mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-10 10:24:54 +08:00
be26865df1
2002-09-10 Gabriel Dos Reis <gdr@soliton.integrable-solutions.net> * include/bits/stl_vector.h (vector<>): Don't use a name with different meanings before and after re-evaluation in the completed scope. * include/bits/basic_string.h (basic_string<>): Likewise. * include/bits/stl_bvector.h (vector<bool>): Likewise. * include/bits/stl_deque.h (std): Likewise. * include/bits/stl_list.h (list<>): Likewise. * include/bits/stl_tree.h (_Rb_tree<>): Likewise. From-SVN: r57014
1463 lines
43 KiB
C++
1463 lines
43 KiB
C++
// RB tree implementation -*- C++ -*-
|
|
|
|
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1996,1997
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
*/
|
|
|
|
/** @file stl_tree.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef __GLIBCPP_INTERNAL_TREE_H
|
|
#define __GLIBCPP_INTERNAL_TREE_H
|
|
|
|
/*
|
|
|
|
Red-black tree class, designed for use in implementing STL
|
|
associative containers (set, multiset, map, and multimap). The
|
|
insertion and deletion algorithms are based on those in Cormen,
|
|
Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),
|
|
except that
|
|
|
|
(1) the header cell is maintained with links not only to the root
|
|
but also to the leftmost node of the tree, to enable constant time
|
|
begin(), and to the rightmost node of the tree, to enable linear time
|
|
performance when used with the generic set algorithms (set_union,
|
|
etc.);
|
|
|
|
(2) when a node being deleted has two children its successor node is
|
|
relinked into its place, rather than copied, so that the only
|
|
iterators invalidated are those referring to the deleted node.
|
|
|
|
*/
|
|
|
|
#include <bits/stl_algobase.h>
|
|
#include <bits/stl_alloc.h>
|
|
#include <bits/stl_construct.h>
|
|
#include <bits/stl_function.h>
|
|
|
|
namespace std
|
|
{
|
|
enum _Rb_tree_color { _M_red = false, _M_black = true };
|
|
|
|
struct _Rb_tree_node_base
|
|
{
|
|
typedef _Rb_tree_node_base* _Base_ptr;
|
|
|
|
_Rb_tree_color _M_color;
|
|
_Base_ptr _M_parent;
|
|
_Base_ptr _M_left;
|
|
_Base_ptr _M_right;
|
|
|
|
static _Base_ptr
|
|
_S_minimum(_Base_ptr __x)
|
|
{
|
|
while (__x->_M_left != 0) __x = __x->_M_left;
|
|
return __x;
|
|
}
|
|
|
|
static _Base_ptr
|
|
_S_maximum(_Base_ptr __x)
|
|
{
|
|
while (__x->_M_right != 0) __x = __x->_M_right;
|
|
return __x;
|
|
}
|
|
};
|
|
|
|
template<typename _Val>
|
|
struct _Rb_tree_node : public _Rb_tree_node_base
|
|
{
|
|
typedef _Rb_tree_node<_Val>* _Link_type;
|
|
_Val _M_value_field;
|
|
};
|
|
|
|
struct _Rb_tree_base_iterator
|
|
{
|
|
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
|
|
typedef bidirectional_iterator_tag iterator_category;
|
|
typedef ptrdiff_t difference_type;
|
|
|
|
_Base_ptr _M_node;
|
|
|
|
void
|
|
_M_increment()
|
|
{
|
|
if (_M_node->_M_right != 0)
|
|
{
|
|
_M_node = _M_node->_M_right;
|
|
while (_M_node->_M_left != 0)
|
|
_M_node = _M_node->_M_left;
|
|
}
|
|
else
|
|
{
|
|
_Base_ptr __y = _M_node->_M_parent;
|
|
while (_M_node == __y->_M_right)
|
|
{
|
|
_M_node = __y;
|
|
__y = __y->_M_parent;
|
|
}
|
|
if (_M_node->_M_right != __y)
|
|
_M_node = __y;
|
|
}
|
|
}
|
|
|
|
void
|
|
_M_decrement()
|
|
{
|
|
if (_M_node->_M_color == _M_red
|
|
&& _M_node->_M_parent->_M_parent == _M_node)
|
|
_M_node = _M_node->_M_right;
|
|
else if (_M_node->_M_left != 0)
|
|
{
|
|
_Base_ptr __y = _M_node->_M_left;
|
|
while (__y->_M_right != 0)
|
|
__y = __y->_M_right;
|
|
_M_node = __y;
|
|
}
|
|
else
|
|
{
|
|
_Base_ptr __y = _M_node->_M_parent;
|
|
while (_M_node == __y->_M_left)
|
|
{
|
|
_M_node = __y;
|
|
__y = __y->_M_parent;
|
|
}
|
|
_M_node = __y;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename _Val, typename _Ref, typename _Ptr>
|
|
struct _Rb_tree_iterator : public _Rb_tree_base_iterator
|
|
{
|
|
typedef _Val value_type;
|
|
typedef _Ref reference;
|
|
typedef _Ptr pointer;
|
|
typedef _Rb_tree_iterator<_Val, _Val&, _Val*> iterator;
|
|
typedef _Rb_tree_iterator<_Val, const _Val&, const _Val*>
|
|
const_iterator;
|
|
typedef _Rb_tree_iterator<_Val, _Ref, _Ptr> _Self;
|
|
typedef _Rb_tree_node<_Val>* _Link_type;
|
|
|
|
_Rb_tree_iterator() {}
|
|
_Rb_tree_iterator(_Link_type __x) { _M_node = __x; }
|
|
_Rb_tree_iterator(const iterator& __it) { _M_node = __it._M_node; }
|
|
|
|
reference
|
|
operator*() const { return _Link_type(_M_node)->_M_value_field; }
|
|
|
|
pointer
|
|
operator->() const { return &(operator*()); }
