gcc/libstdc++-v3/bits/locale_facets.tcc
Russell Davidson 7f1063f8ec istream_extractor_arith.cc: Patch.
2000-06-19  Russell Davidson  <russell@ehess.cnrs-mrs.fr>

	* testsuite/27_io/istream_extractor_arith.cc: Patch.
	* bits/locale_factets.tcc: Tweak.

From-SVN: r34612
2000-06-20 01:24:46 +00:00

1615 lines
53 KiB
C++

// Locale support -*- C++ -*-
// Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Warning: this file is not meant for user inclusion. Use <locale>.
#ifndef _CPP_BITS_LOCFACETS_TCC
#define _CPP_BITS_LOCFACETS_TCC 1
#include <bits/std_cerrno.h>
#include <bits/std_cstdlib.h> // For strof, strtold
#include <bits/std_limits.h> // For numeric_limits
#include <bits/std_vector.h>
#include <bits/std_memory.h> // For auto_ptr
#include <bits/sbuf_iter.h> // For streambuf_iterators
#include <bits/std_cctype.h> // For isspace
namespace std
{
template<typename _Facet>
locale
locale::combine(const locale& __other)
{
locale __copy(*this);
__copy._M_impl->_M_replace_facet(__other._M_impl, &_Facet::id);
__copy._M_impl->_M_has_name = false;
return __copy;
}
template<typename _CharT, typename _Traits, typename _Alloc>
bool
locale::operator()(const basic_string<_CharT,_Traits,_Alloc>& __s1,
const basic_string<_CharT,_Traits,_Alloc>& __s2) const
{
// XXX should not need to qualify here.
// typedef collate<_CharT> __collate_type;
typedef std::collate<_CharT> __collate_type;
const __collate_type* __fcoll = &use_facet<__collate_type>(*this);
return (__fcoll->compare(__s1.data(), __s1.data() + __s1.length(),
__s2.data(), __s2.data() + __s2.length()) < 0);
}
template<typename _Facet>
const _Facet&
use_facet(const locale& __loc)
{
const locale::facet* __fp = (const _Facet*)0; // check derivation
locale::id& __id = _Facet::id; // check member id
size_t __i = __id._M_index;
const locale::_Impl* __tmp = __loc._M_impl;
if (__id._M_index >= __loc._M_impl->_M_facets->size()
|| (__fp = (*(__tmp->_M_facets))[__i]) == 0)
return _Use_facet_failure_handler<_Facet>(__loc);
return static_cast<const _Facet&>(*__fp);
}
template<typename _Facet>
bool
has_facet(const locale& __loc) throw()
{
typedef locale::_Impl::__vec_facet __vec_facet;
locale::id& __id = _Facet::id; // check member id
size_t __i = __id._M_index;
__vec_facet* __tmpv = __loc._M_impl->_M_facets;
return (__i < __tmpv->size() && (*__tmpv)[__i] != 0);
}
// __match_parallel
// matches input __s against a set of __ntargs strings in __targets,
// placing in __matches a vector of indices into __targets which
// match, and in __remain the number of such matches. If it hits
// end of sequence before it minimizes the set, sets __eof.
// Empty strings are never matched.
template<typename _InIter, typename _CharT>
_InIter
__match_parallel(_InIter __s, _InIter __end, int __ntargs,
const basic_string<_CharT>* __targets,
int* __matches, int& __remain, bool& __eof)
{
typedef basic_string<_CharT> __string_type;
__eof = false;
for (int __ti = 0; __ti < __ntargs; ++__ti)
__matches[__ti] = __ti;
__remain = __ntargs;
size_t __pos = 0;
do
{
{
int __ti = 0;
for (;__ti < __remain &&
__pos == __targets[__matches[__ti]].size(); ++__ti)
{ }
if (__ti == __remain)
{
if (__pos == 0) __remain = 0;
return __s;
}
}
if (__s == __end)
__eof = true;
bool __matched = false;
for (int __ti = 0; __ti < __remain; )
{
const __string_type& __target = __targets[__matches[__ti]];
if (__pos < __target.size())
{
if (__eof || __target[__pos] != *__s)
{
__matches[__ti] = __matches[--__remain];
continue;
}
__matched = true;
}
++__ti;
}
if (__matched)
{
++__s;
++__pos;
}
for (int __ti = 0; __ti < __remain;)
{
if (__pos > __targets[__matches[__ti]].size())
{
__matches[__ti] = __matches[--__remain];
continue;
}
++__ti;
}
}
while (__remain);
return __s;
}
template<typename _CharT>
locale::id ctype<_CharT>::id;
template<typename _InternT, typename _ExternT, typename _StateT>
locale::id codecvt<_InternT,_ExternT,_StateT>::id;
template<typename _CharT>
int _Format_cache<_CharT>::_S_pword_ix;
template<typename _CharT>
const char _Format_cache<_CharT>::
_S_literals[] = "-+xX0123456789abcdef0123456789ABCDEF";
template<typename _CharT>
_Format_cache<_CharT>::_Format_cache()
: _M_valid(true), _M_use_grouping(false)
{ }
template<>
_Format_cache<char>::_Format_cache()
: _M_valid(true),
_M_decimal_point('.'), _M_thousands_sep(','),
_M_truename("true"), _M_falsename("false"), _M_use_grouping(false)
{ }
#ifdef _GLIBCPP_USE_WCHAR_T
template<>
_Format_cache<wchar_t>::_Format_cache()
: _M_valid(true),
_M_decimal_point(L'.'), _M_thousands_sep(L','),
_M_truename(L"true"), _M_falsename(L"false"), _M_use_grouping(false)
{ }
#endif
template<typename _CharT>
void
_Format_cache<_CharT>::_M_populate(ios_base& __io)
{
locale __loc = __io.getloc ();
numpunct<_CharT> const& __np = use_facet<numpunct<_CharT> >(__loc);
_M_truename = __np.truename();
_M_falsename = __np.falsename();
_M_thousands_sep = __np.thousands_sep();
_M_decimal_point = __np.decimal_point();
_M_grouping = __np.grouping();
_M_use_grouping = _M_grouping.size() != 0 && _M_grouping.data()[0] != 0;
_M_valid = true;
}
// This function is always called via a pointer installed in
// an ios_base by ios_base::register_callback.
