gcc/libstdc++/stl/alloc.h
Jason Merrill ff893307d0 algo.h, [...]: Update To September 8 SGI release.
* algo.h, algobase.h, alloc.h, bvector.h, deque.h, hashtable.h,
	iterator.h, list.h, rope.h, ropeimpl.h, slist.h, stl_config.h,
	tree.h, vector.h: Update To September 8 SGI release.

From-SVN: r15211
1997-09-09 22:49:45 -04:00

685 lines
20 KiB
C++

/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
#ifndef __ALLOC_H
#define __ALLOC_H
#include <stl_config.h>
#ifdef __SUNPRO_CC
# define __PRIVATE public
// Extra access restrictions prevent us from really making some things
// private.
#else
# define __PRIVATE private
#endif
#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
# define __USE_MALLOC
#endif
// This implements some standard node allocators. These are
// NOT the same as the allocators in the C++ draft standard or in
// in the original STL. They do not encapsulate different pointer
// types; indeed we assume that there is only one pointer type.
// The allocation primitives are intended to allocate individual objects,
// not larger arenas as with the original STL allocators.
#if 0
# include <new>
# define __THROW_BAD_ALLOC throw bad_alloc
#elif !defined(__THROW_BAD_ALLOC)
# include <iostream.h>
# define __THROW_BAD_ALLOC cerr << "out of memory" << endl; exit(1)
#endif
#ifndef __ALLOC
# define __ALLOC alloc
#endif
#ifdef __STL_WIN32THREADS
# include <windows.h>
#endif
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#ifndef __RESTRICT
# define __RESTRICT
#endif
#if !defined(_PTHREADS) && !defined(_NOTHREADS) \
&& !defined(__STL_SGI_THREADS) && !defined(__STL_WIN32THREADS)
# define _NOTHREADS
#endif
# ifdef _PTHREADS
// POSIX Threads
// This is dubious, since this is likely to be a high contention
// lock. Performance may not be adequate.
# include <pthread.h>
# define __NODE_ALLOCATOR_LOCK \
if (threads) pthread_mutex_lock(&__node_allocator_lock)
# define __NODE_ALLOCATOR_UNLOCK \
if (threads) pthread_mutex_unlock(&__node_allocator_lock)
# define __NODE_ALLOCATOR_THREADS true
# define __VOLATILE volatile // Needed at -O3 on SGI
# endif
# ifdef __STL_WIN32THREADS
// The lock needs to be initialized by constructing an allocator
// objects of the right type. We do that here explicitly for alloc.
# define __NODE_ALLOCATOR_LOCK \
EnterCriticalSection(&__node_allocator_lock)
# define __NODE_ALLOCATOR_UNLOCK \
LeaveCriticalSection(&__node_allocator_lock)
# define __NODE_ALLOCATOR_THREADS true
# define __VOLATILE volatile // may not be needed
# endif /* WIN32THREADS */
# ifdef __STL_SGI_THREADS
// This should work without threads, with sproc threads, or with
// pthreads. It is suboptimal in all cases.
// It is unlikely to even compile on nonSGI machines.
extern int __us_rsthread_malloc;
// The above is copied from malloc.h. Including <malloc.h>
// would be cleaner but fails with certain levels of standard
// conformance.
# define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \
{ __lock(&__node_allocator_lock); }
# define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \
{ __unlock(&__node_allocator_lock); }
# define __NODE_ALLOCATOR_THREADS true
# define __VOLATILE volatile // Needed at -O3 on SGI
# endif
# ifdef _NOTHREADS
// Thread-unsafe
# define __NODE_ALLOCATOR_LOCK
# define __NODE_ALLOCATOR_UNLOCK
# define __NODE_ALLOCATOR_THREADS false
# define __VOLATILE
# endif
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif
// Malloc-based allocator. Typically slower than default alloc below.
// Typically thread-safe and more storage efficient.
