mirror of
git://gcc.gnu.org/git/gcc.git
synced 2024-12-25 07:49:08 +08:00
d9fd7154ec
2001-12-15 Bryce McKinlay <bryce@waitaki.otago.ac.nz> * java/util/BitSet.java (and): Fix off-by-one bug, don't skip part of the bitset. (andNot): Likewise. (xor): Likewise. 2001-12-15 Bryce McKinlay <bryce@waitaki.otago.ac.nz> * java/util/LinkedList.java (LinkedListItr.add): Don't skip the next entry. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/TreeMap.java (removeNode): Fix bug in node removal. 2001-12-15 Bryce McKinlay <bryce@waitaki.otago.ac.nz> * java/util/AbstractCollection.java (containsAll): Use size of the correct collection for loop bound. * java/util/AbstractList.java (iterator.next): Increment pos after calling get on backing list. (listIterator.next): Likewise. * java/util/LinkedList.java (addLastEntry): Don't increment size before checking for size == 0. (addFirstEntry): Rearrange to match addLastEntry. (add): Do not increment size before inserting the new entry. * java/util/AbstractCollection.java (addAll): Use size of the correct collection for loop bound. 2001-12-15 Bryce McKinlay <bryce@waitaki.otago.ac.nz> * java/util/AbstractSet.java (removeAll): Fix scoping thinko. * java/util/HashMap.java (putAllInternal): Set size here. * java/util/Hashtable.java (putAllInternal): New method. Copy contents of a map efficiently without calling put() or putAll(). (Hashtable (map)): Use putAllInternal. (clone): Likewise. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/Collections.java: * java/util/Vector.java: * java/util/WeakHashMap.java: Fix spelling errors. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/AbstractCollection.java (removeAllInternal), (retainAllInternal): Add hooks for use by ArrayList. * java/util/AbstractList.java: Minor code updates. Fix some scoping. * java/util/AbstractMap.java: ditto * java/util/ArrayList.java (readObject, writeObject): ditto (removeAllInternal, retainAllInternal): Optimize. * java/util/Arrays.java: ditto * java/util/Collections.java: ditto. Change order of parameters to equals(Object, Object) to match specs. * java/util/Dictionary.java: Improve javadoc. (Dictionary): Add explicit constructor. * java/util/HashMap.java: Improve javadoc. Rearrange methods to follow order in JDK. Cleanups related to recent code migration to AbstractMap. Fix some scoping. (entrySet): Cache the result. (modCount): Ensure that this is updated correctly. * java/util/HashSet.java: Improve javadoc. Fix some scoping. (init): Add hooks for LinkedHashSet. (map): Use "" instead of Boolean.TRUE in backing map. Use package-private API where possible for less overhead. (readObject, writeObject): Fix serialization. * java/util/Hashtable.java: Improve javadoc. Fix some scoping. (entrySet, keySet, values): Cache the result. (modCount): Ensure that this is updated correctly. (contains, remove): Fix NullPointer checking to match specs. (class Enumeration): Make more like HashIterator. * java/util/IdentityHashMap.java: Minor code updates. (modCount): Ensure that this is updated correctly. (readObject, writeObject): Fix serialization. * java/util/LinkedHashMap.java: Minor code updates. Cleanups related to recent code migration to AbstractMap. * java/util/LinkedHashSet.java: New file. * java/util/LinkedList.java: (readObject, writeObject): Fix serialization. * java/util/Makefile.am: List recently added files. * java/util/Stack.java: Minor code updates. * java/util/TreeMap.java: Improve javadoc. Overhaul the class to be more efficient. Fix some scoping. Rearrange the methods. (nil): Ensure that this can be thread-safe, and make it a static final. Initialize it to be more useful as a sentinal node. (Node): Specify color in constructor. (deleteFixup, insertFixup): Improve comments and algorithm. (fabricateTree): Redesign with less overhead. (lowestGreaterThan): Add parameter first to make SubMap easier. (removeNode): Patch hole where nil was being modified. Choose predecessor instead of successor so in-place swap works. (class VerifyResult, verifyTree, verifySub, verifyError): Remove this dead code after verifying the class works. (class SubMap): Rewrite several algorithms to avoid problems with comparing nil. * java/util/TreeSet.java: Improve javadoc. Fix some scoping. (clone): Fix ClassCastException when cloning subSet(). (readObject, writeObject): Fix serialization. * java/util/WeakHashMap.java: Improve javadoc. Fix some scoping. (NULL_KEY): Make it compare as null, for ease elsewhere. (Class WeakEntry): Rename from Entry, to avoid shadowing Map.Entry. Add missing toString. (modCount): Ensure that this is updated correctly. (clear, containsValue, keySet, putAll, values, WeakHashMap(Map)): Add missing methods and constructor. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/ArrayList.java (checkBoundExclusive), (checkBoundInclusive): Rename from range??clusive, to match AbstractList. * java/util/LinkedList.java (checkBoundsExclusive), (checkBoundsInclusive): ditto * java/util/Vector.java (checkBoundExclusive), (checkBoundInclusive): Move bounds checking into common methods. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/AbstractList.java: (modCount): Make sure it is updated in all needed places. * java/util/ArrayList.java: Improve javadoc. Implements RandomAccess. Add serialVersionUID. Reorder methods. (modCount): Make sure it is updated in all needed places. (rangeExclusive, rangeInclusive): Add common methods for bounds check. (isEmpty): Add missing method. * java/util/Collections.java: (class SynchronizedList): Make package visible. * java/util/ConcurrentModificationException.java: Improve javadoc. * java/util/EmptyStackException.java: Improve javadoc. * java/util/LinkedList.java: Improve javadoc. (modCount): Make sure it is updated in all needed places. (rangeExclusive, rangeInclusive): Add common methods for bounds check. * java/util/NoSuchElementException.java: Improve javadoc. * java/util/Stack.java: Improve javadoc. Fix synchronization issues. (modCount): Make sure it is updated in all needed places. * java/util/Vector.java: Improve javadoc. Fix synchronization issues. Implements RandomAccess. Reorder methods. (modCount): Make sure it is updated in all needed places. (setSize): Fix according to specifications: this does not dictate the backing array size. (removeAll, retainAll): Faster implementations. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/BitSet.java: Improve javadoc. (cardinality(), clear(), clear(int, int), flip(int)), (flip(int, int), get(int, int), intersects(BitSet), isEmpty()), (nextClearBit(int), nextSetBit(int), set(int, boolean)), (set(int, int), set(int, int, boolean)): Add new JDK 1.4 methods. (clone): Fix so subclasses clone correctly. 2001-12-15 Eric Blake <ebb9@email.byu.edu> * java/util/AbstractCollection.java: Improve javadoc. (AbstractCollection()): Make constructor protected. (equals(Object, Object), hashCode(Object)): Add utility methods. * java/util/AbstractList.java: Improve javadoc. (AbstractList()): Make constructor protected. (indexOf(Object)): Call listIterator(), not listIterator(int). (iterator()): Follow Sun's requirement to not use listIterator(0). (listIterator(int)): Make AbstractListItr anonymous. (subList(int, int)): Add support for RandomAccess. (SubList.add(int, Object), SubList.remove(Object)): Fix bug with modCount tracking. (SubList.addAll(Collection)): Add missing method. (SubList.listIterator(int)): Fix bugs in indexing, modCount tracking. (class RandomAccessSubList): Add new class. * java/util/AbstractMap.java: Improve javadoc. (keys, values, KEYS, VALUES, ENTRIES): Consolidate common map fields. (AbstractMap()): Make constructor protected. (equals(Object, Object), hashCode(Object)): Add utility methods. (equals(Object)): Change algorithm to entrySet().equals(m.entrySet()), as documented by Sun. (keySet(), values()): Cache the collections. * java/util/AbstractSequentialList.java: Improve javadoc. (AbstractSequentialList()): Make constructor protected. * java/util/AbstractSet.java: Improve javadoc. (AbstractSet()): Make constructor protected. (removeAll(Collection)): Add missing method. * java/util/Arrays.java: Improve javadoc, rearrange method orders. (defaultComparator): Remove, in favor of Collections.compare(Object, Object, Comparator). (binarySearch, equals, sort): Fix natural order comparison of floats and doubles. Also improve Object comparison - when comparator is null, use natural order. (fill, sort): Add missing checks for IllegalArgumentException. (sort, qsort): Fix sorting bugs, rework the code for more legibility. (mergeSort): Inline into sort(Object[], int, int, Comparator). (class ArrayList): Rename from ListImpl, and make compatible with JDK serialization. Add methods which more efficiently override those of AbstractList. * java/util/Collections: Improve javadoc. (isSequential(List)): Add and use a method for deciding between RandomAccess and sequential algorithms on lists. (class Empty*, class Synchronized*, class Unmodifiable*): Make compliant with JDK serializability. (class Singleton*, class CopiesList, class RevereseComparator), (class UnmodifiableMap.UnmodifiableEntrySet), (class *RandomAccessList): New classes for serial compatibility. (class Empty*, class Singleton*, class CopiesList): Add methods which more efficiently override those of Abstract*. (search): Inline into binarySearch(List, Object, Comparator). (binarySearch): Make sequential search only do log(n) comparisons, instead of n. (copy(List, List)): Do bounds checking before starting. (indexOfSubList, lastIndexOfSubList, list, replaceAll, rotate), (swap): Add new JDK 1.4 methods. (binarySearch, max, min, sort): Allow null comparator to represent natural ordering. (reverse(List)): Avoid unnecessary swap. (shuffle(List, Random)): Do shuffle in-place for RandomAccess lists. (SingletonList.get): Fix logic bug. (SingletonMap.entrySet): Make the entry immutable, and cache the returned set. (SynchronizedCollection, SynchronizedMap, UnmodifiableCollection), (UnmodifiableMap): Detect null pointer in construction. (SynchronizedMap, UnmodifiableMap): Cache collection views. * java/util/BasicMapEntry: Improve javadoc. From-SVN: r48035
919 lines
27 KiB
Java
919 lines
27 KiB
Java
/* IdentityHashMap.java -- a class providing a hashtable data structure,
|
|
mapping Object --> Object, which uses object identity for hashing.