|
|
|
|
_Self&
|
|
operator++()
|
|
{
|
|
_M_increment();
|
|
return *this;
|
|
}
|
|
|
|
_Self
|
|
operator++(int)
|
|
{
|
|
_Self __tmp = *this;
|
|
_M_increment();
|
|
return __tmp;
|
|
}
|
|
|
|
_Self&
|
|
operator--() { _M_decrement(); return *this; }
|
|
|
|
_Self
|
|
operator--(int)
|
|
{
|
|
_Self __tmp = *this;
|
|
_M_decrement();
|
|
return __tmp;
|
|
}
|
|
};
|
|
|
|
template<typename _Val, typename _Ref, typename _Ptr>
|
|
inline bool
|
|
operator==(const _Rb_tree_iterator<_Val, _Ref, _Ptr>& __x,
|
|
const _Rb_tree_iterator<_Val, _Ref, _Ptr>& __y)
|
|
{ return __x._M_node == __y._M_node; }
|
|
|
|
template<typename _Val>
|
|
inline bool
|
|
operator==(const _Rb_tree_iterator<_Val, const _Val&, const _Val*>& __x,
|
|
const _Rb_tree_iterator<_Val, _Val&, _Val*>& __y)
|
|
{ return __x._M_node == __y._M_node; }
|
|
|
|
template<typename _Val>
|
|
inline bool
|
|
operator==(const _Rb_tree_iterator<_Val, _Val&, _Val*>& __x,
|
|
const _Rb_tree_iterator<_Val, const _Val&, const _Val*>& __y)
|
|
{ return __x._M_node == __y._M_node; }
|
|
|
|
template<typename _Val, typename _Ref, typename _Ptr>
|
|
inline bool
|
|
operator!=(const _Rb_tree_iterator<_Val, _Ref, _Ptr>& __x,
|
|
const _Rb_tree_iterator<_Val, _Ref, _Ptr>& __y)
|
|
{ return __x._M_node != __y._M_node; }
|
|
|
|
template<typename _Val>
|
|
inline bool
|
|
operator!=(const _Rb_tree_iterator<_Val, const _Val&, const _Val*>& __x,
|
|
const _Rb_tree_iterator<_Val, _Val&, _Val*>& __y)
|
|
{ return __x._M_node != __y._M_node; }
|
|
|
|
template<typename _Val>
|
|
inline bool
|
|
operator!=(const _Rb_tree_iterator<_Val, _Val&, _Val*>& __x,
|
|
const _Rb_tree_iterator<_Val, const _Val&, const _Val*>& __y)
|
|
{ return __x._M_node != __y._M_node; }
|
|
|
|
inline void
|
|
_Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
|
|
{
|
|
_Rb_tree_node_base* __y = __x->_M_right;
|
|
__x->_M_right = __y->_M_left;
|
|
if (__y->_M_left !=0)
|
|
__y->_M_left->_M_parent = __x;
|
|
__y->_M_parent = __x->_M_parent;
|
|
|
|
if (__x == __root)
|
|
__root = __y;
|
|
else if (__x == __x->_M_parent->_M_left)
|
|
__x->_M_parent->_M_left = __y;
|
|
else
|
|
__x->_M_parent->_M_right = __y;
|
|
__y->_M_left = __x;
|
|
__x->_M_parent = __y;
|
|
}
|
|
|
|
inline void
|
|
_Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
|
|
{
|
|
_Rb_tree_node_base* __y = __x->_M_left;
|
|
__x->_M_left = __y->_M_right;
|
|
if (__y->_M_right != 0)
|
|
__y->_M_right->_M_parent = __x;
|
|
__y->_M_parent = __x->_M_parent;
|
|
|
|
if (__x == __root)
|
|
__root = __y;
|
|
else if (__x == __x->_M_parent->_M_right)
|
|
__x->_M_parent->_M_right = __y;
|
|
else
|
|
__x->_M_parent->_M_left = __y;
|
|
__y->_M_right = __x;
|
|
__x->_M_parent = __y;
|
|
}
|
|
|
|
inline void
|
|
_Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
|
|
{
|
|
__x->_M_color = _M_red;
|
|
while (__x != __root
|
|
&& __x->_M_parent->_M_color == _M_red)
|
|
{
|
|
if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left)
|
|
{
|
|
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
|
|
if (__y && __y->_M_color == _M_red)
|
|
{
|
|
__x->_M_parent->_M_color = _M_black;
|
|
__y->_M_color = _M_black;
|
|
__x->_M_parent->_M_parent->_M_color = _M_red;
|
|
__x = __x->_M_parent->_M_parent;
|
|
}
|
|
else
|
|
{
|
|
if (__x == __x->_M_parent->_M_right)
|
|
{
|
|
__x = __x->_M_parent;
|
|
_Rb_tree_rotate_left(__x, __root);
|
|
}
|
|
__x->_M_parent->_M_color = _M_black;
|
|
__x->_M_parent->_M_parent->_M_color = _M_red;
|
|
_Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
|
|
if (__y && __y->_M_color == _M_red)
|
|
{
|
|
__x->_M_parent->_M_color = _M_black;
|
|
__y->_M_color = _M_black;
|
|
__x->_M_parent->_M_parent->_M_color = _M_red;
|
|
__x = __x->_M_parent->_M_parent;
|
|
}
|
|
else
|
|
{
|
|
if (__x == __x->_M_parent->_M_left)
|
|
{
|
|
__x = __x->_M_parent;
|
|
_Rb_tree_rotate_right(__x, __root);
|
|
}
|
|
__x->_M_parent->_M_color = _M_black;
|
|
__x->_M_parent->_M_parent->_M_color = _M_red;
|
|
_Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);
|
|
}
|
|
}
|
|
}
|
|
__root->_M_color = _M_black;
|
|
}
|
|
|
|
inline _Rb_tree_node_base*
|
|
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
|
|
_Rb_tree_node_base*& __root,
|
|
_Rb_tree_node_base*& __leftmost,
|
|
_Rb_tree_node_base*& __rightmost)
|
|
{
|
|
_Rb_tree_node_base* __y = __z;
|
|
_Rb_tree_node_base* __x = 0;
|
|
_Rb_tree_node_base* __x_parent = 0;
|
|
if (__y->_M_left == 0) // __z has at most one non-null child. y == z.