#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
# ifdef __DECLARE_GLOBALS_HERE
void (* __malloc_alloc_oom_handler)() = 0;
// g++ 2.7.2 does not handle static template data members.
# else
extern void (* __malloc_alloc_oom_handler)();
# endif
#endif
template <int inst>
class __malloc_alloc_template {
private:
static void *oom_malloc(size_t);
static void *oom_realloc(void *, size_t);
#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
static void (* __malloc_alloc_oom_handler)();
#endif
public:
static void * allocate(size_t n)
{
void *result = malloc(n);
if (0 == result) result = oom_malloc(n);
return result;
}
static void deallocate(void *p, size_t /* n */)
{
free(p);
}
static void * reallocate(void *p, size_t /* old_sz */, size_t new_sz)
{
void * result = realloc(p, new_sz);
if (0 == result) result = oom_realloc(p, new_sz);
return result;
}
static void (* set_malloc_handler(void (*f)()))()
{
void (* old)() = __malloc_alloc_oom_handler;
__malloc_alloc_oom_handler = f;
return(old);
}
};
// malloc_alloc out-of-memory handling
#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
template <int inst>
void (* __malloc_alloc_template<inst>::__malloc_alloc_oom_handler)() = 0;
#endif
template <int inst>
void * __malloc_alloc_template<inst>::oom_malloc(size_t n)
{
void (* my_malloc_handler)();
void *result;
for (;;) {
my_malloc_handler = __malloc_alloc_oom_handler;
if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
(*my_malloc_handler)();
result = malloc(n);
if (result) return(result);
}
}
template <int inst>
void * __malloc_alloc_template<inst>::oom_realloc(void *p, size_t n)
{
void (* my_malloc_handler)();
void *result;
for (;;) {
my_malloc_handler = __malloc_alloc_oom_handler;
if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
(*my_malloc_handler)();
result = realloc(p, n);
if (result) return(result);
}
}
typedef __malloc_alloc_template<0> malloc_alloc;
template<class T, class Alloc>
class simple_alloc {
public:
static T *allocate(size_t n)
{ return 0 == n? 0 : (T*) Alloc::allocate(n * sizeof (T)); }
static T *allocate(void)
{ return (T*) Alloc::allocate(sizeof (T)); }
static void deallocate(T *p, size_t n)
{ if (0 != n) Alloc::deallocate(p, n * sizeof (T)); }
static void deallocate(T *p)
{ Alloc::deallocate(p, sizeof (T)); }
};
// Allocator adaptor to check size arguments for debugging.
// Reports errors using assert. Checking can be disabled with
// NDEBUG, but it's far better to just use the underlying allocator
// instead when no checking is desired.
// There is some evidence that this can confuse Purify.
template <class Alloc>
class debug_alloc {
private:
enum {extra = 8}; // Size of space used to store size. Note
// that this must be large enough to preserve
// alignment.
public:
static void * allocate(size_t n)
{
char *result = (char *)Alloc::allocate(n + extra);
*(size_t *)result = n;
return result + extra;
}
static void deallocate(void *p, size_t n)
{
char * real_p = (char *)p - extra;
assert(*(size_t *)real_p == n);
Alloc::deallocate(real_p, n + extra);
}
static void * reallocate(void *p, size_t old_sz, size_t new_sz)
{
char * real_p = (char *)p - extra;
assert(*(size_t *)real_p == old_sz);
char * result = (char *)
Alloc::reallocate(real_p, old_sz + extra, new_sz + extra);
*(size_t *)result = new_sz;
return result + extra;
}
};
# ifdef __USE_MALLOC
typedef malloc_alloc alloc;
typedef malloc_alloc single_client_alloc;
# else
// Default node allocator.
// With a reasonable compiler, this should be roughly as fast as the
// original STL class-specific allocators, but with less fragmentation.
// Default_alloc_template parameters are experimental and MAY
// DISAPPEAR in the future. Clients should just use alloc for now.
//
// Important implementation properties:
// 1. If the client request an object of size > __MAX_BYTES, the resulting
// object will be obtained directly from malloc.