template<typename _CharT>
void
_Format_cache<_CharT>::
_S_callback(ios_base::event __ev, ios_base& __ios, int __ix) throw()
{
void*& __p = __ios.pword(__ix);
switch (__ev)
{
case ios_base::erase_event:
delete static_cast<_Format_cache<_CharT>*> (__p); __p = 0;
break;
case ios_base::copyfmt_event:
// If just stored zero, the callback would get registered again.
try {
__p = new _Format_cache<_CharT>;
}
catch(...) {
}
break;
case ios_base::imbue_event:
static_cast<_Format_cache<_CharT>*>(__p)->_M_valid = false;
break;
}
}
template<typename _CharT>
_Format_cache<_CharT>*
_Format_cache<_CharT>::_S_get(ios_base& __ios)
{
if (!_S_pword_ix)
_S_pword_ix = ios_base::xalloc(); // XXX MT
void*& __p = __ios.pword(_S_pword_ix);
// XXX What if pword fails? must check failbit, throw.
if (__p == 0) // XXX MT? maybe sentry takes care of it
{
auto_ptr<_Format_cache<_CharT> > __ap(new _Format_cache<_CharT>);
__ios.register_callback(&_Format_cache<_CharT>::_S_callback,
_S_pword_ix);
__p = __ap.release();
}
_Format_cache<_CharT>* __ncp = static_cast<_Format_cache<_CharT>*>(__p);
if (!__ncp->_M_valid)
__ncp->_M_populate(__ios);
return __ncp;
}
template<typename _CharT, typename _InIter>
locale::id num_get<_CharT, _InIter>::id;
// This member function takes an (w)istreambuf_iterator object and
// parses it into a generic char array suitable for parsing with
// strto[l,ll,f,d]. The thought was to encapsulate the conversion
// into this one function, and thus the num_get::do_get member
// functions can just adjust for the type of the overloaded
// argument and process the char array returned from _M_extract.
// Other things were also considered, including a fused
// multiply-add loop that would obviate the need for any call to
// strto... at all: however, it would b e a bit of a pain, because
// you'd have to be able to return either floating or integral
// types, etc etc. The current approach seems to be smack dab in
// the middle between an unoptimized approach using sscanf, and
// some kind of hyper-optimized approach alluded to above.
// XXX
// Need to do partial specialization to account for differences
// between character sets. For char, this is pretty
// straightforward, but for wchar_t, the conversion to a plain-jane
// char type is a bit more involved.
template<typename _CharT, typename _InIter>
void
num_get<_CharT, _InIter>::
_M_extract(iter_type /*__beg*/, iter_type /*__end*/, ios_base& /*__io*/,
ios_base::iostate& /*__err*/, char* /*__xtrc*/,
int& /*__base*/, bool /*__fp*/) const
{
// XXX Not currently done: need to expand upon char version below.
}
template<>
void
num_get<char, istreambuf_iterator<char> >::
_M_extract(istreambuf_iterator<char> __beg,
istreambuf_iterator<char> __end, ios_base& __io,
ios_base::iostate& __err, char* __xtrc,
int& __base, bool __fp) const
{
typedef _Format_cache<char> __cache_type;
// Prepare for possible failure
__xtrc[0] = '\0';
// Stage 1: determine a conversion specifier.
ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield;
if (__basefield == ios_base::dec)
__base = 10;
else if (__basefield == ios_base::oct)
__base = 8;
else if (__basefield == ios_base::hex)
__base = 16;
else
__base = 0;
// As far as I can tell, bases other than 10 are not available for
// floating point types
if (__fp)
__base = 10;
// Stage 2: extract characters.