|
|
Copyright (C) 2001 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA.
|
|
|
|
As a special exception, if you link this library with other files to
|
|
produce an executable, this library does not by itself cause the
|
|
resulting executable to be covered by the GNU General Public License.
|
|
This exception does not however invalidate any other reasons why the
|
|
executable file might be covered by the GNU General Public License. */
|
|
|
|
package java.util;
|
|
|
|
import java.io.*;
|
|
|
|
/**
|
|
* This class provides a hashtable-backed implementation of the
|
|
* Map interface, but uses object identity to do its hashing. In fact,
|
|
* it uses object identity for comparing values, as well. It uses a
|
|
* linear-probe hash table, which may have faster performance
|
|
* than the chaining employed by HashMap.
|
|
* <p>
|
|
*
|
|
* <em>WARNING: This is not a general purpose map. Because it uses
|
|
* System.identityHashCode and ==, instead of hashCode and equals, for
|
|
* comparison, it violated Map's general contract, and may cause
|
|
* undefined behavior when compared to other maps which are not
|
|
* IdentityHashMaps. This is designed only for the rare cases when
|
|
* identity semantics are needed.</em> An example use is
|
|
* topology-preserving graph transformations, such as deep cloning,
|
|
* or as proxy object mapping such as in debugging.
|
|
* <p>
|
|
*
|
|
* This map permits <code>null</code> keys and values, and does not
|
|
* guarantee that elements will stay in the same order over time. The
|
|
* basic operations (<code>get</code> and <code>put</code>) take
|
|
* constant time, provided System.identityHashCode is decent. You can
|
|
* tune the behavior by specifying the expected maximum size. As more
|
|
* elements are added, the map may need to allocate a larger table,
|
|
* which can be expensive.
|
|
* <p>
|
|
*
|
|
* This implementation is unsynchronized. If you want multi-thread
|
|
* access to be consistent, you must synchronize it, perhaps by using
|
|
* <code>Collections.synchronizedMap(new IdentityHashMap(...));</code>.
|
|
* The iterators are <i>fail-fast</i>, meaning that a structural modification
|
|
* made to the map outside of an iterator's remove method cause the
|
|
* iterator, and in the case of the entrySet, the Map.Entry, to
|
|
* fail with a {@link ConcurrentModificationException}.
|
|
*
|
|
* @author Tom Tromey <tromey@redhat.com>
|
|
* @author Eric Blake <ebb9@email.byu.edu>
|
|
* @see System#identityHashCode(Object)
|
|
* @see Collection
|
|
* @see Map
|
|
* @see HashMap
|
|
* @see TreeMap
|
|
* @see LinkedHashMap
|
|
* @see WeakHashMap
|
|
* @since 1.4
|
|
* @status updated to 1.4
|
|
*/
|
|
public class IdentityHashMap extends AbstractMap
|
|
implements Map, Serializable, Cloneable
|
|
{
|
|
/** The default capacity. */
|
|
private static final int DEFAULT_CAPACITY = 21;
|
|
|
|
/**
|
|
* This object is used to mark deleted items. Package visible for use by
|
|
* nested classes.
|
|
*/
|
|
static final Object tombstone = new Object();
|
|
|
|
/**
|
|
* This object is used to mark empty slots. We need this because
|
|
* using null is ambiguous. Package visible for use by nested classes.
|
|
*/
|
|
static final Object emptyslot = new Object();
|
|
|
|
/**
|
|
* Compatible with JDK 1.4.
|
|
*/
|
|
private static final long serialVersionUID = 8188218128353913216L;
|
|
|
|
/**
|
|
* The number of mappings in the table. Package visible for use by nested
|
|
* classes.
|
|
* @serial
|
|
*/
|
|
int size;
|
|
|
|
/**
|
|
* The table itself. Package visible for use by nested classes.
|
|
*/
|
|
transient Object[] table;
|
|
|
|
/**
|
|
* The number of structural modifications made so far. Package visible for
|
|
* use by nested classes.
|
|
*/
|
|
transient int modCount;
|
|
|
|
/**
|
|
* The cache for {@link #entrySet()}.
|
|
*/
|
|
private transient Set entries;
|
|
|
|
/**
|
|
* The threshold for rehashing, which is 75% of (table.length / 2).
|
|
*/
|
|
private transient int threshold;
|
|
|
|
/**
|
|
* Create a new IdentityHashMap with the default capacity (21 entries).
|
|
*/
|
|
public IdentityHashMap()
|
|
{
|
|
this(DEFAULT_CAPACITY);
|
|
}
|
|
|
|
/**
|
|
* Create a new IdentityHashMap with the indicated number of
|
|
* entries. If the number of elements added to this hash map
|
|
* exceeds this maximum, the map will grow itself; however, that
|
|
* incurs a performance penalty.
|
|
*
|
|
* @param max initial size
|
|
* @throws IllegalArgumentException if max is negative
|
|
*/
|
|
public IdentityHashMap(int max)
|
|
{
|
|
if (max < 0)
|
|
throw new IllegalArgumentException();
|
|
// Need at least two slots, or hash() will break.
|
|
if (max < 2)
|
|
max = 2;
|
|
table = new Object[2 * max];
|
|
Arrays.fill(table, emptyslot);
|
|
// This is automatically set.
|
|
// size = 0;
|
|
threshold = max / 4 * 3;
|
|
}
|
|
|
|
/**
|
|
* Create a new IdentityHashMap whose contents are taken from the
|
|
* given Map.
|
|
*
|
|
* @param m The map whose elements are to be put in this map
|
|
* @throws NullPointerException if m is null
|
|
*/
|
|
public IdentityHashMap(Map m)
|
|
{
|
|
this(Math.max(m.size() * 2, DEFAULT_CAPACITY));
|
|
putAll(m);
|
|
}
|
|
|
|
/**
|
|
* Remove all mappings from this map.
|
|
*/
|
|
public void clear()
|
|
{
|
|
if (size != 0)
|
|
{
|
|
modCount++;
|
|
Arrays.fill(table, emptyslot);
|
|
size = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Creates a shallow copy where keys and values are not cloned.
|
|
*/
|
|
public Object clone()
|
|
{
|
|
try
|
|
{
|
|
IdentityHashMap copy = (IdentityHashMap) super.clone();
|
|
copy.table = (Object[]) table.clone();
|
|
copy.entries = null; // invalidate the cache
|
|
return copy;
|
|
}
|
|
catch (CloneNotSupportedException e)
|
|
{
|
|
// Can't happen.
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Tests whether the specified key is in this map. Unlike normal Maps,
|
|
* this test uses <code>entry == key</code> instead of
|
|
* <code>entry == null ? key == null : entry.equals(key)</code>.
|
|
*
|
|
* @param key the key to look for
|
|
* @return true if the key is contained in the map
|
|
* @see #containsValue(Object)
|
|
* @see #get(Object)
|
|
*/
|
|
public boolean containsKey(Object key)
|
|
{
|
|
return key == table[hash(key)];
|
|
}
|
|
|
|
/**
|
|
* Returns true if this HashMap contains the value. Unlike normal maps,
|
|
* this test uses <code>entry == value</code> instead of
|
|
* <code>entry == null ? value == null : entry.equals(value)</code>.
|
|
*
|
|
* @param value the value to search for in this HashMap
|
|
* @return true if at least one key maps to the value
|
|
* @see #containsKey(Object)
|
|
*/
|
|
public boolean containsValue(Object value)
|
|
{
|
|
for (int i = table.length - 1; i > 0; i -= 2)
|
|
if (table[i] == value)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Returns a "set view" of this Map's entries. The set is backed by
|
|
* the Map, so changes in one show up in the other. The set supports
|
|
* element removal, but not element addition.
|
|
* <p>
|
|
*
|
|
* <em>The semantics of this set, and of its contained entries, are
|
|
* different from the contract of Set and Map.Entry in order to make
|
|
* IdentityHashMap work. This means that while you can compare these
|
|
* objects between IdentityHashMaps, comparing them with regular sets
|
|
* or entries is likely to have undefined behavior.</em> The entries
|
|
* in this set are reference-based, rather than the normal object
|
|
* equality. Therefore, <code>e1.equals(e2)</code> returns
|
|
* <code>e1.getKey() == e2.getKey() && e1.getValue() == e2.getValue()</code>,
|
|
* and <code>e.hashCode()</code> returns
|
|
* <code>System.identityHashCode(e.getKey()) ^
|
|
* System.identityHashCode(e.getValue())</code>.
|
|
* <p>
|
|
*
|
|
* Note that the iterators for all three views, from keySet(), entrySet(),
|
|
* and values(), traverse the Map in the same sequence.
|
|
*
|
|
* @return a set view of the entries
|
|
* @see #keySet()
|
|
* @see #values()
|
|
* @see Map.Entry
|
|
*/
|
|
public Set entrySet()
|
|
{
|
|
if (entries == null)
|
|
entries = new AbstractSet()
|
|
{
|
|
public int size()
|
|
{
|
|
return size;
|
|
}
|
|
|
|
public Iterator iterator()
|
|
{
|
|
return new IdentityIterator(ENTRIES);
|
|
}
|
|
|
|
public void clear()
|
|
{
|
|
IdentityHashMap.this.clear();
|
|
}
|
|
|
|
public boolean contains(Object o)
|
|
{
|
|
if (! (o instanceof Map.Entry))
|
|
return false;
|
|
Map.Entry m = (Map.Entry) o;
|
|
return m.getValue() == table[hash(m.getKey()) + 1];
|
|
}
|
|
|
|
public int hashCode()
|
|
{
|
|
return IdentityHashMap.this.hashCode();
|
|
}
|
|
|
|
public boolean remove(Object o)
|
|
{
|
|
if (! (o instanceof Map.Entry))
|
|
return false;
|
|
Object key = ((Map.Entry) o).getKey();
|
|
int h = hash(key);
|
|
if (table[h] == key)
|
|
{
|
|
size--;
|
|
modCount++;
|
|
table[h] = tombstone;
|
|
table[h + 1] = tombstone;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
return entries;
|
|
}
|
|
|
|
/**
|
|
* Compares two maps for equality. This returns true only if both maps
|
|
* have the same reference-identity comparisons. While this returns
|
|
* <code>this.entrySet().equals(m.entrySet())</code> as specified by Map,
|
|
* this will not work with normal maps, since the entry set compares
|
|
* with == instead of .equals.
|
|
*
|
|
* @param o the object to compare to
|
|
* @return true if it is equal
|
|
*/
|
|
public boolean equals(Object o)
|
|
{
|
|
// Why did Sun specify this one? The superclass does the right thing.
|
|
return super.equals(o);
|
|
}
|
|
|
|
/**
|
|
* Return the value in this Map associated with the supplied key,
|
|
* or <pre>null</pre> if the key maps to nothing. NOTE: Since the value
|
|
* could also be null, you must use containsKey to see if this key
|
|
* actually maps to something. Unlike normal maps, this tests for the key
|
|
* with <code>entry == key</code> instead of
|
|
* <code>entry == null ? key == null : entry.equals(key)</code>.
|
|
*
|
|
* @param key the key for which to fetch an associated value
|
|
* @return what the key maps to, if present
|
|
* @see #put(Object, Object)
|
|
* @see #containsKey(Object)
|
|
*/
|
|
public Object get(Object key)
|
|
{
|
|
int h = hash(key);
|
|
return table[h] == key ? table[h + 1] : null;
|
|
}
|
|
|
|
/**
|
|
* Returns the hashcode of this map. This guarantees that two
|
|
* IdentityHashMaps that compare with equals() will have the same hash code,
|
|
* but may break with comparison to normal maps since it uses
|
|
* System.identityHashCode() instead of hashCode().
|
|
*
|
|
* @return the hash code
|
|
*/
|
|
public int hashCode()
|
|
{
|
|
int hash = 0;
|
|
for (int i = table.length - 2; i >= 0; i -= 2)
|
|
{
|
|
Object key = table[i];
|
|
if (key == emptyslot || key == tombstone)
|
|
continue;
|
|
hash += (System.identityHashCode(key)
|
|
^ System.identityHashCode(table[i + 1]));
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
/**
|
|
* Returns true if there are no key-value mappings currently in this Map
|
|
* @return <code>size() == 0</code>
|
|
*/
|
|
public boolean isEmpty()
|
|
{
|
|
return size == 0;
|
|
}
|
|
|
|
/**
|
|
* Returns a "set view" of this Map's keys. The set is backed by the
|
|
* Map, so changes in one show up in the other. The set supports
|
|
* element removal, but not element addition.
|
|
* <p>
|
|
*
|
|
* <em>The semantics of this set are different from the contract of Set
|
|
* in order to make IdentityHashMap work. This means that while you can
|
|
* compare these objects between IdentityHashMaps, comparing them with
|
|
* regular sets is likely to have undefined behavior.</em> The hashCode
|
|
* of the set is the sum of the identity hash codes, instead of the
|
|
* regular hashCodes, and equality is determined by reference instead
|
|
* of by the equals method.
|
|
* <p>
|
|
*
|
|
* @return a set view of the keys
|
|
* @see #values()
|
|
* @see #entrySet()
|
|
*/
|
|
public Set keySet()
|
|
{
|
|
if (keys == null)
|
|
keys = new AbstractSet()
|
|
{
|
|
public int size()
|
|
{
|
|
return size;
|
|
}
|
|
|
|
public Iterator iterator()
|
|
{
|
|
return new IdentityIterator(KEYS);
|
|
}
|
|
|
|
public void clear()
|
|
{
|
|
IdentityHashMap.this.clear();
|
|
}
|
|
|
|
public boolean contains(Object o)
|
|
{
|
|
return containsKey(o);
|
|
}
|
|
|
|
public int hashCode()
|
|
{
|
|
int hash = 0;
|
|
for (int i = table.length - 2; i >= 0; i -= 2)
|
|
{
|
|
Object key = table[i];
|
|
if (key == emptyslot || key == tombstone)
|
|
continue;
|
|
hash += System.identityHashCode(key);
|
|
}
|
|
return hash;
|
|
|
|
}
|
|
|
|
public boolean remove(Object o)
|
|
{
|
|
int h = hash(o);
|
|
if (table[h] == o)
|
|
{
|
|
size--;
|
|
modCount++;
|
|
table[h] = tombstone;
|
|
table[h + 1] = tombstone;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
return keys;
|
|
}
|
|
|
|
/**
|
|
* Puts the supplied value into the Map, mapped by the supplied key.
|
|
* The value may be retrieved by any object which <code>equals()</code>
|
|
* this key. NOTE: Since the prior value could also be null, you must
|
|
* first use containsKey if you want to see if you are replacing the
|
|
* key's mapping. Unlike normal maps, this tests for the key
|
|
* with <code>entry == key</code> instead of
|
|
* <code>entry == null ? key == null : entry.equals(key)</code>.
|
|
*
|
|
* @param key the key used to locate the value
|
|
* @param value the value to be stored in the HashMap
|
|
* @return the prior mapping of the key, or null if there was none
|
|
* @see #get(Object)
|
|
*/
|
|
public Object put(Object key, Object value)
|
|
{
|
|
// Rehash if the load factor is too high.
|
|
if (size > threshold)
|
|
{
|
|
Object[] old = table;
|
|
// This isn't necessarily prime, but it is an odd number of key/value
|
|
// slots, which has a higher probability of fewer collisions.
|
|
table = new Object[old.length * 2 + 2];
|
|
Arrays.fill(table, emptyslot);
|
|
size = 0;
|
|
threshold = table.length / 4 * 3;
|
|
|
|
for (int i = old.length - 2; i >= 0; i -= 2)
|
|
{
|
|
Object oldkey = old[i];
|
|
if (oldkey != tombstone && oldkey != emptyslot)
|
|
// Just use put. This isn't very efficient, but it is ok.
|
|
put(oldkey, old[i + 1]);
|
|
}
|
|
}
|
|
|
|
int h = hash(key);
|
|
if (table[h] == key)
|
|
{
|
|
Object r = table[h + 1];
|
|
table[h + 1] = value;
|
|
return r;
|
|
}
|
|
|
|
// At this point, we add a new mapping.
|
|
modCount++;
|
|
size++;
|
|
table[h] = key;
|
|
table[h + 1] = value;
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Copies all of the mappings from the specified map to this. If a key
|
|
* is already in this map, its value is replaced.
|
|
*
|
|
* @param m the map to copy
|
|
* @throws NullPointerException if m is null
|
|
*/
|
|
public void putAll(Map m)
|
|
{
|
|
// Why did Sun specify this one? The superclass does the right thing.
|
|
super.putAll(m);
|
|
}
|
|
|
|
/**
|
|
* Removes from the HashMap and returns the value which is mapped by the
|
|
* supplied key. If the key maps to nothing, then the HashMap remains
|
|
* unchanged, and <pre>null</pre> is returned. NOTE: Since the value
|
|
* could also be null, you must use containsKey to see if you are
|
|
* actually removing a mapping. Unlike normal maps, this tests for the
|
|
* key with <code>entry == key</code> instead of
|
|
* <code>entry == null ? key == null : entry.equals(key)</code>.
|
|
*
|
|
* @param key the key used to locate the value to remove
|
|
* @return whatever the key mapped to, if present
|
|
*/
|
|
public Object remove(Object key)
|
|
{
|
|
int h = hash(key);
|
|
if (table[h] == key)
|
|
{
|
|
modCount++;
|
|
size--;
|
|
Object r = table[h + 1];
|
|
table[h] = tombstone;
|
|
table[h + 1] = tombstone;
|
|
return r;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns the number of kay-value mappings currently in this Map
|
|
* @return the size
|
|
*/
|
|
public int size()
|
|
{
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Returns a "collection view" (or "bag view") of this Map's values.
|
|
* The collection is backed by the Map, so changes in one show up
|
|
* in the other. The collection supports element removal, but not element
|
|
* addition.
|
|
* <p>
|
|
*
|
|
* <em>The semantics of this set are different from the contract of
|
|
* Collection in order to make IdentityHashMap work. This means that
|
|
* while you can compare these objects between IdentityHashMaps, comparing
|
|
* them with regular sets is likely to have undefined behavior.</em>
|
|
* Likewise, contains and remove go by == instead of equals().
|
|
* <p>
|
|
*
|
|
* @return a bag view of the values
|
|
* @see #keySet()
|
|
* @see #entrySet()
|
|
*/
|
|
public Collection values()
|
|
{
|
|
if (values == null)
|
|
values = new AbstractCollection()
|
|
{
|
|
public int size()
|
|
{
|
|
return size;
|
|
}
|
|
|
|
public Iterator iterator()
|
|
{
|
|
return new IdentityIterator(VALUES);
|
|
}
|
|
|
|
public void clear()
|
|
{
|
|
IdentityHashMap.this.clear();
|
|
}
|
|
|
|
public boolean remove(Object o)
|
|
{
|
|
for (int i = table.length - 1; i > 0; i -= 2)
|
|
if (table[i] == o)
|
|
{
|
|
modCount++;
|
|
table[i - 1] = tombstone;
|
|
table[i] = tombstone;
|
|
size--;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
return values;
|
|
}
|
|
|
|
/**
|
|
* Helper method which computes the hash code, then traverses the table
|
|
* until it finds the key, or the spot where the key would go.
|
|
*
|
|
* @param key the key to check
|
|
* @return the index where the key belongs
|
|
* @see #IdentityHashMap(int)
|
|
* @see #put(Object, Object)
|
|
*/
|
|
// Package visible for use by nested classes.
|
|
int hash(Object key)
|
|
{
|
|
// Implementation note: it is feasible for the table to have no
|
|
// emptyslots, if it is full with entries and tombstones, so we must
|
|
// remember where we started. If we encounter the key or an emptyslot,
|
|
// we are done. If we encounter a tombstone, the key may still be in
|
|
// the array. If we don't encounter the key, we use the first emptyslot
|
|
// or tombstone we encountered as the location where the key would go.
|
|
// By requiring at least 2 key/value slots, and rehashing at 75%
|
|
// capacity, we guarantee that there will always be either an emptyslot
|
|
// or a tombstone somewhere in the table.
|
|
int h = 2 * Math.abs(System.identityHashCode(key) % table.length);
|
|
int del = -1;
|
|
int save = h;
|
|
|
|
do
|
|
{
|
|
if (table[h] == key)
|
|
return h;
|
|
if (table[h] == emptyslot)
|
|
break;
|
|
if (table[h] == tombstone && del < 0)
|
|
del = h;
|
|
h -= 2;
|
|
if (h < 0)
|
|
h = table.length - 2;
|
|
}
|
|
while (h != save);
|
|
|
|
return del < 0 ? h : del;
|
|
}
|
|
|
|
/**
|
|
* This class allows parameterized iteration over IdentityHashMaps. Based
|
|
* on its construction, it returns the key or value of a mapping, or
|
|
* creates the appropriate Map.Entry object with the correct fail-fast
|
|
* semantics and identity comparisons.
|
|
*
|
|
* @author Tom Tromey <tromey@redhat.com>
|
|
* @author Eric Blake <ebb9@email.byu.edu>
|
|
*/
|
|
private final class IdentityIterator implements Iterator
|
|
{
|
|
/**
|
|
* The type of this Iterator: {@link #KEYS}, {@link #VALUES},
|
|
* or {@link #ENTRIES}.
|
|
*/
|
|
final int type;
|
|
/** The number of modifications to the backing Map that we know about. */
|
|
int knownMod = modCount;
|
|
/** The number of elements remaining to be returned by next(). */
|
|
int count = size;
|
|
/** Location in the table. */
|
|
int loc = table.length;
|
|
|
|
/**
|
|
* Construct a new Iterator with the supplied type.
|
|
* @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
|
|
*/
|
|
IdentityIterator(int type)
|
|
{
|
|
this.type = type;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the Iterator has more elements.
|
|
* @return true if there are more elements
|
|
* @throws ConcurrentModificationException if the Map was modified
|
|
*/
|
|
public boolean hasNext()
|
|
{
|
|
if (knownMod != modCount)
|
|
throw new ConcurrentModificationException();
|
|
return count > 0;
|
|
}
|
|
|
|
/**
|
|
* Returns the next element in the Iterator's sequential view.
|
|
* @return the next element
|
|
* @throws ConcurrentModificationException if the Map was modified
|
|
* @throws NoSuchElementException if there is none
|
|
*/
|
|
public Object next()
|
|
{
|
|
if (knownMod != modCount)
|
|
throw new ConcurrentModificationException();
|
|
if (count == 0)
|
|
throw new NoSuchElementException();
|
|
count--;
|
|
|
|
Object key;
|
|
do
|
|
{
|
|
loc -= 2;
|
|
key = table[loc];
|
|
}
|
|
while (key == emptyslot || key == tombstone);
|
|
|
|
return type == KEYS ? key : (type == VALUES ? table[loc + 1]
|
|
: new IdentityEntry(loc));
|
|
}
|
|
|
|
/**
|
|
* Removes from the backing Map the last element which was fetched
|
|
* with the <pre>next()</pre> method.
|
|
* @throws ConcurrentModificationException if the Map was modified
|
|
* @throws IllegalStateException if called when there is no last element
|
|
*/
|
|
public void remove()
|
|
{
|
|
if (knownMod != modCount)
|
|
throw new ConcurrentModificationException();
|
|
if (loc == table.length || table[loc] == tombstone)
|
|
throw new IllegalStateException();
|
|
modCount++;
|
|
size--;
|
|
table[loc] = tombstone;
|
|
table[loc + 1] = tombstone;
|
|
knownMod++;
|
|
}
|
|
} // class IdentityIterator
|
|
|
|
/**
|
|
* This class provides Map.Entry objects for IdentityHashMaps. The entry
|
|
* is fail-fast, and will throw a ConcurrentModificationException if
|
|
* the underlying map is modified, or if remove is called on the iterator
|
|
* that generated this object. It is identity based, so it violates
|
|
* the general contract of Map.Entry, and is probably unsuitable for
|
|
* comparison to normal maps; but it works among other IdentityHashMaps.
|
|
*
|
|
* @author Eric Blake <ebb9@email.byu.edu>
|
|
*/
|
|
private final class IdentityEntry implements Map.Entry
|
|
{
|
|
/** The location of this entry. */
|
|
final int loc;
|
|
/** The number of modifications to the backing Map that we know about. */
|
|
final int knownMod = modCount;
|
|
|
|
/**
|
|
* Constructs the Entry.
|
|
*
|
|
* @param loc the location of this entry in table
|
|
*/
|
|
IdentityEntry(int loc)
|
|
{
|
|
this.loc = loc;
|
|
}
|
|
|
|
/**
|
|
* Compares the specified object with this entry, using identity
|
|
* semantics. Note that this can lead to undefined results with
|
|
* Entry objects created by normal maps.
|
|
*
|
|
* @param o the object to compare
|
|
* @return true if it is equal
|
|
* @throws ConcurrentModificationException if the entry was invalidated
|
|
* by modifying the Map or calling Iterator.remove()
|
|
*/
|
|
public boolean equals(Object o)
|
|
{
|
|
if (knownMod != modCount || table[loc] == tombstone)
|
|
throw new ConcurrentModificationException();
|
|
if (! (o instanceof Map.Entry))
|
|
return false;
|
|
Map.Entry e = (Map.Entry) o;
|
|
return table[loc] == e.getKey() && table[loc + 1] == e.getValue();
|
|
}
|
|
|
|
/**
|
|
* Returns the key of this entry.
|
|
*
|
|
* @return the key
|
|
* @throws ConcurrentModificationException if the entry was invalidated
|
|
* by modifying the Map or calling Iterator.remove()
|
|
*/
|
|
public Object getKey()
|
|
{
|
|
if (knownMod != modCount || table[loc] == tombstone)
|
|
throw new ConcurrentModificationException();
|
|
return table[loc];
|
|
}
|
|
|
|
/**
|
|
* Returns the value of this entry.
|
|
*
|
|
* @return the value
|
|
* @throws ConcurrentModificationException if the entry was invalidated
|
|
* by modifying the Map or calling Iterator.remove()
|
|
*/
|
|
public Object getValue()
|
|
{
|
|
if (knownMod != modCount || table[loc] == tombstone)
|
|
throw new ConcurrentModificationException();
|
|
return table[loc + 1];
|
|
}
|
|
|
|
/**
|
|
* Returns the hashcode of the entry, using identity semantics.
|
|
* Note that this can lead to undefined results with Entry objects
|
|
* created by normal maps.
|
|
*
|
|
* @return the hash code
|
|
* @throws ConcurrentModificationException if the entry was invalidated
|
|
* by modifying the Map or calling Iterator.remove()
|
|
*/
|
|
public int hashCode()
|
|
{
|
|
if (knownMod != modCount || table[loc] == tombstone)
|
|
throw new ConcurrentModificationException();
|
|
return (System.identityHashCode(table[loc])
|
|
^ System.identityHashCode(table[loc + 1]));
|
|
}
|
|
|
|
/**
|
|
* Replaces the value of this mapping, and returns the old value.
|
|
*
|
|
* @param value the new value
|
|
* @return the old value
|
|
* @throws ConcurrentModificationException if the entry was invalidated
|
|
* by modifying the Map or calling Iterator.remove()
|
|
*/
|
|
public Object setValue(Object value)
|
|
{
|
|
if (knownMod != modCount || table[loc] == tombstone)
|
|
throw new ConcurrentModificationException();
|
|
Object r = table[loc + 1];
|
|
table[loc + 1] = value;
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* This provides a string representation of the entry. It is of the form
|
|
* "key=value", where string concatenation is used on key and value.
|
|
*
|
|
* @return the string representation
|
|
* @throws ConcurrentModificationException if the entry was invalidated
|
|
* by modifying the Map or calling Iterator.remove()
|
|
*/
|
|
public final String toString()
|
|
{
|
|
if (knownMod != modCount || table[loc] == tombstone)
|
|
throw new ConcurrentModificationException();
|
|
return table[loc] + "=" + table[loc + 1];
|
|
}
|
|
} // class IdentityEntry
|
|
|
|
/**
|
|
* Reads the object from a serial stream.
|
|
*
|
|
* @param s the stream to read from
|
|
* @throws ClassNotFoundException if the underlying stream fails
|
|
* @throws IOException if the underlying stream fails
|
|
* @serialData expects the size (int), followed by that many key (Object)
|
|
* and value (Object) pairs, with the pairs in no particular
|
|
* order
|
|
*/
|
|
private void readObject(ObjectInputStream s)
|
|
throws IOException, ClassNotFoundException
|
|
{
|
|
s.defaultReadObject();
|
|
|
|
int num = s.readInt();
|
|
table = new Object[2 * Math.max(num * 2, DEFAULT_CAPACITY)];
|
|
// Read key/value pairs.
|
|
while (--num >= 0)
|
|
put(s.readObject(), s.readObject());
|
|
}
|
|
|
|
/**
|
|
* Writes the object to a serial stream.
|
|
*
|
|
* @param s the stream to write to
|
|
* @throws IOException if the underlying stream fails
|
|
* @serialData outputs the size (int), followed by that many key (Object)
|
|
* and value (Object) pairs, with the pairs in no particular
|
|
* order
|
|
*/
|
|
private void writeObject(ObjectOutputStream s)
|
|
throws IOException
|
|
{
|
|
s.defaultWriteObject();
|
|
s.writeInt(size);
|
|
for (int i = table.length - 2; i >= 0; i -= 2)
|
|
{
|
|
Object key = table[i];
|
|
if (key != tombstone && key != emptyslot)
|
|
{
|
|
s.writeObject(key);
|
|
s.writeObject(table[i + 1]);
|
|
}
|
|
}
|
|
}
|
|
}
|