// 2. In all other cases, we allocate an object of size exactly
// ROUND_UP(requested_size). Thus the client has enough size
// information that we can return the object to the proper free list
// without permanently losing part of the object.
//
// The first template parameter specifies whether more than one thread
// may use this allocator. It is safe to allocate an object from
// one instance of a default_alloc and deallocate it with another
// one. This effectively transfers its ownership to the second one.
// This may have undesirable effects on reference locality.
// The second parameter is unreferenced and serves only to allow the
// creation of multiple default_alloc instances.
// Node that containers built on different allocator instances have
// different types, limiting the utility of this approach.
#ifdef __SUNPRO_CC
// breaks if we make these template class members:
enum {__ALIGN = 8};
enum {__MAX_BYTES = 128};
enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
#endif
template <bool threads, int inst>
class __default_alloc_template {
private:
// Really we should use static const int x = N
// instead of enum { x = N }, but few compilers accept the former.
# ifndef __SUNPRO_CC
enum {__ALIGN = 8};
enum {__MAX_BYTES = 128};
enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
# endif
static size_t ROUND_UP(size_t bytes) {
return (((bytes) + __ALIGN-1) & ~(__ALIGN - 1));
}
__PRIVATE:
union obj {
union obj * free_list_link;
char client_data[1]; /* The client sees this. */
};
private:
# ifdef __SUNPRO_CC
static obj * __VOLATILE free_list[];
// Specifying a size results in duplicate def for 4.1
# else
static obj * __VOLATILE free_list[__NFREELISTS];
# endif
static size_t FREELIST_INDEX(size_t bytes) {
return (((bytes) + __ALIGN-1)/__ALIGN - 1);
}
// Returns an object of size n, and optionally adds to size n free list.
static void *refill(size_t n);
// Allocates a chunk for nobjs of size size. nobjs may be reduced
// if it is inconvenient to allocate the requested number.
static char *chunk_alloc(size_t size, int &nobjs);
// Chunk allocation state.
static char *start_free;
static char *end_free;
static size_t heap_size;
# ifdef __STL_SGI_THREADS
static volatile unsigned long __node_allocator_lock;
static void __lock(volatile unsigned long *);
static inline void __unlock(volatile unsigned long *);
# endif
# ifdef _PTHREADS
static pthread_mutex_t __node_allocator_lock;
# endif
# ifdef __STL_WIN32THREADS
static CRITICAL_SECTION __node_allocator_lock;
static bool __node_allocator_lock_initialized;
public:
__default_alloc_template() {
// This assumes the first constructor is called before threads
// are started.
if (!__node_allocator_lock_initialized) {
InitializeCriticalSection(&__node_allocator_lock);
__node_allocator_lock_initialized = true;
}
}
private:
# endif
class lock {
public:
lock() { __NODE_ALLOCATOR_LOCK; }
~lock() { __NODE_ALLOCATOR_UNLOCK; }
};
friend class lock;
public:
/* n must be > 0 */
static void * allocate(size_t n)
{
obj * __VOLATILE * my_free_list;
obj * __RESTRICT result;
if (n > (size_t) __MAX_BYTES) {
return(malloc_alloc::allocate(n));
}
my_free_list = free_list + FREELIST_INDEX(n);
// Acquire the lock here with a constructor call.
// This ensures that it is released in exit or during stack
// unwinding.
# ifndef _NOTHREADS
/*REFERENCED*/
lock lock_instance;
# endif
result = *my_free_list;
if (result == 0) {
void *r = refill(ROUND_UP(n));
return r;
}
*my_free_list = result -> free_list_link;
return (result);
};
/* p may not be 0 */
static void deallocate(void *p, size_t n)
{
obj *q = (obj *)p;
obj * __VOLATILE * my_free_list;
if (n > (size_t) __MAX_BYTES) {
malloc_alloc::deallocate(p, n);
return;
}
my_free_list = free_list + FREELIST_INDEX(n);
// acquire lock
# ifndef _NOTHREADS
/*REFERENCED*/
lock lock_instance;
# endif /* _NOTHREADS */
q -> free_list_link = *my_free_list;
*my_free_list = q;
// lock is released here
}
static void * reallocate(void *p, size_t old_sz, size_t new_sz);
} ;
typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;
typedef __default_alloc_template<false, 0> single_client_alloc;
/* We allocate memory in large chunks in order to avoid fragmenting */
/* the malloc heap too much. */
/* We assume that size is properly aligned. */
/* We hold the allocation lock. */
template <bool threads, int inst>
char*
__default_alloc_template<threads, inst>::chunk_alloc(size_t size, int& nobjs)
{
char * result;
size_t total_bytes = size * nobjs;
size_t bytes_left = end_free - start_free;
if (bytes_left >= total_bytes) {
result = start_free;
start_free += total_bytes;
return(result);
} else if (bytes_left >= size) {
nobjs = bytes_left/size;
total_bytes = size * nobjs;
result = start_free;
start_free += total_bytes;
return(result);
} else {
size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4);
// Try to make use of the left-over piece.
if (bytes_left > 0) {
obj * __VOLATILE * my_free_list =
free_list + FREELIST_INDEX(bytes_left);
((obj *)start_free) -> free_list_link = *my_free_list;
*my_free_list = (obj *)start_free;
}
start_free = (char *)malloc(bytes_to_get);
if (0 == start_free) {
int i;
obj * __VOLATILE * my_free_list, *p;
// Try to make do with what we have. That can't
// hurt. We do not try smaller requests, since that tends
// to result in disaster on multi-process machines.
for (i = size; i <= __MAX_BYTES; i += __ALIGN) {
my_free_list = free_list + FREELIST_INDEX(i);
p = *my_free_list;
if (0 != p) {
*my_free_list = p -> free_list_link;
start_free = (char *)p;
end_free = start_free + i;
return(chunk_alloc(size, nobjs));
// Any leftover piece will eventually make it to the
// right free list.
}
}
end_free = 0; // In case of exception.
start_free = (char *)malloc_alloc::allocate(bytes_to_get);
// This should either throw an
// exception or remedy the situation. Thus we assume it
// succeeded.
}
heap_size += bytes_to_get;
end_free = start_free + bytes_to_get;
return(chunk_alloc(size, nobjs));
}
}
/* Returns an object of size n, and optionally adds to size n free list.*/
/* We assume that n is properly aligned. */
/* We hold the allocation lock. */
template <bool threads, int inst>
void* __default_alloc_template<threads, inst>::refill(size_t n)
{
int nobjs = 20;
char * chunk = chunk_alloc(n, nobjs);
obj * __VOLATILE * my_free_list;
obj * result;
obj * current_obj, * next_obj;
int i;
if (1 == nobjs) return(chunk);
my_free_list = free_list + FREELIST_INDEX(n);
/* Build free list in chunk */
result = (obj *)chunk;
*my_free_list = next_obj = (obj *)(chunk + n);
for (i = 1; ; i++) {
current_obj = next_obj;
next_obj = (obj *)((char *)next_obj + n);
if (nobjs - 1 == i) {
current_obj -> free_list_link = 0;
break;
} else {
current_obj -> free_list_link = next_obj;
}
}
return(result);
}
template <bool threads, int inst>
void*
__default_alloc_template<threads, inst>::reallocate(void *p,
size_t old_sz,
size_t new_sz)
{
void * result;
size_t copy_sz;
if (old_sz > (size_t) __MAX_BYTES && new_sz > (size_t) __MAX_BYTES) {
return(realloc(p, new_sz));
}
if (ROUND_UP(old_sz) == ROUND_UP(new_sz)) return(p);
result = allocate(new_sz);
copy_sz = new_sz > old_sz? old_sz : new_sz;
memcpy(result, p, copy_sz);
deallocate(p, old_sz);
return(result);
}
#ifdef _PTHREADS
template <bool threads, int inst>
pthread_mutex_t
__default_alloc_template<threads, inst>::__node_allocator_lock
= PTHREAD_MUTEX_INITIALIZER;
#endif
#ifdef __STL_WIN32THREADS
template <bool threads, int inst> CRITICAL_SECTION
__default_alloc_template<threads, inst>::__node_allocator_lock;
template <bool threads, int inst> bool
__default_alloc_template<threads, inst>::__node_allocator_lock_initialized
= false;
#endif
#ifdef __STL_SGI_THREADS
#include <mutex.h>
#include <time.h>
// Somewhat generic lock implementations. We need only test-and-set
// and some way to sleep. These should work with both SGI pthreads
// and sproc threads. They may be useful on other systems.
template <bool threads, int inst>
volatile unsigned long
__default_alloc_template<threads, inst>::__node_allocator_lock = 0;
#if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) || defined(__GNUC__)
# define __test_and_set(l,v) test_and_set(l,v)
#endif
template <bool threads, int inst>
void
__default_alloc_template<threads, inst>::__lock(volatile unsigned long *lock)
{
const unsigned low_spin_max = 30; // spin cycles if we suspect uniprocessor
const unsigned high_spin_max = 1000; // spin cycles for multiprocessor
static unsigned spin_max = low_spin_max;
unsigned my_spin_max;
static unsigned last_spins = 0;
unsigned my_last_spins;
static struct timespec ts = {0, 1000};
unsigned junk;
# define __ALLOC_PAUSE junk *= junk; junk *= junk; junk *= junk; junk *= junk
int i;
if (!__test_and_set((unsigned long *)lock, 1)) {
return;
}
my_spin_max = spin_max;
my_last_spins = last_spins;
for (i = 0; i < my_spin_max; i++) {
if (i < my_last_spins/2 || *lock) {
__ALLOC_PAUSE;
continue;
}
if (!__test_and_set((unsigned long *)lock, 1)) {
// got it!
// Spinning worked. Thus we're probably not being scheduled
// against the other process with which we were contending.
// Thus it makes sense to spin longer the next time.
last_spins = i;
spin_max = high_spin_max;
return;
}
}
// We are probably being scheduled against the other process. Sleep.
spin_max = low_spin_max;
for (;;) {
if (!__test_and_set((unsigned long *)lock, 1)) {
return;
}
nanosleep(&ts, 0);
}
}
template <bool threads, int inst>
inline void
__default_alloc_template<threads, inst>::__unlock(volatile unsigned long *lock)
{
# if defined(__GNUC__) && __mips >= 3
asm("sync");
*lock = 0;
# elif __mips >= 3 && (defined (_ABIN32) || defined(_ABI64))
__lock_release(lock);
# else
*lock = 0;
// This is not sufficient on many multiprocessors, since
// writes to protected variables and the lock may be reordered.
# endif
}
#endif
template <bool threads, int inst>
char *__default_alloc_template<threads, inst>::start_free = 0;
template <bool threads, int inst>
char *__default_alloc_template<threads, inst>::end_free = 0;
template <bool threads, int inst>
size_t __default_alloc_template<threads, inst>::heap_size = 0;
template <bool threads, int inst>
__default_alloc_template<threads, inst>::obj * __VOLATILE
__default_alloc_template<threads, inst> ::free_list[
# ifdef __SUNPRO_CC
__NFREELISTS
# else
__default_alloc_template<threads, inst>::__NFREELISTS
# endif
] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
// The 16 zeros are necessary to make version 4.1 of the SunPro
// compiler happy. Otherwise it appears to allocate too little
// space for the array.
# ifdef __STL_WIN32THREADS
// Create one to get critical section initialized.
// We do this onece per file, but only the first constructor
// does anything.
static alloc __node_allocator_dummy_instance;
# endif
#endif /* ! __USE_MALLOC */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif
#undef __PRIVATE
#endif /* __ALLOC_H */