__cache_type const* __fmt = __cache_type::_S_get(__io);
bool __valid = __beg != __end;
// Fail quickly if !__valid
if (!__valid)
{
__err |= (ios_base::eofbit | ios_base::failbit);
return;
}
// Acceptable formats for numbers here are based on 22.2.3.1
string __grp;
int __sep_pos = 0;
int __pos = 0;
const char* __lits = __fmt->_S_literals;
char __c = *__beg;
// Check first for sign
bool __testsign = false;
if ((__c == __lits[__cache_type::_S_minus])
|| (__c == __lits[__cache_type::_S_plus]))
{
__xtrc[__pos++] = __c;
++__beg;
__testsign = true;
// whitespace may follow a sign
while ((__beg != __end) && (isspace(*__beg)))
++__beg;
// There had better be more to come...
if (__beg == __end)
{
__xtrc[__pos] = '\0';
__err |= (ios_base::eofbit | ios_base::failbit);
return;
}
}
bool __testzero = false; // Has there been a leading zero?
// Now check if first character is a zero
__c = *__beg;
if (__c == __lits[__cache_type::_S_digits])
{
__testzero = true;
++__beg;
// We have to check for __beg == __end here. If so,
// a plain '0' (possibly with a sign) can be got rid of now
if (__beg == __end)
{
__xtrc[__pos++] = __c;
__xtrc[__pos] = '\0';
__err |= ios_base::eofbit;
return;
}
// Figure out base for integer types only
// Based on Table 55 of 22.2.2.1.2
if (!__fp && __base != 10 && __base != 8)
{
// Here, __base == 0 or 16
__c = *__beg;
if ((__c == __lits[__cache_type::_S_x])
|| (__c == __lits[__cache_type::_S_X]))
{
++__beg;
__base = 16;
__testzero = false; // "0x" is not a leading zero
}
else
__base = 8;
}
// Remove any more leading zeros
while (__beg != __end)
{
if (*__beg == __lits[__cache_type::_S_digits])
{
++__beg;
__testzero = true;
}
else
break;
}
}
else if (__base == 0) // 1st character is not zero
__base = 10;
// We now seek "units", i.e. digits and thousands separators.
// We may need to know if anything is found here. A leading zero
// (removed by now) would count.
bool __testunits = __testzero;
while (__valid && __beg != __end)
{
__valid = false;
__c = *__beg;
const char* __p = strchr(__fmt->_S_literals, __c);
// NB: strchr returns true for __c == 0x0
if (__p && __c)
{
// Try first for acceptable digit; record it if found
if ((__p >= &__lits[__cache_type::_S_digits]
&& __p < &__lits[__cache_type::_S_digits + __base])
|| (__p >= &__lits[__cache_type::_S_udigits]
&& __p < &__lits[__cache_type::_S_udigits + __base]))
{
__xtrc[__pos++] = __c;
++__sep_pos;
__valid = true;
__testunits = true;
}
}
else if (__c == __fmt->_M_thousands_sep
&& __fmt->_M_use_grouping)
{
// NB: Thousands separator at the beginning of a string
// is a no-no, as is two consecutive thousands
// separators
if (__sep_pos)
{
__grp += static_cast<char>(__sep_pos);
__sep_pos = 0;
__valid = true;
}
else
__err |= ios_base::failbit;
}
if (__valid)
++__beg;
}
// Digit grouping is checked. If _M_groupings() doesn't
// match, then get very very upset, and set failbit.
if (__fmt->_M_use_grouping && !__grp.empty())
{
// Add the ending grouping
__grp += static_cast<char>(__sep_pos);
// __grp is parsed L to R
// 1,222,444 == __grp of "/1/3/3"
// __fmt->_M_grouping is parsed R to L
// 1,222,444 == __fmt->_M_grouping of "/3" == "/3/3/3"
int __i = 0;
int __j = 0;
const int __len = __fmt->_M_grouping.size();
int __n = __grp.size();
bool __test = true;
// Parsed number groupings have to match the
// numpunct::grouping string exactly, starting at the
// right-most point of the parsed sequence of elements ...
while (__test && __i < __n - 1)
for (__j = 0; __test && __j < __len && __i < __n - 1; ++__j,++__i)
__test &= __fmt->_M_grouping[__j] == __grp[__n - __i - 1];
// ... but the last parsed grouping can be <= numpunct
// grouping.
__j == __len ? __j = 0 : __j;
__test &= __fmt->_M_grouping[__j] >= __grp[__n - __i - 1];
if (!__test)
{
__err |= ios_base::failbit;
__xtrc[__pos] = '\0';
if (__beg == __end)
__err |= ios_base::eofbit;
return;
}
}
// If there was nothing but zeros, put one in the output string
if (__testzero && (__pos == 0 || (__pos == 1 && __testsign)))
__xtrc[__pos++] = __lits[__cache_type::_S_digits];
// That's it for integer types. Remaining code is for floating point
if (__fp && __beg != __end)
{
__c = *__beg;
// Check first for decimal point. There MUST be one if
// __testunits is false.
bool __testdec = false; // Is there a decimal point
// with digits following it?
if (__c == __fmt->_M_decimal_point)
{
__xtrc[__pos++] = '.';
++__beg;
// Now we get any digits after the decimal point
// There MUST be some if __testunits is false.
