mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-13 07:34:28 +08:00
818ab71a41
From-SVN: r232055
242 lines
6.6 KiB
C
242 lines
6.6 KiB
C
/* Generic helper function for repacking arrays.
|
|
Copyright (C) 2003-2016 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
extern void internal_unpack (gfc_array_char *, const void *);
|
|
export_proto(internal_unpack);
|
|
|
|
void
|
|
internal_unpack (gfc_array_char * d, const void * s)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type stride[GFC_MAX_DIMENSIONS];
|
|
index_type stride0;
|
|
index_type dim;
|
|
index_type dsize;
|
|
char *dest;
|
|
const char *src;
|
|
int n;
|
|
int size;
|
|
int type_size;
|
|
|
|
dest = d->base_addr;
|
|
/* This check may be redundant, but do it anyway. */
|
|
if (s == dest || !s)
|
|
return;
|
|
|
|
type_size = GFC_DTYPE_TYPE_SIZE (d);
|
|
switch (type_size)
|
|
{
|
|
case GFC_DTYPE_INTEGER_1:
|
|
case GFC_DTYPE_LOGICAL_1:
|
|
case GFC_DTYPE_DERIVED_1:
|
|
internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s);
|
|
return;
|
|
|
|
case GFC_DTYPE_INTEGER_2:
|
|
case GFC_DTYPE_LOGICAL_2:
|
|
internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
|
|
return;
|
|
|
|
case GFC_DTYPE_INTEGER_4:
|
|
case GFC_DTYPE_LOGICAL_4:
|
|
internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
|
|
return;
|
|
|
|
case GFC_DTYPE_INTEGER_8:
|
|
case GFC_DTYPE_LOGICAL_8:
|
|
internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
|
|
return;
|
|
|
|
#if defined (HAVE_GFC_INTEGER_16)
|
|
case GFC_DTYPE_INTEGER_16:
|
|
case GFC_DTYPE_LOGICAL_16:
|
|
internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
|
|
return;
|
|
#endif
|
|
|
|
case GFC_DTYPE_REAL_4:
|
|
internal_unpack_r4 ((gfc_array_r4 *) d, (const GFC_REAL_4 *) s);
|
|
return;
|
|
|
|
case GFC_DTYPE_REAL_8:
|
|
internal_unpack_r8 ((gfc_array_r8 *) d, (const GFC_REAL_8 *) s);
|
|
return;
|
|
|
|
/* FIXME: This here is a hack, which will have to be removed when
|
|
the array descriptor is reworked. Currently, we don't store the
|
|
kind value for the type, but only the size. Because on targets with
|
|
__float128, we have sizeof(logn double) == sizeof(__float128),
|
|
we cannot discriminate here and have to fall back to the generic
|
|
handling (which is suboptimal). */
|
|
#if !defined(GFC_REAL_16_IS_FLOAT128)
|
|
# if defined(HAVE_GFC_REAL_10)
|
|
case GFC_DTYPE_REAL_10:
|
|
internal_unpack_r10 ((gfc_array_r10 *) d, (const GFC_REAL_10 *) s);
|
|
return;
|
|
# endif
|
|
|
|
# if defined(HAVE_GFC_REAL_16)
|
|
case GFC_DTYPE_REAL_16:
|
|
internal_unpack_r16 ((gfc_array_r16 *) d, (const GFC_REAL_16 *) s);
|
|
return;
|
|
# endif
|
|
#endif
|
|
|
|
case GFC_DTYPE_COMPLEX_4:
|
|
internal_unpack_c4 ((gfc_array_c4 *)d, (const GFC_COMPLEX_4 *)s);
|
|
return;
|
|
|
|
case GFC_DTYPE_COMPLEX_8:
|
|
internal_unpack_c8 ((gfc_array_c8 *)d, (const GFC_COMPLEX_8 *)s);
|
|
return;
|
|
|
|
/* FIXME: This here is a hack, which will have to be removed when
|
|
the array descriptor is reworked. Currently, we don't store the
|
|
kind value for the type, but only the size. Because on targets with
|
|
__float128, we have sizeof(logn double) == sizeof(__float128),
|
|
we cannot discriminate here and have to fall back to the generic
|
|
handling (which is suboptimal). */
|
|
#if !defined(GFC_REAL_16_IS_FLOAT128)
|
|
# if defined(HAVE_GFC_COMPLEX_10)
|
|
case GFC_DTYPE_COMPLEX_10:
|
|
internal_unpack_c10 ((gfc_array_c10 *) d, (const GFC_COMPLEX_10 *) s);
|
|
return;
|
|
# endif
|
|
|
|
# if defined(HAVE_GFC_COMPLEX_16)
|
|
case GFC_DTYPE_COMPLEX_16:
|
|
internal_unpack_c16 ((gfc_array_c16 *) d, (const GFC_COMPLEX_16 *) s);
|
|
return;
|
|
# endif
|
|
#endif
|
|
|
|
case GFC_DTYPE_DERIVED_2:
|
|
if (GFC_UNALIGNED_2(d->base_addr) || GFC_UNALIGNED_2(s))
|
|
break;
|
|
else
|
|
{
|
|
internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
|
|
return;
|
|
}
|
|
case GFC_DTYPE_DERIVED_4:
|
|
if (GFC_UNALIGNED_4(d->base_addr) || GFC_UNALIGNED_4(s))
|
|
break;
|
|
else
|
|
{
|
|
internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
|
|
return;
|
|
}
|
|
|
|
case GFC_DTYPE_DERIVED_8:
|
|
if (GFC_UNALIGNED_8(d->base_addr) || GFC_UNALIGNED_8(s))
|
|
break;
|
|
else
|
|
{
|
|
internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
|
|
return;
|
|
}
|
|
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
case GFC_DTYPE_DERIVED_16:
|
|
if (GFC_UNALIGNED_16(d->base_addr) || GFC_UNALIGNED_16(s))
|
|
break;
|
|
else
|
|
{
|
|
internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
size = GFC_DESCRIPTOR_SIZE (d);
|
|
|
|
dim = GFC_DESCRIPTOR_RANK (d);
|
|
dsize = 1;
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
stride[n] = GFC_DESCRIPTOR_STRIDE(d,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(d,n);
|
|
if (extent[n] <= 0)
|
|
return;
|
|
|
|
if (dsize == stride[n])
|
|
dsize *= extent[n];
|
|
else
|
|
dsize = 0;
|
|
}
|
|
|
|
src = s;
|
|
|
|
if (dsize != 0)
|
|
{
|
|
memcpy (dest, src, dsize * size);
|
|
return;
|
|
}
|
|
|
|
stride0 = stride[0] * size;
|
|
|
|
while (dest)
|
|
{
|
|
/* Copy the data. */
|
|
memcpy (dest, src, size);
|
|
/* Advance to the next element. */
|
|
src += size;
|
|
dest += stride0;
|
|
count[0]++;
|
|
/* Advance to the next source element. */
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
dest -= stride[n] * extent[n] * size;
|
|
n++;
|
|
if (n == dim)
|
|
{
|
|
dest = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
dest += stride[n] * size;
|
|
}
|
|
}
|
|
}
|
|
}
|