|
|
__x = __y->_M_right; // __x might be null.
|
|
else
|
|
if (__y->_M_right == 0) // __z has exactly one non-null child. y == z.
|
|
__x = __y->_M_left; // __x is not null.
|
|
else
|
|
{
|
|
// __z has two non-null children. Set __y to
|
|
__y = __y->_M_right; // __z's successor. __x might be null.
|
|
while (__y->_M_left != 0)
|
|
__y = __y->_M_left;
|
|
__x = __y->_M_right;
|
|
}
|
|
if (__y != __z)
|
|
{
|
|
// relink y in place of z. y is z's successor
|
|
__z->_M_left->_M_parent = __y;
|
|
__y->_M_left = __z->_M_left;
|
|
if (__y != __z->_M_right)
|
|
{
|
|
__x_parent = __y->_M_parent;
|
|
if (__x) __x->_M_parent = __y->_M_parent;
|
|
__y->_M_parent->_M_left = __x; // __y must be a child of _M_left
|
|
__y->_M_right = __z->_M_right;
|
|
__z->_M_right->_M_parent = __y;
|
|
}
|
|
else
|
|
__x_parent = __y;
|
|
if (__root == __z)
|
|
__root = __y;
|
|
else if (__z->_M_parent->_M_left == __z)
|
|
__z->_M_parent->_M_left = __y;
|
|
else
|
|
__z->_M_parent->_M_right = __y;
|
|
__y->_M_parent = __z->_M_parent;
|
|
std::swap(__y->_M_color, __z->_M_color);
|
|
__y = __z;
|
|
// __y now points to node to be actually deleted
|
|
}
|
|
else
|
|
{ // __y == __z
|
|
__x_parent = __y->_M_parent;
|
|
if (__x)
|
|
__x->_M_parent = __y->_M_parent;
|
|
if (__root == __z)
|
|
__root = __x;
|
|
else
|
|
if (__z->_M_parent->_M_left == __z)
|
|
__z->_M_parent->_M_left = __x;
|
|
else
|
|
__z->_M_parent->_M_right = __x;
|
|
if (__leftmost == __z)
|
|
if (__z->_M_right == 0) // __z->_M_left must be null also
|
|
__leftmost = __z->_M_parent;
|
|
// makes __leftmost == _M_header if __z == __root
|
|
else
|
|
__leftmost = _Rb_tree_node_base::_S_minimum(__x);
|
|
if (__rightmost == __z)
|
|
if (__z->_M_left == 0) // __z->_M_right must be null also
|
|
__rightmost = __z->_M_parent;
|
|
// makes __rightmost == _M_header if __z == __root
|
|
else // __x == __z->_M_left
|
|
__rightmost = _Rb_tree_node_base::_S_maximum(__x);
|
|
}
|
|
if (__y->_M_color != _M_red)
|
|
{
|
|
while (__x != __root && (__x == 0 || __x->_M_color == _M_black))
|
|
if (__x == __x_parent->_M_left)
|
|
{
|
|
_Rb_tree_node_base* __w = __x_parent->_M_right;
|
|
if (__w->_M_color == _M_red)
|
|
{
|
|
__w->_M_color = _M_black;
|
|
__x_parent->_M_color = _M_red;
|
|
_Rb_tree_rotate_left(__x_parent, __root);
|
|
__w = __x_parent->_M_right;
|
|
}
|
|
if ((__w->_M_left == 0 ||
|
|
__w->_M_left->_M_color == _M_black) &&
|
|
(__w->_M_right == 0 ||
|
|
__w->_M_right->_M_color == _M_black))
|
|
{
|
|
__w->_M_color = _M_red;
|
|
__x = __x_parent;
|
|
__x_parent = __x_parent->_M_parent;
|
|
}
|
|
else
|
|
{
|
|
if (__w->_M_right == 0
|
|
|| __w->_M_right->_M_color == _M_black)
|
|
{
|
|
if (__w->_M_left) __w->_M_left->_M_color = _M_black;
|
|
__w->_M_color = _M_red;
|
|
_Rb_tree_rotate_right(__w, __root);
|
|
__w = __x_parent->_M_right;
|
|
}
|
|
__w->_M_color = __x_parent->_M_color;
|
|
__x_parent->_M_color = _M_black;
|
|
if (__w->_M_right)
|
|
__w->_M_right->_M_color = _M_black;
|
|
_Rb_tree_rotate_left(__x_parent, __root);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// same as above, with _M_right <-> _M_left.
|
|
_Rb_tree_node_base* __w = __x_parent->_M_left;
|
|
if (__w->_M_color == _M_red)
|
|
{
|
|
__w->_M_color = _M_black;
|
|
__x_parent->_M_color = _M_red;
|
|
_Rb_tree_rotate_right(__x_parent, __root);
|
|
__w = __x_parent->_M_left;
|
|
}
|
|
if ((__w->_M_right == 0 ||
|
|
__w->_M_right->_M_color == _M_black) &&
|
|
(__w->_M_left == 0 ||
|
|
__w->_M_left->_M_color == _M_black))
|
|
{
|
|
__w->_M_color = _M_red;
|
|
__x = __x_parent;
|
|
__x_parent = __x_parent->_M_parent;
|
|
}
|
|
else
|
|
{
|
|
if (__w->_M_left == 0 || __w->_M_left->_M_color == _M_black)
|
|
{
|
|
if (__w->_M_right) __w->_M_right->_M_color = _M_black;
|
|
__w->_M_color = _M_red;
|
|
_Rb_tree_rotate_left(__w, __root);
|
|
__w = __x_parent->_M_left;
|
|
}
|
|
__w->_M_color = __x_parent->_M_color;
|
|
__x_parent->_M_color = _M_black;
|
|
if (__w->_M_left)
|
|
__w->_M_left->_M_color = _M_black;
|
|
_Rb_tree_rotate_right(__x_parent, __root);
|
|
break;
|
|
}
|
|
}
|
|
if (__x) __x->_M_color = _M_black;
|
|
}
|
|
return __y;
|
|
}
|
|
|
|
// Base class to encapsulate the differences between old SGI-style
|
|
// allocators and standard-conforming allocators. In order to avoid
|
|
// having an empty base class, we arbitrarily move one of rb_tree's
|
|
// data members into the base class.
|
|
|
|
// _Base for general standard-conforming allocators.
|
|
template<typename _Tp, typename _Alloc, bool _S_instanceless>
|
|
class _Rb_tree_alloc_base
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
|
|
|
|
allocator_type
|
|
get_allocator() const { return _M_node_allocator; }
|
|
|
|
_Rb_tree_alloc_base(const allocator_type& __a)
|
|
: _M_node_allocator(__a), _M_header(0) {}
|
|
|
|
protected:
|
|
typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::allocator_type
|
|
_M_node_allocator;
|
|
|
|
_Rb_tree_node<_Tp>* _M_header;
|
|
|
|
_Rb_tree_node<_Tp>*
|
|
_M_get_node() { return _M_node_allocator.allocate(1); }
|
|
|
|
void
|
|
_M_put_node(_Rb_tree_node<_Tp>* __p)
|
|
{ _M_node_allocator.deallocate(__p, 1); }
|
|
};
|
|
|
|
// Specialization for instanceless allocators.
|
|
template<typename _Tp, typename _Alloc>
|
|
class _Rb_tree_alloc_base<_Tp, _Alloc, true>
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
|
|
allocator_type get_allocator() const { return allocator_type(); }
|
|
|
|
_Rb_tree_alloc_base(const allocator_type&) : _M_header(0) {}
|
|
|
|
protected:
|
|
_Rb_tree_node<_Tp>* _M_header;
|
|
|
|
typedef typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::_Alloc_type
|
|
_Alloc_type;
|
|
|
|
_Rb_tree_node<_Tp>*
|
|
_M_get_node() { return _Alloc_type::allocate(1); }
|
|
|
|
void
|
|
_M_put_node(_Rb_tree_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
|
|
};
|
|
|
|
template<typename _Tp, typename _Alloc>
|
|
struct _Rb_tree_base : public _Rb_tree_alloc_base<_Tp, _Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
{
|
|
typedef _Rb_tree_alloc_base<_Tp,
|
|
_Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> _Base;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
|
|
_Rb_tree_base(const allocator_type& __a)
|
|
: _Base(__a) { _M_header = _M_get_node(); }
|
|
~_Rb_tree_base() { _M_put_node(_M_header); }
|
|
};
|
|
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc = allocator<_Val> >
|
|
class _Rb_tree : protected _Rb_tree_base<_Val, _Alloc>
|
|
{
|
|
typedef _Rb_tree_base<_Val, _Alloc> _Base;
|
|
|
|
protected:
|
|
typedef _Rb_tree_node_base* _Base_ptr;
|
|
typedef _Rb_tree_node<_Val> _Rb_tree_node;
|
|
|
|
public:
|
|
typedef _Key key_type;
|
|
typedef _Val value_type;
|
|
typedef value_type* pointer;
|
|
typedef const value_type* const_pointer;
|
|
typedef value_type& reference;
|
|
typedef const value_type& const_reference;
|
|
typedef _Rb_tree_node* _Link_type;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
allocator_type get_allocator() const { return _Base::get_allocator(); }
|
|
|
|
protected:
|
|
using _Base::_M_get_node;
|
|
using _Base::_M_put_node;
|
|
using _Base::_M_header;
|
|
|
|
_Link_type
|
|
_M_create_node(const value_type& __x)
|
|
{
|
|
_Link_type __tmp = _M_get_node();
|
|
try
|
|
{ _Construct(&__tmp->_M_value_field, __x); }
|
|
catch(...)
|
|
{
|
|
_M_put_node(__tmp);
|
|
__throw_exception_again;
|
|
}
|
|
return __tmp;
|
|
}
|
|
|
|
_Link_type
|
|
_M_clone_node(_Link_type __x)
|
|
{
|
|
_Link_type __tmp = _M_create_node(__x->_M_value_field);
|
|
__tmp->_M_color = __x->_M_color;
|
|
__tmp->_M_left = 0;
|
|
__tmp->_M_right = 0;
|
|
return __tmp;
|
|
}
|
|
|
|
void
|
|
destroy_node(_Link_type __p)
|
|
{
|
|
_Destroy(&__p->_M_value_field);
|
|
_M_put_node(__p);
|
|
}
|
|
|
|
size_type _M_node_count; // keeps track of size of tree
|
|
_Compare _M_key_compare;
|
|
|
|
_Link_type&
|
|
_M_root() const { return (_Link_type&) _M_header->_M_parent; }
|
|
|
|
_Link_type&
|
|
_M_leftmost() const { return (_Link_type&) _M_header->_M_left; }
|
|
|
|
_Link_type&
|
|
_M_rightmost() const { return (_Link_type&) _M_header->_M_right; }
|
|
|
|
static _Link_type&
|
|
_S_left(_Link_type __x) { return (_Link_type&)(__x->_M_left); }
|
|
|
|
static _Link_type&
|
|
_S_right(_Link_type __x) { return (_Link_type&)(__x->_M_right); }
|
|
|
|
static _Link_type&
|
|
_S_parent(_Link_type __x) { return (_Link_type&)(__x->_M_parent); }
|
|
|
|
static reference
|
|
_S_value(_Link_type __x) { return __x->_M_value_field; }
|
|
|
|
static const _Key&
|
|
_S_key(_Link_type __x) { return _KeyOfValue()(_S_value(__x)); }
|
|
|
|
static _Rb_tree_color&
|
|
_S_color(_Link_type __x) { return __x->_M_color; }
|
|
|
|
static _Link_type&
|
|
_S_left(_Base_ptr __x) { return (_Link_type&)(__x->_M_left); }
|
|
|
|
static _Link_type&
|
|
_S_right(_Base_ptr __x) { return (_Link_type&)(__x->_M_right); }
|
|
|
|
static _Link_type&
|
|
_S_parent(_Base_ptr __x) { return (_Link_type&)(__x->_M_parent); }
|
|
|
|
static reference
|
|
_S_value(_Base_ptr __x) { return ((_Link_type)__x)->_M_value_field; }
|
|
|
|
static const _Key&
|
|
_S_key(_Base_ptr __x) { return _KeyOfValue()(_S_value(_Link_type(__x)));}
|
|
|
|
static _Rb_tree_color&
|
|
_S_color(_Base_ptr __x) { return (_Link_type(__x)->_M_color); }
|
|
|
|
static _Link_type
|
|
_S_minimum(_Link_type __x)
|
|
{ return (_Link_type) _Rb_tree_node_base::_S_minimum(__x); }
|
|
|
|
static _Link_type
|
|
_S_maximum(_Link_type __x)
|
|
{ return (_Link_type) _Rb_tree_node_base::_S_maximum(__x); }
|
|
|
|
public:
|
|
typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
|
|
typedef _Rb_tree_iterator<value_type, const_reference, const_pointer>
|
|
const_iterator;
|
|
|
|
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
|
|
private:
|
|
iterator
|
|
_M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
|
|
|
|
_Link_type
|
|
_M_copy(_Link_type __x, _Link_type __p);
|
|
|
|
void
|
|
_M_erase(_Link_type __x);
|
|
|
|
public:
|
|
// allocation/deallocation
|
|
_Rb_tree()
|
|
: _Base(allocator_type()), _M_node_count(0), _M_key_compare()
|
|
{ _M_empty_initialize(); }
|
|
|
|
_Rb_tree(const _Compare& __comp)
|
|
: _Base(allocator_type()), _M_node_count(0), _M_key_compare(__comp)
|
|
{ _M_empty_initialize(); }
|
|
|
|
_Rb_tree(const _Compare& __comp, const allocator_type& __a)
|
|
: _Base(__a), _M_node_count(0), _M_key_compare(__comp)
|
|
{ _M_empty_initialize(); }
|
|
|
|
_Rb_tree(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x)
|
|
: _Base(__x.get_allocator()), _M_node_count(0),
|
|
_M_key_compare(__x._M_key_compare)
|
|
{
|
|
if (__x._M_root() == 0)
|
|
_M_empty_initialize();
|
|
else
|
|
{
|
|
_S_color(_M_header) = _M_red;
|
|
_M_root() = _M_copy(__x._M_root(), _M_header);
|
|
_M_leftmost() = _S_minimum(_M_root());
|
|
_M_rightmost() = _S_maximum(_M_root());
|
|
}
|
|
_M_node_count = __x._M_node_count;
|
|
}
|
|
|
|
~_Rb_tree() { clear(); }
|
|
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>&
|
|
operator=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x);
|
|
|
|
private:
|
|
void _M_empty_initialize()
|
|
{
|
|
_S_color(_M_header) = _M_red; // used to distinguish header from
|
|
// __root, in iterator.operator++
|
|
_M_root() = 0;
|
|
_M_leftmost() = _M_header;
|
|
_M_rightmost() = _M_header;
|
|
}
|
|
|
|
public:
|
|
// Accessors.
|
|
_Compare
|
|
key_comp() const { return _M_key_compare; }
|
|
|
|
iterator
|
|
begin() { return _M_leftmost(); }
|
|
|
|
const_iterator
|
|
begin() const { return _M_leftmost(); }
|
|
|
|
iterator
|
|
end() { return _M_header; }
|
|
|
|
const_iterator
|
|
end() const { return _M_header; }
|
|
|
|
reverse_iterator
|
|
rbegin() { return reverse_iterator(end()); }
|
|
|
|
const_reverse_iterator
|
|
rbegin() const { return const_reverse_iterator(end()); }
|
|
|
|
reverse_iterator
|
|
rend() { return reverse_iterator(begin()); }
|
|
|
|
const_reverse_iterator
|
|
rend() const { return const_reverse_iterator(begin()); }
|
|
|
|
bool
|
|
empty() const { return _M_node_count == 0; }
|
|
|
|
size_type
|
|
size() const { return _M_node_count; }
|
|
|
|
size_type
|
|
max_size() const { return size_type(-1); }
|
|
|
|
void
|
|
swap(_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __t)
|
|
{
|
|
std::swap(_M_header, __t._M_header);
|
|
std::swap(_M_node_count, __t._M_node_count);
|
|
std::swap(_M_key_compare, __t._M_key_compare);
|
|
}
|
|
|
|
// Insert/erase.
|
|
pair<iterator,bool>
|
|
insert_unique(const value_type& __x);
|
|
|
|
iterator
|
|
insert_equal(const value_type& __x);
|
|
|
|
iterator
|
|
insert_unique(iterator __position, const value_type& __x);
|
|
|
|
iterator
|
|
insert_equal(iterator __position, const value_type& __x);
|
|
|
|
template<typename _InputIterator>
|
|
void
|
|
insert_unique(_InputIterator __first, _InputIterator __last);
|
|
|
|
template<typename _InputIterator>
|
|
void
|
|
insert_equal(_InputIterator __first, _InputIterator __last);
|
|
|
|
void
|
|
erase(iterator __position);
|
|
|
|
size_type
|
|
erase(const key_type& __x);
|
|
|
|
void
|
|
erase(iterator __first, iterator __last);
|
|
|
|
void
|
|
erase(const key_type* __first, const key_type* __last);
|
|
|
|
void
|
|
clear()
|
|
{
|
|
if (_M_node_count != 0)
|
|
{
|
|
_M_erase(_M_root());
|
|
_M_leftmost() = _M_header;
|
|
_M_root() = 0;
|
|
_M_rightmost() = _M_header;
|
|
_M_node_count = 0;
|
|
}
|
|
}
|
|
|
|
// Set operations.
|
|
iterator
|
|
find(const key_type& __x);
|
|
|
|
const_iterator
|
|
find(const key_type& __x) const;
|
|
|
|
size_type
|
|
count(const key_type& __x) const;
|
|
|
|
iterator
|
|
lower_bound(const key_type& __x);
|
|
|
|
const_iterator
|
|
lower_bound(const key_type& __x) const;
|
|
|
|
iterator
|
|
upper_bound(const key_type& __x);
|
|
|
|
const_iterator
|
|
upper_bound(const key_type& __x) const;
|
|
|
|
pair<iterator,iterator>
|
|
equal_range(const key_type& __x);
|
|
|
|
pair<const_iterator, const_iterator>
|
|
equal_range(const key_type& __x) const;
|
|
|
|
// Debugging.
|
|
bool
|
|
__rb_verify() const;
|
|
};
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator==(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
|
|
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
|
|
{
|
|
return __x.size() == __y.size() &&
|
|
equal(__x.begin(), __x.end(), __y.begin());
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator<(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
|
|
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
|
|
{
|
|
return lexicographical_compare(__x.begin(), __x.end(),
|
|
__y.begin(), __y.end());
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator!=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
|
|
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
|
|
{ return !(__x == __y); }
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator>(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
|
|
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
|
|
{ return __y < __x; }
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator<=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
|
|
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
|
|
{ return !(__y < __x); }
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator>=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
|
|
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
|
|
{ return !(__x < __y); }
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
inline void
|
|
swap(_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
|
|
{ __x.swap(__y); }
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>&
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
operator=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x)
|
|
{
|
|
if (this != &__x)
|
|
{
|
|
// Note that _Key may be a constant type.
|
|
clear();
|
|
_M_node_count = 0;
|
|
_M_key_compare = __x._M_key_compare;
|
|
if (__x._M_root() == 0)
|
|
{
|
|
_M_root() = 0;
|
|
_M_leftmost() = _M_header;
|
|
_M_rightmost() = _M_header;
|
|
}
|
|
else
|
|
{
|
|
_M_root() = _M_copy(__x._M_root(), _M_header);
|
|
_M_leftmost() = _S_minimum(_M_root());
|
|
_M_rightmost() = _S_maximum(_M_root());
|
|
_M_node_count = __x._M_node_count;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Val& __v)
|
|
{
|
|
_Link_type __x = (_Link_type) __x_;
|
|
_Link_type __y = (_Link_type) __y_;
|
|
_Link_type __z;
|
|
|
|
if (__y == _M_header || __x != 0 ||
|
|
_M_key_compare(_KeyOfValue()(__v), _S_key(__y)))
|
|
{
|
|
__z = _M_create_node(__v);
|
|
_S_left(__y) = __z; // also makes _M_leftmost() = __z
|
|
// when __y == _M_header
|
|
if (__y == _M_header)
|
|
{
|
|
_M_root() = __z;
|
|
_M_rightmost() = __z;
|
|
}
|
|
else if (__y == _M_leftmost())
|
|
_M_leftmost() = __z; // maintain _M_leftmost() pointing to min node
|
|
}
|
|
else
|
|
{
|
|
__z = _M_create_node(__v);
|
|
_S_right(__y) = __z;
|
|
// Maintain _M_rightmost() pointing to max node.
|
|
if (__y == _M_rightmost())
|
|
_M_rightmost() = __z;
|
|
}
|
|
_S_parent(__z) = __y;
|
|
_S_left(__z) = 0;
|
|
_S_right(__z) = 0;
|
|
_Rb_tree_rebalance(__z, _M_header->_M_parent);
|
|
++_M_node_count;
|
|
return iterator(__z);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
insert_equal(const _Val& __v)
|
|
{
|
|
_Link_type __y = _M_header;
|
|
_Link_type __x = _M_root();
|
|
while (__x != 0)
|
|
{
|
|
__y = __x;
|
|
__x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ?
|
|
_S_left(__x) : _S_right(__x);
|
|
}
|
|
return _M_insert(__x, __y, __v);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
pair<typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator,
|
|
bool>
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
insert_unique(const _Val& __v)
|
|
{
|
|
_Link_type __y = _M_header;
|
|
_Link_type __x = _M_root();
|
|
bool __comp = true;
|
|
while (__x != 0)
|
|
{
|
|
__y = __x;
|
|
__comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x));
|
|
__x = __comp ? _S_left(__x) : _S_right(__x);
|
|
}
|
|
iterator __j = iterator(__y);
|
|
if (__comp)
|
|
if (__j == begin())
|
|
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
|
|
else
|
|
--__j;
|
|
if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
|
|
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
|
|
return pair<iterator,bool>(__j, false);
|
|
}
|
|
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
|
|
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
|
|
insert_unique(iterator __position, const _Val& __v)
|
|
{
|
|
if (__position._M_node == _M_header->_M_left)
|
|
{
|
|
// begin()
|
|
if (size() > 0 &&
|
|
_M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
|
|
return _M_insert(__position._M_node, __position._M_node, __v);
|
|
// first argument just needs to be non-null
|
|
else
|
|
return insert_unique(__v).first;
|
|
}
|
|
else if (__position._M_node == _M_header)
|
|
{
|
|
// end()
|
|
if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
|
|
return _M_insert(0, _M_rightmost(), __v);
|
|
else
|
|
return insert_unique(__v).first;
|
|
}
|
|
else
|
|
{
|
|
iterator __before = __position;
|
|
--__before;
|
|
if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v))
|
|
&& _M_key_compare(_KeyOfValue()(__v),_S_key(__position._M_node)))
|
|
{
|
|
if (_S_right(__before._M_node) == 0)
|
|
return _M_insert(0, __before._M_node, __v);
|
|
else
|
|
return _M_insert(__position._M_node, __position._M_node, __v);
|
|
// first argument just needs to be non-null
|
|
}
|
|
else
|
|
return insert_unique(__v).first;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
insert_equal(iterator __position, const _Val& __v)
|
|
{
|
|
if (__position._M_node == _M_header->_M_left)
|
|
{
|
|
// begin()
|
|
if (size() > 0 &&
|
|
!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
|
|
return _M_insert(__position._M_node, __position._M_node, __v);
|
|
// first argument just needs to be non-null
|
|
else
|
|
return insert_equal(__v);
|
|
}
|
|
else if (__position._M_node == _M_header)
|
|
{
|
|
// end()
|
|
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
|
|
return _M_insert(0, _M_rightmost(), __v);
|
|
else
|
|
return insert_equal(__v);
|
|
}
|
|
else
|
|
{
|
|
iterator __before = __position;
|
|
--__before;
|
|
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
|
|
&& !_M_key_compare(_S_key(__position._M_node),
|
|
_KeyOfValue()(__v)))
|
|
{
|
|
if (_S_right(__before._M_node) == 0)
|
|
return _M_insert(0, __before._M_node, __v);
|
|
else
|
|
return _M_insert(__position._M_node, __position._M_node, __v);
|
|
// first argument just needs to be non-null
|
|
}
|
|
else
|
|
return insert_equal(__v);
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KoV,
|
|
typename _Cmp, typename _Alloc>
|
|
template<class _II>
|
|
void
|
|
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>::
|
|
insert_equal(_II __first, _II __last)
|
|
{
|
|
for ( ; __first != __last; ++__first)
|
|
insert_equal(*__first);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KoV,
|
|
typename _Cmp, typename _Alloc>
|
|
template<class _II>
|
|
void
|
|
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>::
|
|
insert_unique(_II __first, _II __last)
|
|
{
|
|
for ( ; __first != __last; ++__first)
|
|
insert_unique(*__first);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
inline void
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::erase(iterator __position)
|
|
{
|
|
_Link_type __y =
|
|
(_Link_type) _Rb_tree_rebalance_for_erase(__position._M_node,
|
|
_M_header->_M_parent,
|
|
_M_header->_M_left,
|
|
_M_header->_M_right);
|
|
destroy_node(__y);
|
|
--_M_node_count;
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::size_type
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x)
|
|
{
|
|
pair<iterator,iterator> __p = equal_range(__x);
|
|
size_type __n = distance(__p.first, __p.second);
|
|
erase(__p.first, __p.second);
|
|
return __n;
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KoV,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type
|
|
_Rb_tree<_Key,_Val,_KoV,_Compare,_Alloc>::
|
|
_M_copy(_Link_type __x, _Link_type __p)
|
|
{
|
|
// Structural copy. __x and __p must be non-null.
|
|
_Link_type __top = _M_clone_node(__x);
|
|
__top->_M_parent = __p;
|
|
|
|
try
|
|
{
|
|
if (__x->_M_right)
|
|
__top->_M_right = _M_copy(_S_right(__x), __top);
|
|
__p = __top;
|
|
__x = _S_left(__x);
|
|
|
|
while (__x != 0)
|
|
{
|
|
_Link_type __y = _M_clone_node(__x);
|
|
__p->_M_left = __y;
|
|
__y->_M_parent = __p;
|
|
if (__x->_M_right)
|
|
__y->_M_right = _M_copy(_S_right(__x), __y);
|
|
__p = __y;
|
|
__x = _S_left(__x);
|
|
}
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_erase(__top);
|
|
__throw_exception_again;
|
|
}
|
|
return __top;
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
void
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::_M_erase(_Link_type __x)
|
|
{
|
|
// Erase without rebalancing.
|
|
while (__x != 0)
|
|
{
|
|
_M_erase(_S_right(__x));
|
|
_Link_type __y = _S_left(__x);
|
|
destroy_node(__x);
|
|
__x = __y;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
void
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
erase(iterator __first, iterator __last)
|
|
{
|
|
if (__first == begin() && __last == end())
|
|
clear();
|
|
else
|
|
while (__first != __last) erase(__first++);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
void
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
erase(const _Key* __first, const _Key* __last)
|
|
{
|
|
while (__first != __last)
|
|
erase(*__first++);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k)
|
|
{
|
|
_Link_type __y = _M_header; // Last node which is not less than __k.
|
|
_Link_type __x = _M_root(); // Current node.
|
|
|
|
while (__x != 0)
|
|
if (!_M_key_compare(_S_key(__x), __k))
|
|
__y = __x, __x = _S_left(__x);
|
|
else
|
|
__x = _S_right(__x);
|
|
|
|
iterator __j = iterator(__y);
|
|
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
|
|
end() : __j;
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::const_iterator
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
find(const _Key& __k) const
|
|
{
|
|
_Link_type __y = _M_header; // Last node which is not less than __k.
|
|
_Link_type __x = _M_root(); // Current node.
|
|
|
|
while (__x != 0)
|
|
{
|
|
if (!_M_key_compare(_S_key(__x), __k))
|
|
__y = __x, __x = _S_left(__x);
|
|
else
|
|
__x = _S_right(__x);
|
|
}
|
|
const_iterator __j = const_iterator(__y);
|
|
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
|
|
end() : __j;
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::size_type
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
count(const _Key& __k) const
|
|
{
|
|
pair<const_iterator, const_iterator> __p = equal_range(__k);
|
|
size_type __n = distance(__p.first, __p.second);
|
|
return __n;
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
lower_bound(const _Key& __k)
|
|
{
|
|
_Link_type __y = _M_header; /* Last node which is not less than __k. */
|
|
_Link_type __x = _M_root(); /* Current node. */
|
|
|
|
while (__x != 0)
|
|
if (!_M_key_compare(_S_key(__x), __k))
|
|
__y = __x, __x = _S_left(__x);
|
|
else
|
|
__x = _S_right(__x);
|
|
|
|
return iterator(__y);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::const_iterator
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
lower_bound(const _Key& __k) const
|
|
{
|
|
_Link_type __y = _M_header; /* Last node which is not less than __k. */
|
|
_Link_type __x = _M_root(); /* Current node. */
|
|
|
|
while (__x != 0)
|
|
if (!_M_key_compare(_S_key(__x), __k))
|
|
__y = __x, __x = _S_left(__x);
|
|
else
|
|
__x = _S_right(__x);
|
|
|
|
return const_iterator(__y);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
upper_bound(const _Key& __k)
|
|
{
|
|
_Link_type __y = _M_header; /* Last node which is greater than __k. */
|
|
_Link_type __x = _M_root(); /* Current node. */
|
|
|
|
while (__x != 0)
|
|
if (_M_key_compare(__k, _S_key(__x)))
|
|
__y = __x, __x = _S_left(__x);
|
|
else
|
|
__x = _S_right(__x);
|
|
|
|
return iterator(__y);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::const_iterator
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
upper_bound(const _Key& __k) const
|
|
{
|
|
_Link_type __y = _M_header; /* Last node which is greater than __k. */
|
|
_Link_type __x = _M_root(); /* Current node. */
|
|
|
|
while (__x != 0)
|
|
if (_M_key_compare(__k, _S_key(__x)))
|
|
__y = __x, __x = _S_left(__x);
|
|
else
|
|
__x = _S_right(__x);
|
|
|
|
return const_iterator(__y);
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
inline
|
|
pair<typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator,
|
|
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator>
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
|
|
equal_range(const _Key& __k)
|
|
{ return pair<iterator, iterator>(lower_bound(__k), upper_bound(__k)); }
|
|
|
|
template<typename _Key, typename _Val, typename _KoV,
|
|
typename _Compare, typename _Alloc>
|
|
inline
|
|
pair<typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::const_iterator,
|
|
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::const_iterator>
|
|
_Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>
|
|
::equal_range(const _Key& __k) const
|
|
{
|
|
return pair<const_iterator,const_iterator>(lower_bound(__k),
|
|
upper_bound(__k));
|
|
}
|
|
|
|
inline int
|
|
__black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root)
|
|
{
|
|
if (__node == 0)
|
|
return 0;
|
|
int __sum = 0;
|
|
do
|
|
{
|
|
if (__node->_M_color == _M_black)
|
|
++__sum;
|
|
if (__node == __root)
|
|
break;
|
|
__node = __node->_M_parent;
|
|
}
|
|
while (1);
|
|
return __sum;
|
|
}
|
|
|
|
template<typename _Key, typename _Val, typename _KeyOfValue,
|
|
typename _Compare, typename _Alloc>
|
|
bool
|
|
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
|
|
{
|
|
if (_M_node_count == 0 || begin() == end())
|
|
return _M_node_count == 0 && begin() == end() &&
|
|
_M_header->_M_left == _M_header && _M_header->_M_right == _M_header;
|
|
|
|
int __len = __black_count(_M_leftmost(), _M_root());
|
|
for (const_iterator __it = begin(); __it != end(); ++__it)
|
|
{
|
|
_Link_type __x = (_Link_type) __it._M_node;
|
|
_Link_type __L = _S_left(__x);
|
|
_Link_type __R = _S_right(__x);
|
|
|
|
if (__x->_M_color == _M_red)
|
|
if ((__L && __L->_M_color == _M_red)
|
|
|| (__R && __R->_M_color == _M_red))
|
|
return false;
|
|
|
|
if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
|
|
return false;
|
|
if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
|
|
return false;
|
|
|
|
if (!__L && !__R && __black_count(__x, _M_root()) != __len)
|
|
return false;
|
|
}
|
|
|
|
if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
|
|
return false;
|
|
if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
|
|
return false;
|
|
return true;
|
|
}
|
|
} // namespace std
|
|
|
|
#endif
|