while (__beg != __end)
{
__c = *__beg;
const char* __p = strchr(__fmt->_S_literals, __c);
if ((__p >= &__lits[__cache_type::_S_digits]
&& __p < &__lits[__cache_type::_S_digits + __base])
|| (__p >= &__lits[__cache_type::_S_udigits]
&& __p < &__lits[__cache_type::_S_udigits + __base]))
{
__xtrc[__pos++] = __c;
++__beg;
__testdec = true;
}
else
break;
}
}
if (!__testunits && !__testdec) // Ill formed
{
__err |= ios_base::failbit;
__xtrc[__pos] = '\0';
if (__beg == __end)
__err |= ios_base::eofbit;
return;
}
// Now we may find an exponent
if (__beg != __end)
{
__c = *__beg;
if ((__c == __lits[__cache_type::_S_ee])
|| (__c == __lits[__cache_type::_S_Ee]))
{
__xtrc[__pos++] = __c;
++__beg;
// Now there may be a sign
if (__beg != __end)
{
__c = *__beg;
if ((__c == __lits[__cache_type::_S_minus])
|| (__c == __lits[__cache_type::_S_plus]))
{
__xtrc[__pos++] = __c;
++__beg;
// whitespace may follow a sign
while ((__beg != __end) && (isspace(*__beg)))
++__beg;
}
}
// And now there must be some digits
if (__beg == __end)
{
__xtrc[__pos] = '\0';
__err |= (ios_base::eofbit | ios_base::failbit);
return;
}
while (__beg != __end)
{
__c = *__beg;
const char* __p = strchr(__fmt->_S_literals, __c);
if ((__p >= &__lits[__cache_type::_S_digits]
&& __p < &__lits[__cache_type::_S_digits + __base])
|| (__p >= &__lits[__cache_type::_S_udigits]
&& __p < &__lits[__cache_type::_S_udigits + __base]))
{
__xtrc[__pos++] = __c;
++__beg;
}
else
break;
}
}
}
// Finally, that's it for floating point
}
// Finish up
__xtrc[__pos] = '\0';
if (__beg == __end)
__err |= ios_base::eofbit;
}
// NB: This is an unresolved library defect #17
// _GLIBCPP_RESOLVE_LIB_DEFECTS
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, bool& __v) const
{
// Parse bool values as long
if (!(__io.flags() & ios_base::boolalpha))
{
// NB: We can't just call do_get(long) here, as it might
// refer to a derived class.
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
long __l = strtol(__xtrc, &__sanity, __base);
if (!(__err & ios_base::failbit)
&& __l <= 1
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0)
__v = __l;
else
__err |= ios_base::failbit;
}
// Parse bool values as alphanumeric
else
{
typedef _Format_cache<char_type> __fcache_type;
__fcache_type* __fmt = __fcache_type::_S_get(__io);
const char_type* __true = __fmt->_M_truename.c_str();
const char_type* __false = __fmt->_M_falsename.c_str();
const size_t __truelen = __traits_type::length(__true) - 1;
const size_t __falselen = __traits_type::length(__false) - 1;
for (size_t __pos = 0; __beg != __end; ++__pos)
{
char_type __c = *__beg++;
bool __testf = __c == __false[__pos];
bool __testt = __c == __true[__pos];
if (!(__testf || __testt))
{
__err |= ios_base::failbit;
break;
}
else if (__testf && __pos == __falselen)
{
__v = 0;
break;
}
else if (__testt && __pos == __truelen)
{
__v = 1;
break;
}
}
if (__beg == __end)
__err |= ios_base::eofbit;
}
return __beg;
}
#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, short& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
long __l = strtol(__xtrc, &__sanity, __base);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0
&& __l >= SHRT_MIN && __l <= SHRT_MAX)
__v = static_cast<short>(__l);
else
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, int& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32] = {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
long __l = strtol(__xtrc, &__sanity, __base);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0
&& __l >= INT_MIN && __l <= INT_MAX)
__v = static_cast<int>(__l);
else
__err |= ios_base::failbit;
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
long __l = strtol(__xtrc, &__sanity, __base);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0)
__v = __l;
else
__err |= ios_base::failbit;
return __beg;
}
#ifdef _GLIBCPP_USE_LONG_LONG
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long long& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
long long __ll = strtoll(__xtrc, &__sanity, __base);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0)
__v = __ll;
else
__err |= ios_base::failbit;
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned short& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
unsigned long __ul = strtoul(__xtrc, &__sanity, __base);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0
&& __ul <= USHRT_MAX)
__v = static_cast<unsigned short>(__ul);
else
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned int& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
unsigned long __ul = strtoul(__xtrc, &__sanity, __base);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0
&& __ul <= UINT_MAX)
__v = static_cast<unsigned int>(__ul);
else
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned long& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32] = {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
unsigned long __ul = strtoul(__xtrc, &__sanity, __base);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0)
__v = __ul;
else
__err |= ios_base::failbit;
return __beg;
}
#ifdef _GLIBCPP_USE_LONG_LONG
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned long long& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
unsigned long long __ull = strtoull(__xtrc, &__sanity, __base);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0)
__v = __ull;
else
__err |= ios_base::failbit;
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, float& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 256 for
// floating-point types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, true);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
#ifdef _GLIBCPP_HAVE_STRTOF
float __f = strtof(__xtrc, &__sanity);
#else
float __f = static_cast<float>(strtod(__xtrc, &__sanity));
#endif
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0)
__v = __f;
else
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, double& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 256 for
// floating-point types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, true);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
double __d = strtod(__xtrc, &__sanity);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0)
__v = __d;
else
__err |= ios_base::failbit;
return __beg;
}
#if defined(_GLIBCPP_HAVE_STRTOLD) && !defined(__hpux)
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long double& __v) const
{
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 256 for
// floating-point types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, true);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
long double __ld = strtold(__xtrc, &__sanity);
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0)
__v = __ld;
else
__err |= ios_base::failbit;
return __beg;
}
#else
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long double& __v) const
{
// Stage 1: extract
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, true);
// Stage 2: determine a conversion specifier.
ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield;
const char* __conv;
if (__basefield == ios_base::oct)
__conv = "%Lo";
else if (__basefield == ios_base::hex)
__conv = "%LX";
else if (__basefield == 0)
__conv = "%Li";
else
__conv = "%Lg";
// Stage 3: store results.
long double __ld;
int __p = sscanf(__xtrc, __conv, &__ld);
if (__p
&& static_cast<__traits_type::int_type>(__p) != __traits_type::eof())
__v = __ld;
else
__err |= ios_base::failbit;
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, void*& __v) const
{
// Prepare for hex formatted input
typedef ios_base::fmtflags fmtflags;
fmtflags __fmt = __io.flags();
fmtflags __fmtmask = ~(ios_base::showpos | ios_base::basefield
| ios_base::uppercase | ios_base::internal);
__io.flags(__fmt & __fmtmask | (ios_base::hex | ios_base::showbase));
// Stage 1: extract and determine the conversion specifier.
// Assuming leading zeros eliminated, thus the size of 32 for
// integral types.
char __xtrc[32]= {'\0'};
int __base;
_M_extract(__beg, __end, __io, __err, __xtrc, __base, false);
// Stage 2: convert and store results.
char* __sanity;
errno = 0;
void* __vp = reinterpret_cast<void*>(strtoul(__xtrc, &__sanity, __base));
if (!(__err & ios_base::failbit)
&& __sanity != __xtrc && *__sanity == '\0' && errno == 0)
__v = __vp;
else
__err |= ios_base::failbit;
// Reset from hex formatted input
__io.flags(__fmt);
return __beg;
}
template <typename _CharT, typename _OutIter>
locale::id num_put<_CharT, _OutIter>::id;
// _S_fill is specialized for ostreambuf_iterator, random access iterator.
template <typename _CharT, typename _OutIter>
inline _OutIter
_S_fill(_OutIter __s, _CharT __fill, int __padding);
template <typename _CharT, typename _RaIter>
_RaIter
_S_fill(_RaIter __s, _CharT __fill, int __padding,
random_access_iterator_tag)
{
fill_n(__s, __fill);
return __s + __padding;
}
template <typename _CharT, typename _OutIter, typename _Tag>
_OutIter
_S_fill(_OutIter __s, _CharT __fill, int __padding, _Tag)
{
while (--__padding >= 0) { *__s = __fill; ++__s; }
return __s;
}
template <typename _CharT, typename _OutIter>
inline _OutIter
_S_fill(_OutIter __s, _CharT __fill, int __padding)
{
return _S_fill(__s, __fill, __padding,
iterator_traits<_OutIter>::iterator_category());
}
template <typename _CharT, typename _OutIter>
_OutIter
_S_pad_numeric(_OutIter __s, ios_base::fmtflags __flags,
_CharT __fill, int __width, _CharT const* __first,
_CharT const* __middle, _CharT const* __last)
{
int __padding = __width - (__last - __first);
if (__padding < 0)
__padding = 0;
ios_base::fmtflags __aflags = __flags & ios_base::adjustfield;
bool __testfield = __padding == 0 || __aflags == ios_base::left
|| __aflags == ios_base::internal;
// This was needlessly complicated.
if (__first != __middle)
{
if (!__testfield)
{
_S_fill(__s, __fill, __padding);
__padding = 0;
}
copy(__first, __middle, __s);
}
_OutIter __s2 = __s;
if (__padding && __aflags != ios_base::left)
{
_S_fill(__s2, __fill, __padding);
__padding = 0;
}
_OutIter __s3 = copy(__middle, __last, __s2);
if (__padding)
_S_fill(__s3, __fill, __padding);
return __s3;
}
template <typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const
{
const _Format_cache<_CharT>* __fmt = _Format_cache<_CharT>::_S_get(__io);
ios_base::fmtflags __flags = __io.flags();
if ((__flags & ios_base::boolalpha) == 0)
{
unsigned long __uv = __v;
return _S_format(__s, __io, __fill, false, __uv);
}
else
{
const char_type* __first;
const char_type* __last;
if (__v)
{
__first = __fmt->_M_truename.data();
__last = __first + __fmt->_M_truename.size();
}
else
{
__first = __fmt->_M_falsename.data();
__last = __first + __fmt->_M_falsename.size();
}
copy(__first, __last, __s);
}
return __s;
}
// _S_group_digits inserts "group separator" characters into an array
// of characters. It's recursive, one iteration per group. It moves
// the characters in the buffer this way: "xxxx12345" -> "12,345xxx".
// Call this only with __grouping != __grend.
template <typename _CharT>
_CharT*
_S_group_digits(_CharT* __s, _CharT __grsep, char const* __grouping,
char const* __grend, _CharT const* __first,
_CharT const* __last)
{
if (__last - __first > *__grouping)
{
__s = _S_group_digits(__s, __grsep,
(__grouping + 1 == __grend ? __grouping : __grouping + 1),
__grend, __first, __last - *__grouping);
__first = __last - *__grouping;
*__s++ = __grsep;
}
do
{
*__s++ = *__first++;
}
while (__first != __last);
return __s;
}
template <typename _CharT, typename _OutIter, typename _ValueT>
_OutIter
_S_format(_OutIter __s, ios_base& __io, _CharT __fill, bool __neg,
_ValueT __v)
{
// Leave room for "+/-," "0x," and commas.
const long _M_room = numeric_limits<_ValueT>::digits10 * 2 + 4;
_CharT __digits[_M_room];
_CharT* __front = __digits + _M_room;
ios_base::fmtflags __flags = __io.flags();
const _Format_cache<_CharT>* __fmt = _Format_cache<_CharT>::_S_get(__io);
char const* __table = __fmt->_S_literals + __fmt->_S_digits;
ios_base::fmtflags __basefield = (__flags & __io.basefield);
_CharT* __sign_end = __front;
if (__basefield == ios_base::hex)
{
if (__flags & ios_base::uppercase)
__table += 16; // use ABCDEF
do
*--__front = __table[__v & 15];
while ((__v >>= 4) != 0);
__sign_end = __front;
if (__flags & ios_base::showbase)
{
*--__front = __fmt->_S_literals[__fmt->_S_x +
((__flags & ios_base::uppercase) ? 1 : 0)];
*--__front = __table[0];
}
}
else if (__basefield == ios_base::oct)
{
do
*--__front = __table[__v & 7];
while ((__v >>= 3) != 0);
if (__flags & ios_base::showbase
&& static_cast<char>(*__front) != __table[0])
*--__front = __table[0];
__sign_end = __front;
}
else
{
// NB: This is _lots_ faster than using ldiv.
do
*--__front = __table[__v % 10];
while ((__v /= 10) != 0);
__sign_end = __front;
// NB: ios_base:hex || ios_base::oct assumed to be unsigned.
if (__neg || (__flags & ios_base::showpos))
*--__front = __fmt->_S_literals[__fmt->_S_plus - __neg];
}
// XXX should specialize!
if (!__fmt->_M_use_grouping && !__io.width())
return copy(__front, __digits + _M_room, __s);
if (!__fmt->_M_use_grouping)
return _S_pad_numeric(__s, __flags, __fill, __io.width(0),
__front, __sign_end, __digits + _M_room);
_CharT* __p = __digits;
while (__front < __sign_end)
*__p++ = *__front++;
const char* __gr = __fmt->_M_grouping.data();
__front = _S_group_digits(__p, __fmt->_M_thousands_sep, __gr,
__gr + __fmt->_M_grouping.size(), __sign_end, __digits + _M_room);
return _S_pad_numeric(__s, __flags, __fill, __io.width(0),
__digits, __p, __front);
}
template <typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const
{
unsigned long __uv = __v;
bool __neg = false;
if (__v < 0)
{
__neg = true;
__uv = -__uv;
}
return _S_format(__s, __io, __fill, __neg, __uv);
}
template <typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
unsigned long __v) const
{ return _S_format(__s, __io, __fill, false, __v); }
#ifdef _GLIBCPP_USE_LONG_LONG
template <typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __b, char_type __fill, long long __v) const
{
unsigned long long __uv = __v;
bool __neg = false;
if (__v < 0)
{
__neg = true;
__uv = -__uv;
}
return _S_format(__s, __b, __fill, __neg, __uv);
}
template <typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
unsigned long long __v) const
{ return _S_format(__s, __io, __fill, false, __v); }
#endif
// The following code uses sprintf() to convert floating point
// values for insertion into a stream. The current implementation
// replicates the code in _S_pad_numeric() (in _S_output_float()) in
// order to prevent having to create a "wide" buffer in addition to
// the "narrow" buffer passed to sprintf(). An optimization would be
// to replace sprintf() with code that works directly on a wide
// buffer and then use _S_pad_numeric() to do the padding. It would
// be good to replace sprintf() anyway to avoid accidental buffer
// overruns and to gain back the efficiency that C++ provides by
// knowing up front the type of the values to insert. This
// implementation follows the C++ standard fairly directly as
// outlined in 22.2.2.2 [lib.locale.num.put]
bool
_S_build_float_format(ios_base& __io, char* __fptr, char __modifier,
streamsize __prec)
{
bool __incl_prec = false;
ios_base::fmtflags __flags = __io.flags();
*__fptr++ = '%';
// [22.2.2.2.2] Table 60
if (__flags & ios_base::showpos)
*__fptr++ = '+';
if (__flags & ios_base::showpoint)
*__fptr++ = '#';
// As per [22.2.2.2.2.11]
if (__flags & ios_base::fixed || __prec > 0)
{
*__fptr++ = '.';
*__fptr++ = '*';
__incl_prec = true;
}
if (__modifier)
*__fptr++ = __modifier;
ios_base::fmtflags __fltfield = __flags & ios_base::floatfield;
// [22.2.2.2.2] Table 58
if (__fltfield == ios_base::fixed)
*__fptr++ = 'f';
else if (__fltfield == ios_base::scientific)
*__fptr++ = (__flags & ios_base::uppercase) ? 'E' : 'e';
else
*__fptr++ = (__flags & ios_base::uppercase) ? 'G' : 'g';
*__fptr = '\0';
return __incl_prec;
}
template<typename _CharT,typename _OutIter>
_OutIter
_S_output_float(_OutIter __s, ios_base& __io,_CharT __fill,
const char* __sptr, size_t __slen)
{
size_t __padding = __io.width() > streamsize(__slen) ?
__io.width() -__slen : 0;
locale __loc = __io.getloc();
ctype<_CharT> const& __ct = use_facet<ctype<_CharT> >(__loc);
ios_base::fmtflags __adjfield = __io.flags() & ios_base::adjustfield;
const char* const __eptr = __sptr + __slen;
// [22.2.2.2.2.19] Table 61
if (__adjfield == ios_base::internal)
{
// [22.2.2.2.2.14]; widen()
if (__sptr < __eptr && (*__sptr == '+' || *__sptr == '-'))
{
__s = __ct.widen(*__sptr);
++__s;
++__sptr;
}
__s = _S_fill(__s, __fill, __padding);
__padding = 0;
}
else if (__adjfield != ios_base::left)
{
__s = _S_fill(__s, __fill, __padding);
__padding = 0;
}
// the "C" locale decimal character
char __decimal_point = *(localeconv()->decimal_point);
const _Format_cache<_CharT>* __fmt = _Format_cache<_CharT>::_S_get(__io);
for (; __sptr != __eptr; ++__s, ++__sptr)
{
// [22.2.2.2.2.17]; decimal point conversion
if (*__sptr == __decimal_point)
__s = __fmt->_M_decimal_point;
// [22.2.2.2.2.14]; widen()
else
__s = __ct.widen(*__sptr);
}
// [22.2.2.2.2.19] Table 61
if (__padding)
_S_fill(__s, __fill, __padding);
__io.width(0);
return __s;
}
template <typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
{
const streamsize __max_prec = numeric_limits<double>::digits10 + 3;
streamsize __prec = __io.precision();
// Protect against sprintf() buffer overflows.
if (__prec > __max_prec)
__prec = __max_prec;
// The *2 provides for signs, exp, 'E', and pad.
char __sbuf[__max_prec*2];
size_t __slen;
// Long enough for the max format spec.
char __fbuf[16];
if (_S_build_float_format(__io, __fbuf, 0, __prec))
__slen = sprintf(__sbuf, __fbuf, __prec, __v);
else
__slen = sprintf(__sbuf, __fbuf, __v);
// [22.2.2.2.2] Stages 2-4.
return _S_output_float(__s, __io, __fill, __sbuf, __slen);
}
template <typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
long double __v) const
{
const streamsize __max_prec = numeric_limits<long double>::digits10 + 3;
streamsize __prec = __io.precision();
// Protect against sprintf() buffer overflows.
if (__prec > __max_prec)
__prec = __max_prec;
// The *2 provides for signs, exp, 'E', and pad.
char __sbuf[__max_prec*2];
size_t __slen;
// Long enough for the max format spec.
char __fbuf[16];
// 'L' as per [22.2.2.2.2] Table 59
if ( _S_build_float_format(__io, __fbuf, 'L', __prec))
__slen = sprintf(__sbuf, __fbuf, __prec, __v);
else
__slen = sprintf(__sbuf, __fbuf, __v);
// [22.2.2.2.2] Stages 2-4
return _S_output_float(__s, __io, __fill, __sbuf, __slen);
}
template <typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
const void* __v) const
{
typedef ios_base::fmtflags fmtflags;
fmtflags __fmt = __io.flags();
fmtflags __fmtmask = ~(ios_base::showpos | ios_base::basefield
| ios_base::uppercase | ios_base::internal);
__io.flags(__fmt & __fmtmask | (ios_base::hex | ios_base::showbase));
try {
_OutIter __s2 = _S_format(__s, __io, __fill, false,
reinterpret_cast<unsigned long>(__v));
__io.flags(__fmt);
return __s2;
}
catch (...) {
__io.flags(__fmt);
throw;
}
}
template<typename _CharT>
locale::id numpunct<_CharT>::id;
template<typename _CharT>
locale::id collate<_CharT>::id;
// Support for time_get:
// Note that these partial specializations could, and maybe should,
// be changed to full specializations (by eliminating the _Dummy
// argument) and moved to a .cc file.
template<typename _CharT, typename _Dummy = int>
struct _Weekdaynames;
template<typename _Dummy>
struct _Weekdaynames<char, _Dummy>
{ static const char* const _S_names[14]; };
template<typename _Dummy>
const char* const
_Weekdaynames<char,_Dummy>::_S_names[14] =
{
"Sun", "Sunday",
"Mon", "Monday", "Tue", "Tuesday", "Wed", "Wednesday",
"Thu", "Thursday", "Fri", "Friday", "Sat", "Saturday"
};
#ifdef _GLIBCPP_USE_WCHAR_T
template<typename _Dummy>
struct _Weekdaynames<wchar_t,_Dummy>
{ static const wchar_t* const _S_names[14]; };
template<typename _Dummy>
const wchar_t* const
_Weekdaynames<wchar_t,_Dummy>::_S_names[14] =
{
L"Sun", L"Sunday",
L"Mon", L"Monday", L"Tue", L"Tuesday", L"Wed", L"Wednesday",
L"Thu", L"Thursday", L"Fri", L"Friday", L"Sat", L"Saturday"
};
#endif
template<typename _CharT, typename _Dummy = int>
struct _Monthnames;
template<typename _Dummy>
struct _Monthnames<char,_Dummy>
{ static const char* const _S_names[24]; };
template<typename _Dummy>
const char* const
_Monthnames<char,_Dummy>::_S_names[24] =
{
"Jan", "January", "Feb", "February", "Mar", "March",
"Apr", "April", "May", "May", "Jun", "June",
"Jul", "July", "Aug", "August", "Sep", "September",
"Oct", "October", "Nov", "November", "Dec", "December"
};
#ifdef _GLIBCPP_USE_WCHAR_T
template<typename _Dummy>
struct _Monthnames<wchar_t, _Dummy>
{ static const wchar_t* const _S_names[24]; };
template<typename _Dummy>
const wchar_t* const
_Monthnames<wchar_t,_Dummy>::_S_names[24] =
{
L"Jan", L"January", L"Feb", L"February", L"Mar", L"March",
L"Apr", L"April", L"May", L"May", L"Jun", L"June",
L"Jul", L"July", L"Aug", L"August", L"Sep", L"September",
L"Oct", L"October", L"Nov", L"November", L"Dec", L"December"
};
#endif
template<typename _CharT, typename _InIter>
locale::id time_get<_CharT, _InIter>::id;
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_weekday(iter_type __s, iter_type __end,
ios_base& __io, ios_base::iostate& __err, tm* __t) const
{
if (!_M_daynames)
{
_M_daynames = new basic_string<_CharT>[14];
for (int __i = 0; __i < 14; ++__i)
_M_daynames[__i] = _Weekdaynames<_CharT>::_S_names[__i];
}
bool __at_eof = false;
int __remain = 0;
int __matches[14];
iter_type __out = __match_parallel(__s, __end, 14, _M_daynames,
__matches, __remain, __at_eof);
__err = ios_base::iostate(0);
if (__at_eof) __err |= __io.eofbit;
if (__remain == 1 ||
__remain == 2 && (__matches[0]>>1) == (__matches[1]>>1))
__t->tm_wday = (__matches[0]>>1);
else
__err |= __io.failbit;
return __out;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_monthname(iter_type __s, iter_type __end,
ios_base& __io, ios_base::iostate& __err, tm* __t) const
{
if (!_M_monthnames)
{
_M_monthnames = new basic_string<_CharT>[24];
for (int __i = 0; __i < 24; ++__i)
_M_monthnames[__i] = _Monthnames<_CharT>::_S_names[__i];
}
bool __at_eof = false;
int __remain = 0;
int __matches[24];
iter_type __out = __match_parallel( __s, __end, 24, _M_monthnames,
__matches, __remain, __at_eof);
__err = ios_base::iostate(0);
if (__at_eof) __err |= __io.eofbit;
if (__remain == 1 ||
__remain == 2 && (__matches[0]>>1) == (__matches[1]>>1))
__t->tm_mon = (__matches[0]>>1);
else
__err |= __io.failbit;
return __out;
}
template<typename _CharT, typename _OutIter>
locale::id time_put<_CharT, _OutIter>::id;
template<typename _CharT, typename _InIter>
locale::id money_get<_CharT, _InIter>::id;
template<typename _CharT, typename _OutIter>
locale::id money_put<_CharT, _OutIter>::id;
template<typename _CharT, bool _Intl>
locale::id moneypunct<_CharT,_Intl>::id;
template<typename _CharT>
locale::id messages<_CharT>::id;
template<>
const ctype<char>&
use_facet<const ctype<char> > (const locale& __loc)
{
size_t __i = ctype<char>::id._M_index;
const locale::_Impl* __tmp = __loc._M_impl;
return static_cast<const ctype<char>&>(* (*(__tmp->_M_facets))[__i]);
}
#ifdef _GLIBCPP_USE_WCHAR_T
template<>
const ctype<wchar_t>&
use_facet< const ctype<wchar_t> > (const locale& __loc)
{
size_t __i = ctype<wchar_t>::id._M_index;
const locale::_Impl* __tmp = __loc._M_impl;
return static_cast<const ctype<wchar_t>&>(* (*(__tmp->_M_facets))[__i]);
}
#endif
} // std::
#endif /* _CPP_BITS_LOCFACETS_TCC */
// Local Variables:
// mode:c++
// End: