, _Distance*) {
_Temporary_buffer<_RandomAccessIter, _Tp> buf(__first, __last);
if (buf.begin() == 0)
__inplace_stable_sort(__first, __last);
else
__stable_sort_adaptive(__first, __last, buf.begin(),
_Distance(buf.size()));
}
template <class _RandomAccessIter, class _Tp, class _Distance, class _Compare>
inline void __stable_sort_aux(_RandomAccessIter __first,
_RandomAccessIter __last, _Tp*, _Distance*,
_Compare __comp) {
_Temporary_buffer<_RandomAccessIter, _Tp> buf(__first, __last);
if (buf.begin() == 0)
__inplace_stable_sort(__first, __last, __comp);
else
__stable_sort_adaptive(__first, __last, buf.begin(),
_Distance(buf.size()),
__comp);
}
template <class _RandomAccessIter>
inline void stable_sort(_RandomAccessIter __first,
_RandomAccessIter __last) {
__stable_sort_aux(__first, __last,
__VALUE_TYPE(__first),
__DISTANCE_TYPE(__first));
}
template <class _RandomAccessIter, class _Compare>
inline void stable_sort(_RandomAccessIter __first,
_RandomAccessIter __last, _Compare __comp) {
__stable_sort_aux(__first, __last,
__VALUE_TYPE(__first),
__DISTANCE_TYPE(__first),
__comp);
}
// partial_sort, partial_sort_copy, and auxiliary functions.
template <class _RandomAccessIter, class _Tp>
void __partial_sort(_RandomAccessIter __first, _RandomAccessIter __middle,
_RandomAccessIter __last, _Tp*) {
make_heap(__first, __middle);
for (_RandomAccessIter __i = __middle; __i < __last; ++__i)
if (*__i < *__first)
__pop_heap(__first, __middle, __i, _Tp(*__i),
__DISTANCE_TYPE(__first));
sort_heap(__first, __middle);
}
template <class _RandomAccessIter>
inline void partial_sort(_RandomAccessIter __first,
_RandomAccessIter __middle,
_RandomAccessIter __last) {
__partial_sort(__first, __middle, __last, __VALUE_TYPE(__first));
}
template <class _RandomAccessIter, class _Tp, class _Compare>
void __partial_sort(_RandomAccessIter __first, _RandomAccessIter __middle,
_RandomAccessIter __last, _Tp*, _Compare __comp) {
make_heap(__first, __middle, __comp);
for (_RandomAccessIter __i = __middle; __i < __last; ++__i)
if (__comp(*__i, *__first))
__pop_heap(__first, __middle, __i, _Tp(*__i), __comp,
__DISTANCE_TYPE(__first));
sort_heap(__first, __middle, __comp);
}
template <class _RandomAccessIter, class _Compare>
inline void partial_sort(_RandomAccessIter __first,
_RandomAccessIter __middle,
_RandomAccessIter __last, _Compare __comp) {
__partial_sort(__first, __middle, __last, __VALUE_TYPE(__first), __comp);
}
template <class _InputIter, class _RandomAccessIter, class _Distance,
class _Tp>
_RandomAccessIter __partial_sort_copy(_InputIter __first,
_InputIter __last,
_RandomAccessIter __result_first,
_RandomAccessIter __result_last,
_Distance*, _Tp*) {
if (__result_first == __result_last) return __result_last;
_RandomAccessIter __result_real_last = __result_first;
while(__first != __last && __result_real_last != __result_last) {
*__result_real_last = *__first;
++__result_real_last;
++__first;
}
make_heap(__result_first, __result_real_last);
while (__first != __last) {
if (*__first < *__result_first)
__adjust_heap(__result_first, _Distance(0),
_Distance(__result_real_last - __result_first),
_Tp(*__first));
++__first;
}
sort_heap(__result_first, __result_real_last);
return __result_real_last;
}
template <class _InputIter, class _RandomAccessIter>
inline _RandomAccessIter
partial_sort_copy(_InputIter __first, _InputIter __last,
_RandomAccessIter __result_first,
_RandomAccessIter __result_last) {
return __partial_sort_copy(__first, __last, __result_first, __result_last,
__DISTANCE_TYPE(__result_first),
__VALUE_TYPE(__first));
}
template <class _InputIter, class _RandomAccessIter, class _Compare,
class _Distance, class _Tp>
_RandomAccessIter __partial_sort_copy(_InputIter __first,
_InputIter __last,
_RandomAccessIter __result_first,
_RandomAccessIter __result_last,
_Compare __comp, _Distance*, _Tp*) {
if (__result_first == __result_last) return __result_last;
_RandomAccessIter __result_real_last = __result_first;
while(__first != __last && __result_real_last != __result_last) {
*__result_real_last = *__first;
++__result_real_last;
++__first;
}
make_heap(__result_first, __result_real_last, __comp);
while (__first != __last) {
if (__comp(*__first, *__result_first))
__adjust_heap(__result_first, _Distance(0),
_Distance(__result_real_last - __result_first),
_Tp(*__first),
__comp);
++__first;
}
sort_heap(__result_first, __result_real_last, __comp);
return __result_real_last;
}
template <class _InputIter, class _RandomAccessIter, class _Compare>
inline _RandomAccessIter
partial_sort_copy(_InputIter __first, _InputIter __last,
_RandomAccessIter __result_first,
_RandomAccessIter __result_last, _Compare __comp) {
return __partial_sort_copy(__first, __last, __result_first, __result_last,
__comp,
__DISTANCE_TYPE(__result_first),
__VALUE_TYPE(__first));
}
// nth_element() and its auxiliary functions.
template <class _RandomAccessIter, class _Tp>
void __nth_element(_RandomAccessIter __first, _RandomAccessIter __nth,
_RandomAccessIter __last, _Tp*) {
while (__last - __first > 3) {
_RandomAccessIter __cut =
__unguarded_partition(__first, __last,
_Tp(__median(*__first,
*(__first + (__last - __first)/2),
*(__last - 1))));
if (__cut <= __nth)
__first = __cut;
else
__last = __cut;
}
__insertion_sort(__first, __last);
}
template <class _RandomAccessIter>
inline void nth_element(_RandomAccessIter __first, _RandomAccessIter __nth,
_RandomAccessIter __last) {
__nth_element(__first, __nth, __last, __VALUE_TYPE(__first));
}
template <class _RandomAccessIter, class _Tp, class _Compare>
void __nth_element(_RandomAccessIter __first, _RandomAccessIter __nth,
_RandomAccessIter __last, _Tp*, _Compare __comp) {
while (__last - __first > 3) {
_RandomAccessIter __cut =
__unguarded_partition(__first, __last,
_Tp(__median(*__first,
*(__first + (__last - __first)/2),
*(__last - 1),
__comp)),
__comp);
if (__cut <= __nth)
__first = __cut;
else
__last = __cut;
}
__insertion_sort(__first, __last, __comp);
}
template <class _RandomAccessIter, class _Compare>
inline void nth_element(_RandomAccessIter __first, _RandomAccessIter __nth,
_RandomAccessIter __last, _Compare __comp) {
__nth_element(__first, __nth, __last, __VALUE_TYPE(__first), __comp);
}
// Binary search (lower_bound, upper_bound, equal_range, binary_search).
template <class _ForwardIter, class _Tp, class _Distance>
_ForwardIter __lower_bound(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val, _Distance*)
{
_Distance __len = 0;
distance(__first, __last, __len);
_Distance __half;
_ForwardIter __middle;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
advance(__middle, __half);
if (*__middle < __val) {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else
__len = __half;
}
return __first;
}
template <class _ForwardIter, class _Tp>
inline _ForwardIter lower_bound(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val) {
return __lower_bound(__first, __last, __val,
__DISTANCE_TYPE(__first));
}
template <class _ForwardIter, class _Tp, class _Compare, class _Distance>
_ForwardIter __lower_bound(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val, _Compare __comp, _Distance*)
{
_Distance __len = 0;
distance(__first, __last, __len);
_Distance __half;
_ForwardIter __middle;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
advance(__middle, __half);
if (__comp(*__middle, __val)) {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else
__len = __half;
}
return __first;
}
template <class _ForwardIter, class _Tp, class _Compare>
inline _ForwardIter lower_bound(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val, _Compare __comp) {
return __lower_bound(__first, __last, __val, __comp,
__DISTANCE_TYPE(__first));
}
template <class _ForwardIter, class _Tp, class _Distance>
_ForwardIter __upper_bound(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val, _Distance*)
{
_Distance __len = 0;
distance(__first, __last, __len);
_Distance __half;
_ForwardIter __middle;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
advance(__middle, __half);
if (__val < *__middle)
__len = __half;
else {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
}
return __first;
}
template <class _ForwardIter, class _Tp>
inline _ForwardIter upper_bound(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val) {
return __upper_bound(__first, __last, __val,
__DISTANCE_TYPE(__first));
}
template <class _ForwardIter, class _Tp, class _Compare, class _Distance>
_ForwardIter __upper_bound(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val, _Compare __comp, _Distance*)
{
_Distance __len = 0;
distance(__first, __last, __len);
_Distance __half;
_ForwardIter __middle;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
advance(__middle, __half);
if (__comp(__val, *__middle))
__len = __half;
else {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
}
return __first;
}
template <class _ForwardIter, class _Tp, class _Compare>
inline _ForwardIter upper_bound(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val, _Compare __comp) {
return __upper_bound(__first, __last, __val, __comp,
__DISTANCE_TYPE(__first));
}
template <class _ForwardIter, class _Tp, class _Distance>
pair<_ForwardIter, _ForwardIter>
__equal_range(_ForwardIter __first, _ForwardIter __last, const _Tp& __val,
_Distance*)
{
_Distance __len = 0;
distance(__first, __last, __len);
_Distance __half;
_ForwardIter __middle, __left, __right;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
advance(__middle, __half);
if (*__middle < __val) {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else if (__val < *__middle)
__len = __half;
else {
__left = lower_bound(__first, __middle, __val);
advance(__first, __len);
__right = upper_bound(++__middle, __first, __val);
return pair<_ForwardIter, _ForwardIter>(__left, __right);
}
}
return pair<_ForwardIter, _ForwardIter>(__first, __first);
}
template <class _ForwardIter, class _Tp>
inline pair<_ForwardIter, _ForwardIter>
equal_range(_ForwardIter __first, _ForwardIter __last, const _Tp& __val) {
return __equal_range(__first, __last, __val,
__DISTANCE_TYPE(__first));
}
template <class _ForwardIter, class _Tp, class _Compare, class _Distance>
pair<_ForwardIter, _ForwardIter>
__equal_range(_ForwardIter __first, _ForwardIter __last, const _Tp& __val,
_Compare __comp, _Distance*)
{
_Distance __len = 0;
distance(__first, __last, __len);
_Distance __half;
_ForwardIter __middle, __left, __right;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
advance(__middle, __half);
if (__comp(*__middle, __val)) {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else if (__comp(__val, *__middle))
__len = __half;
else {
__left = lower_bound(__first, __middle, __val, __comp);
advance(__first, __len);
__right = upper_bound(++__middle, __first, __val, __comp);
return pair<_ForwardIter, _ForwardIter>(__left, __right);
}
}
return pair<_ForwardIter, _ForwardIter>(__first, __first);
}
template <class _ForwardIter, class _Tp, class _Compare>
inline pair<_ForwardIter, _ForwardIter>
equal_range(_ForwardIter __first, _ForwardIter __last, const _Tp& __val,
_Compare __comp) {
return __equal_range(__first, __last, __val, __comp,
__DISTANCE_TYPE(__first));
}
template <class _ForwardIter, class _Tp>
bool binary_search(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val) {
_ForwardIter __i = lower_bound(__first, __last, __val);
return __i != __last && !(__val < *__i);
}
template <class _ForwardIter, class _Tp, class _Compare>
bool binary_search(_ForwardIter __first, _ForwardIter __last,
const _Tp& __val,
_Compare __comp) {
_ForwardIter __i = lower_bound(__first, __last, __val, __comp);
return __i != __last && !__comp(__val, *__i);
}
// merge, with and without an explicitly supplied comparison function.
template <class _InputIter1, class _InputIter2, class _OutputIter>
_OutputIter merge(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result) {
while (__first1 != __last1 && __first2 != __last2) {
if (*__first2 < *__first1) {
*__result = *__first2;
++__first2;
}
else {
*__result = *__first1;
++__first1;
}
++__result;
}
return copy(__first2, __last2, copy(__first1, __last1, __result));
}
template <class _InputIter1, class _InputIter2, class _OutputIter,
class _Compare>
_OutputIter merge(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result, _Compare __comp) {
while (__first1 != __last1 && __first2 != __last2) {
if (__comp(*__first2, *__first1)) {
*__result = *__first2;
++__first2;
}
else {
*__result = *__first1;
++__first1;
}
++__result;
}
return copy(__first2, __last2, copy(__first1, __last1, __result));
}
// inplace_merge and its auxiliary functions.
template <class _BidirectionalIter, class _Distance>
void __merge_without_buffer(_BidirectionalIter __first,
_BidirectionalIter __middle,
_BidirectionalIter __last,
_Distance __len1, _Distance __len2) {
if (__len1 == 0 || __len2 == 0)
return;
if (__len1 + __len2 == 2) {
if (*__middle < *__first)
iter_swap(__first, __middle);
return;
}
_BidirectionalIter __first_cut = __first;
_BidirectionalIter __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2) {
__len11 = __len1 / 2;
advance(__first_cut, __len11);
__second_cut = lower_bound(__middle, __last, *__first_cut);
distance(__middle, __second_cut, __len22);
}
else {
__len22 = __len2 / 2;
advance(__second_cut, __len22);
__first_cut = upper_bound(__first, __middle, *__second_cut);
distance(__first, __first_cut, __len11);
}
_BidirectionalIter __new_middle
= rotate(__first_cut, __middle, __second_cut);
__merge_without_buffer(__first, __first_cut, __new_middle,
__len11, __len22);
__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11,
__len2 - __len22);
}
template <class _BidirectionalIter, class _Distance, class _Compare>
void __merge_without_buffer(_BidirectionalIter __first,
_BidirectionalIter __middle,
_BidirectionalIter __last,
_Distance __len1, _Distance __len2,
_Compare __comp) {
if (__len1 == 0 || __len2 == 0)
return;
if (__len1 + __len2 == 2) {
if (__comp(*__middle, *__first))
iter_swap(__first, __middle);
return;
}
_BidirectionalIter __first_cut = __first;
_BidirectionalIter __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2) {
__len11 = __len1 / 2;
advance(__first_cut, __len11);
__second_cut = lower_bound(__middle, __last, *__first_cut, __comp);
distance(__middle, __second_cut, __len22);
}
else {
__len22 = __len2 / 2;
advance(__second_cut, __len22);
__first_cut = upper_bound(__first, __middle, *__second_cut, __comp);
distance(__first, __first_cut, __len11);
}
_BidirectionalIter __new_middle
= rotate(__first_cut, __middle, __second_cut);
__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22,
__comp);
__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11,
__len2 - __len22, __comp);
}
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _Distance>
_BidirectionalIter1 __rotate_adaptive(_BidirectionalIter1 __first,
_BidirectionalIter1 __middle,
_BidirectionalIter1 __last,
_Distance __len1, _Distance __len2,
_BidirectionalIter2 __buffer,
_Distance __buffer_size) {
_BidirectionalIter2 __buffer_end;
if (__len1 > __len2 && __len2 <= __buffer_size) {
__buffer_end = copy(__middle, __last, __buffer);
copy_backward(__first, __middle, __last);
return copy(__buffer, __buffer_end, __first);
}
else if (__len1 <= __buffer_size) {
__buffer_end = copy(__first, __middle, __buffer);
copy(__middle, __last, __first);
return copy_backward(__buffer, __buffer_end, __last);
}
else
return rotate(__first, __middle, __last);
}
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _BidirectionalIter3>
_BidirectionalIter3 __merge_backward(_BidirectionalIter1 __first1,
_BidirectionalIter1 __last1,
_BidirectionalIter2 __first2,
_BidirectionalIter2 __last2,
_BidirectionalIter3 __result) {
if (__first1 == __last1)
return copy_backward(__first2, __last2, __result);
if (__first2 == __last2)
return copy_backward(__first1, __last1, __result);
--__last1;
--__last2;
while (true) {
if (*__last2 < *__last1) {
*--__result = *__last1;
if (__first1 == __last1)
return copy_backward(__first2, ++__last2, __result);
--__last1;
}
else {
*--__result = *__last2;
if (__first2 == __last2)
return copy_backward(__first1, ++__last1, __result);
--__last2;
}
}
}
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _BidirectionalIter3, class _Compare>
_BidirectionalIter3 __merge_backward(_BidirectionalIter1 __first1,
_BidirectionalIter1 __last1,
_BidirectionalIter2 __first2,
_BidirectionalIter2 __last2,
_BidirectionalIter3 __result,
_Compare __comp) {
if (__first1 == __last1)
return copy_backward(__first2, __last2, __result);
if (__first2 == __last2)
return copy_backward(__first1, __last1, __result);
--__last1;
--__last2;
while (true) {
if (__comp(*__last2, *__last1)) {
*--__result = *__last1;
if (__first1 == __last1)
return copy_backward(__first2, ++__last2, __result);
--__last1;
}
else {
*--__result = *__last2;
if (__first2 == __last2)
return copy_backward(__first1, ++__last1, __result);
--__last2;
}
}
}
template <class _BidirectionalIter, class _Distance, class _Pointer>
void __merge_adaptive(_BidirectionalIter __first,
_BidirectionalIter __middle,
_BidirectionalIter __last,
_Distance __len1, _Distance __len2,
_Pointer __buffer, _Distance __buffer_size) {
if (__len1 <= __len2 && __len1 <= __buffer_size) {
_Pointer __buffer_end = copy(__first, __middle, __buffer);
merge(__buffer, __buffer_end, __middle, __last, __first);
}
else if (__len2 <= __buffer_size) {
_Pointer __buffer_end = copy(__middle, __last, __buffer);
__merge_backward(__first, __middle, __buffer, __buffer_end, __last);
}
else {
_BidirectionalIter __first_cut = __first;
_BidirectionalIter __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2) {
__len11 = __len1 / 2;
advance(__first_cut, __len11);
__second_cut = lower_bound(__middle, __last, *__first_cut);
distance(__middle, __second_cut, __len22);
}
else {
__len22 = __len2 / 2;
advance(__second_cut, __len22);
__first_cut = upper_bound(__first, __middle, *__second_cut);
distance(__first, __first_cut, __len11);
}
_BidirectionalIter __new_middle =
__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11,
__len22, __buffer, __buffer_size);
__merge_adaptive(__first, __first_cut, __new_middle, __len11,
__len22, __buffer, __buffer_size);
__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11,
__len2 - __len22, __buffer, __buffer_size);
}
}
template <class _BidirectionalIter, class _Distance, class _Pointer,
class _Compare>
void __merge_adaptive(_BidirectionalIter __first,
_BidirectionalIter __middle,
_BidirectionalIter __last,
_Distance __len1, _Distance __len2,
_Pointer __buffer, _Distance __buffer_size,
_Compare __comp) {
if (__len1 <= __len2 && __len1 <= __buffer_size) {
_Pointer __buffer_end = copy(__first, __middle, __buffer);
merge(__buffer, __buffer_end, __middle, __last, __first, __comp);
}
else if (__len2 <= __buffer_size) {
_Pointer __buffer_end = copy(__middle, __last, __buffer);
__merge_backward(__first, __middle, __buffer, __buffer_end, __last,
__comp);
}
else {
_BidirectionalIter __first_cut = __first;
_BidirectionalIter __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2) {
__len11 = __len1 / 2;
advance(__first_cut, __len11);
__second_cut = lower_bound(__middle, __last, *__first_cut, __comp);
distance(__middle, __second_cut, __len22);
}
else {
__len22 = __len2 / 2;
advance(__second_cut, __len22);
__first_cut = upper_bound(__first, __middle, *__second_cut, __comp);
distance(__first, __first_cut, __len11);
}
_BidirectionalIter __new_middle =
__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11,
__len22, __buffer, __buffer_size);
__merge_adaptive(__first, __first_cut, __new_middle, __len11,
__len22, __buffer, __buffer_size, __comp);
__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11,
__len2 - __len22, __buffer, __buffer_size, __comp);
}
}
template <class _BidirectionalIter, class _Tp, class _Distance>
inline void __inplace_merge_aux(_BidirectionalIter __first,
_BidirectionalIter __middle,
_BidirectionalIter __last, _Tp*, _Distance*) {
_Distance __len1 = 0;
distance(__first, __middle, __len1);
_Distance __len2 = 0;
distance(__middle, __last, __len2);
_Temporary_buffer<_BidirectionalIter, _Tp> __buf(__first, __last);
if (__buf.begin() == 0)
__merge_without_buffer(__first, __middle, __last, __len1, __len2);
else
__merge_adaptive(__first, __middle, __last, __len1, __len2,
__buf.begin(), _Distance(__buf.size()));
}
template <class _BidirectionalIter, class _Tp,
class _Distance, class _Compare>
inline void __inplace_merge_aux(_BidirectionalIter __first,
_BidirectionalIter __middle,
_BidirectionalIter __last, _Tp*, _Distance*,
_Compare __comp) {
_Distance __len1 = 0;
distance(__first, __middle, __len1);
_Distance __len2 = 0;
distance(__middle, __last, __len2);
_Temporary_buffer<_BidirectionalIter, _Tp> __buf(__first, __last);
if (__buf.begin() == 0)
__merge_without_buffer(__first, __middle, __last, __len1, __len2, __comp);
else
__merge_adaptive(__first, __middle, __last, __len1, __len2,
__buf.begin(), _Distance(__buf.size()),
__comp);
}
template <class _BidirectionalIter>
inline void inplace_merge(_BidirectionalIter __first,
_BidirectionalIter __middle,
_BidirectionalIter __last) {
if (__first == __middle || __middle == __last)
return;
__inplace_merge_aux(__first, __middle, __last,
__VALUE_TYPE(__first), __DISTANCE_TYPE(__first));
}
template <class _BidirectionalIter, class _Compare>
inline void inplace_merge(_BidirectionalIter __first,
_BidirectionalIter __middle,
_BidirectionalIter __last, _Compare __comp) {
if (__first == __middle || __middle == __last)
return;
__inplace_merge_aux(__first, __middle, __last,
__VALUE_TYPE(__first), __DISTANCE_TYPE(__first),
__comp);
}
// Set algorithms: includes, set_union, set_intersection, set_difference,
// set_symmetric_difference. All of these algorithms have the precondition
// that their input ranges are sorted and the postcondition that their output
// ranges are sorted.
template <class _InputIter1, class _InputIter2>
bool includes(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2) {
while (__first1 != __last1 && __first2 != __last2)
if (*__first2 < *__first1)
return false;
else if(*__first1 < *__first2)
++__first1;
else
++__first1, ++__first2;
return __first2 == __last2;
}
template <class _InputIter1, class _InputIter2, class _Compare>
bool includes(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2, _Compare __comp) {
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first2, *__first1))
return false;
else if(__comp(*__first1, *__first2))
++__first1;
else
++__first1, ++__first2;
return __first2 == __last2;
}
template <class _InputIter1, class _InputIter2, class _OutputIter>
_OutputIter set_union(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result) {
while (__first1 != __last1 && __first2 != __last2) {
if (*__first1 < *__first2) {
*__result = *__first1;
++__first1;
}
else if (*__first2 < *__first1) {
*__result = *__first2;
++__first2;
}
else {
*__result = *__first1;
++__first1;
++__first2;
}
++__result;
}
return copy(__first2, __last2, copy(__first1, __last1, __result));
}
template <class _InputIter1, class _InputIter2, class _OutputIter,
class _Compare>
_OutputIter set_union(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result, _Compare __comp) {
while (__first1 != __last1 && __first2 != __last2) {
if (__comp(*__first1, *__first2)) {
*__result = *__first1;
++__first1;
}
else if (__comp(*__first2, *__first1)) {
*__result = *__first2;
++__first2;
}
else {
*__result = *__first1;
++__first1;
++__first2;
}
++__result;
}
return copy(__first2, __last2, copy(__first1, __last1, __result));
}
template <class _InputIter1, class _InputIter2, class _OutputIter>
_OutputIter set_intersection(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result) {
while (__first1 != __last1 && __first2 != __last2)
if (*__first1 < *__first2)
++__first1;
else if (*__first2 < *__first1)
++__first2;
else {
*__result = *__first1;
++__first1;
++__first2;
++__result;
}
return __result;
}
template <class _InputIter1, class _InputIter2, class _OutputIter,
class _Compare>
_OutputIter set_intersection(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result, _Compare __comp) {
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first1, *__first2))
++__first1;
else if (__comp(*__first2, *__first1))
++__first2;
else {
*__result = *__first1;
++__first1;
++__first2;
++__result;
}
return __result;
}
template <class _InputIter1, class _InputIter2, class _OutputIter>
_OutputIter set_difference(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result) {
while (__first1 != __last1 && __first2 != __last2)
if (*__first1 < *__first2) {
*__result = *__first1;
++__first1;
++__result;
}
else if (*__first2 < *__first1)
++__first2;
else {
++__first1;
++__first2;
}
return copy(__first1, __last1, __result);
}
template <class _InputIter1, class _InputIter2, class _OutputIter,
class _Compare>
_OutputIter set_difference(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result, _Compare __comp) {
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first1, *__first2)) {
*__result = *__first1;
++__first1;
++__result;
}
else if (__comp(*__first2, *__first1))
++__first2;
else {
++__first1;
++__first2;
}
return copy(__first1, __last1, __result);
}
template <class _InputIter1, class _InputIter2, class _OutputIter>
_OutputIter
set_symmetric_difference(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result) {
while (__first1 != __last1 && __first2 != __last2)
if (*__first1 < *__first2) {
*__result = *__first1;
++__first1;
++__result;
}
else if (*__first2 < *__first1) {
*__result = *__first2;
++__first2;
++__result;
}
else {
++__first1;
++__first2;
}
return copy(__first2, __last2, copy(__first1, __last1, __result));
}
template <class _InputIter1, class _InputIter2, class _OutputIter,
class _Compare>
_OutputIter
set_symmetric_difference(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_OutputIter __result,
_Compare __comp) {
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first1, *__first2)) {
*__result = *__first1;
++__first1;
++__result;
}
else if (__comp(*__first2, *__first1)) {
*__result = *__first2;
++__first2;
++__result;
}
else {
++__first1;
++__first2;
}
return copy(__first2, __last2, copy(__first1, __last1, __result));
}
// min_element and max_element, with and without an explicitly supplied
// comparison function.
template <class _ForwardIter>
_ForwardIter max_element(_ForwardIter __first, _ForwardIter __last) {
if (__first == __last) return __first;
_ForwardIter __result = __first;
while (++__first != __last)
if (*__result < *__first)
__result = __first;
return __result;
}
template <class _ForwardIter, class _Compare>
_ForwardIter max_element(_ForwardIter __first, _ForwardIter __last,
_Compare __comp) {
if (__first == __last) return __first;
_ForwardIter __result = __first;
while (++__first != __last)
if (__comp(*__result, *__first)) __result = __first;
return __result;
}
template <class _ForwardIter>
_ForwardIter min_element(_ForwardIter __first, _ForwardIter __last) {
if (__first == __last) return __first;
_ForwardIter __result = __first;
while (++__first != __last)
if (*__first < *__result)
__result = __first;
return __result;
}
template <class _ForwardIter, class _Compare>
_ForwardIter min_element(_ForwardIter __first, _ForwardIter __last,
_Compare __comp) {
if (__first == __last) return __first;
_ForwardIter __result = __first;
while (++__first != __last)
if (__comp(*__first, *__result))
__result = __first;
return __result;
}
// next_permutation and prev_permutation, with and without an explicitly
// supplied comparison function.
template <class _BidirectionalIter>
bool next_permutation(_BidirectionalIter __first, _BidirectionalIter __last) {
if (__first == __last)
return false;
_BidirectionalIter __i = __first;
++__i;
if (__i == __last)
return false;
__i = __last;
--__i;
for(;;) {
_BidirectionalIter __ii = __i;
--__i;
if (*__i < *__ii) {
_BidirectionalIter __j = __last;
while (!(*__i < *--__j))
{}
iter_swap(__i, __j);
reverse(__ii, __last);
return true;
}
if (__i == __first) {
reverse(__first, __last);
return false;
}
}
}
template <class _BidirectionalIter, class _Compare>
bool next_permutation(_BidirectionalIter __first, _BidirectionalIter __last,
_Compare __comp) {
if (__first == __last)
return false;
_BidirectionalIter __i = __first;
++__i;
if (__i == __last)
return false;
__i = __last;
--__i;
for(;;) {
_BidirectionalIter __ii = __i;
--__i;
if (__comp(*__i, *__ii)) {
_BidirectionalIter __j = __last;
while (!__comp(*__i, *--__j))
{}
iter_swap(__i, __j);
reverse(__ii, __last);
return true;
}
if (__i == __first) {
reverse(__first, __last);
return false;
}
}
}
template <class _BidirectionalIter>
bool prev_permutation(_BidirectionalIter __first, _BidirectionalIter __last) {
if (__first == __last)
return false;
_BidirectionalIter __i = __first;
++__i;
if (__i == __last)
return false;
__i = __last;
--__i;
for(;;) {
_BidirectionalIter __ii = __i;
--__i;
if (*__ii < *__i) {
_BidirectionalIter __j = __last;
while (!(*--__j < *__i))
{}
iter_swap(__i, __j);
reverse(__ii, __last);
return true;
}
if (__i == __first) {
reverse(__first, __last);
return false;
}
}
}
template <class _BidirectionalIter, class _Compare>
bool prev_permutation(_BidirectionalIter __first, _BidirectionalIter __last,
_Compare __comp) {
if (__first == __last)
return false;
_BidirectionalIter __i = __first;
++__i;
if (__i == __last)
return false;
__i = __last;
--__i;
for(;;) {
_BidirectionalIter __ii = __i;
--__i;
if (__comp(*__ii, *__i)) {
_BidirectionalIter __j = __last;
while (!__comp(*--__j, *__i))
{}
iter_swap(__i, __j);
reverse(__ii, __last);
return true;
}
if (__i == __first) {
reverse(__first, __last);
return false;
}
}
}
// find_first_of, with and without an explicitly supplied comparison function.
template <class _InputIter, class _ForwardIter>
_InputIter find_first_of(_InputIter __first1, _InputIter __last1,
_ForwardIter __first2, _ForwardIter __last2)
{
for ( ; __first1 != __last1; ++__first1)
for (_ForwardIter __iter = __first2; __iter != __last2; ++__iter)
if (*__first1 == *__iter)
return __first1;
return __last1;
}
template <class _InputIter, class _ForwardIter, class _BinaryPredicate>
_InputIter find_first_of(_InputIter __first1, _InputIter __last1,
_ForwardIter __first2, _ForwardIter __last2,
_BinaryPredicate __comp)
{
for ( ; __first1 != __last1; ++__first1)
for (_ForwardIter __iter = __first2; __iter != __last2; ++__iter)
if (__comp(*__first1, *__iter))
return __first1;
return __last1;
}
// find_end, with and without an explicitly supplied comparison function.
// Search [first2, last2) as a subsequence in [first1, last1), and return
// the *last* possible match. Note that find_end for bidirectional iterators
// is much faster than for forward iterators.
// find_end for forward iterators.
template <class _ForwardIter1, class _ForwardIter2>
_ForwardIter1 __find_end(_ForwardIter1 __first1, _ForwardIter1 __last1,
_ForwardIter2 __first2, _ForwardIter2 __last2,
forward_iterator_tag, forward_iterator_tag)
{
if (__first2 == __last2)
return __last1;
else {
_ForwardIter1 __result = __last1;
while (1) {
_ForwardIter1 __new_result
= search(__first1, __last1, __first2, __last2);
if (__new_result == __last1)
return __result;
else {
__result = __new_result;
__first1 = __new_result;
++__first1;
}
}
}
}
template <class _ForwardIter1, class _ForwardIter2,
class _BinaryPredicate>
_ForwardIter1 __find_end(_ForwardIter1 __first1, _ForwardIter1 __last1,
_ForwardIter2 __first2, _ForwardIter2 __last2,
forward_iterator_tag, forward_iterator_tag,
_BinaryPredicate __comp)
{
if (__first2 == __last2)
return __last1;
else {
_ForwardIter1 __result = __last1;
while (1) {
_ForwardIter1 __new_result
= search(__first1, __last1, __first2, __last2, __comp);
if (__new_result == __last1)
return __result;
else {
__result = __new_result;
__first1 = __new_result;
++__first1;
}
}
}
}
// find_end for bidirectional iterators. Requires partial specialization.
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _BidirectionalIter1, class _BidirectionalIter2>
_BidirectionalIter1
__find_end(_BidirectionalIter1 __first1, _BidirectionalIter1 __last1,
_BidirectionalIter2 __first2, _BidirectionalIter2 __last2,
bidirectional_iterator_tag, bidirectional_iterator_tag)
{
typedef reverse_iterator<_BidirectionalIter1> _RevIter1;
typedef reverse_iterator<_BidirectionalIter2> _RevIter2;
_RevIter1 __rlast1(__first1);
_RevIter2 __rlast2(__first2);
_RevIter1 __rresult = search(_RevIter1(__last1), __rlast1,
_RevIter2(__last2), __rlast2);
if (__rresult == __rlast1)
return __last1;
else {
_BidirectionalIter1 __result = __rresult.base();
advance(__result, -distance(__first2, __last2));
return __result;
}
}
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _BinaryPredicate>
_BidirectionalIter1
__find_end(_BidirectionalIter1 __first1, _BidirectionalIter1 __last1,
_BidirectionalIter2 __first2, _BidirectionalIter2 __last2,
bidirectional_iterator_tag, bidirectional_iterator_tag,
_BinaryPredicate __comp)
{
typedef reverse_iterator<_BidirectionalIter1> _RevIter1;
typedef reverse_iterator<_BidirectionalIter2> _RevIter2;
_RevIter1 __rlast1(__first1);
_RevIter2 __rlast2(__first2);
_RevIter1 __rresult = search(_RevIter1(__last1), __rlast1,
_RevIter2(__last2), __rlast2,
__comp);
if (__rresult == __rlast1)
return __last1;
else {
_BidirectionalIter1 __result = __rresult.base();
advance(__result, -distance(__first2, __last2));
return __result;
}
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// Dispatching functions for find_end.
template <class _ForwardIter1, class _ForwardIter2>
inline _ForwardIter1
find_end(_ForwardIter1 __first1, _ForwardIter1 __last1,
_ForwardIter2 __first2, _ForwardIter2 __last2)
{
return __find_end(__first1, __last1, __first2, __last2,
__ITERATOR_CATEGORY(__first1),
__ITERATOR_CATEGORY(__first2));
}
template <class _ForwardIter1, class _ForwardIter2,
class _BinaryPredicate>
inline _ForwardIter1
find_end(_ForwardIter1 __first1, _ForwardIter1 __last1,
_ForwardIter2 __first2, _ForwardIter2 __last2,
_BinaryPredicate __comp)
{
return __find_end(__first1, __last1, __first2, __last2,
__ITERATOR_CATEGORY(__first1),
__ITERATOR_CATEGORY(__first2),
__comp);
}
// is_heap, a predicate testing whether or not a range is
// a heap. This function is an extension, not part of the C++
// standard.
template <class _RandomAccessIter, class _Distance>
bool __is_heap(_RandomAccessIter __first, _Distance __n)
{
_Distance __parent = 0;
for (_Distance __child = 1; __child < __n; ++__child) {
if (__first[__parent] < __first[__child])
return false;
if ((__child & 1) == 0)
++__parent;
}
return true;
}
template <class _RandomAccessIter, class _Distance, class _StrictWeakOrdering>
bool __is_heap(_RandomAccessIter __first, _StrictWeakOrdering __comp,
_Distance __n)
{
_Distance __parent = 0;
for (_Distance __child = 1; __child < __n; ++__child) {
if (__comp(__first[__parent], __first[__child]))
return false;
if ((__child & 1) == 0)
++__parent;
}
return true;
}
template <class _RandomAccessIter>
inline bool is_heap(_RandomAccessIter __first, _RandomAccessIter __last)
{
return __is_heap(__first, __last - __first);
}
template <class _RandomAccessIter, class _StrictWeakOrdering>
inline bool is_heap(_RandomAccessIter __first, _RandomAccessIter __last,
_StrictWeakOrdering __comp)
{
return __is_heap(__first, __comp, __last - __first);
}
// is_sorted, a predicated testing whether a range is sorted in
// nondescending order. This is an extension, not part of the C++
// standard.
template <class _ForwardIter>
bool is_sorted(_ForwardIter __first, _ForwardIter __last)
{
if (__first == __last)
return true;
_ForwardIter __next = __first;
for (++__next; __next != __last; __first = __next, ++__next) {
if (*__next < *__first)
return false;
}
return true;
}
template <class _ForwardIter, class _StrictWeakOrdering>
bool is_sorted(_ForwardIter __first, _ForwardIter __last,
_StrictWeakOrdering __comp)
{
if (__first == __last)
return true;
_ForwardIter __next = __first;
for (++__next; __next != __last; __first = __next, ++__next) {
if (__comp(*__next, *__first))
return false;
}
return true;
}
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1209
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_ALGO_H */
// Local Variables:
// mode:C++
// End: