gcc/libstdc++-v3/include/bits/stl_function.h
Phil Edwards 77cd227ec3 howto.html: Add anchor name.
2001-09-25  Phil Edwards  <pme@gcc.gnu.org>

	* docs/html/20_util/howto.html:  Add anchor name.
	* docs/html/23_containers/howto.html:  Line wrapping, another link.
	* docs/html/25_algorithms/howto.html:  Another note.

	* docs/html/ext/howto.html:  Link to SGI extensions.  List DRs and
	link to them...
	* docs/html/ext/lwg-active.html:  ...in this new file (from R19),
	* docs/html/ext/lwg-defects.html:  and this new file (from R19).
	* docs/html/ext/sgiexts.html:  New file.  Mention SGI extensions
	carried over to libstdc++-v3.
	* docs/html/faq/index.html:  Link to SGI extensions.  Mention the
	"missing .." pseudobug.
	* docs/html/faq/index.txt:  Regenerate.

	* include/bits/ios_base.h:  DR-related comment cleanup.
	* include/bits/istream.tcc:  Likewise.
	* include/bits/locale_facets.h:  Likewise.
	* include/bits/locale_facets.tcc:  Likewise.
	* include/bits/ostream.tcc:  Likewise.
	* include/bits/std_bitset.h:  Likewise.
	* include/bits/std_iosfwd.h:  Likewise.
	* include/bits/std_istream.h:  Likewise.
	* include/bits/std_ostream.h:  Likewise.
	* include/bits/std_streambuf.h:  Likewise.
	* include/bits/stl_pair.h:  Likewise.
	* include/bits/streambuf_iterator.h:  Likewise.

	* include/bits/std_map.h:  Remove unused header inclusion guard
	_CPP_BITS_STL_TREE_H from around bits/stl_tree.h.
	* include/bits/std_set.h:  Likewise.

	* include/bits/stl_function.h:  Doxygen markup.
	* docs/doxygen/doxygroups.cc:  New file, specifying module grouping.
	* libsupc++/typeinfo:  Doxygen markup tweak.

From-SVN: r45816
2001-09-25 23:51:17 +00:00

1054 lines
37 KiB
C++

// Functor implementations -*- C++ -*-
// Copyright (C) 2001 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_function.h
* This is an internal header file, included by other STL headers. You
* should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_FUNCTION_H
#define __SGI_STL_INTERNAL_FUNCTION_H
namespace std
{
// 20.3.1 base classes
/** @defgroup s20_3_1_base Functor Base Classes
* Function objects, or @e functors, are objects with an @c operator()
* defined and accessible. They can be passed as arguments to algorithm
* templates and used in place of a function pointer. Not only is the
* resulting expressiveness of the library increased, but the generated
* code can be more efficient than what you might write by hand. When we
* refer to "functors," then, generally we include function pointers in
* the description as well.
*
* Often, functors are only created as temporaries passed to algorithm
* calls, rather than being created as named variables.
*
* Two examples taken from the standard itself follow. To perform a
* by-element addition of two vectors @c a and @c b containing @c double,
* and put the result in @c a, use
* \code
* transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
* \endcode
* To negate every element in @c a, use
* \code
* transform(a.begin(), a.end(), a.begin(), negate<double>());
* \endcode
* The addition and negation functions will be inlined directly.
*
* The standard functiors are derived from structs named @c unary_function
* and @c binary_function. These two classes contain nothing but typedefs,
* to aid in generic (template) programming. If you write your own
* functors, you might consider doing the same.
*
* @{
*/
/**
* This is one of the @link s20_3_1_base functor base classes @endlink.
*/
template <class _Arg, class _Result>
struct unary_function {
typedef _Arg argument_type; ///< @c argument_type is the type of the argument (no surprises here)
typedef _Result result_type; ///< @c result_type is the return type
};
/**
* This is one of the @link s20_3_1_base functor base classes @endlink.
*/
template <class _Arg1, class _Arg2, class _Result>
struct binary_function {
typedef _Arg1 first_argument_type; ///< the type of the first argument (no surprises here)
typedef _Arg2 second_argument_type; ///< the type of the second argument
typedef _Result result_type; ///< type of the return type
};
/** @} */
// 20.3.2 arithmetic
/** @defgroup s20_3_2_arithmetic Arithmetic Classes
* Because basic math often needs to be done during an algorithm, the library
* provides functors for those operations. See the documentation for
* @link s20_3_1_base the base classes @endlink for examples of their use.
*
* @{
*/
/// One of the @link s20_3_2_arithmetic math functors @endlink.
template <class _Tp>
struct plus : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
};
/// One of the @link s20_3_2_arithmetic math functors @endlink.
template <class _Tp>
struct minus : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
};
/// One of the @link s20_3_2_arithmetic math functors @endlink.
template <class _Tp>
struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
};
/// One of the @link s20_3_2_arithmetic math functors @endlink.
template <class _Tp>
struct divides : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
};
/// One of the @link s20_3_2_arithmetic math functors @endlink.
template <class _Tp>
struct modulus : public binary_function<_Tp,_Tp,_Tp>
{
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
};
/// One of the @link s20_3_2_arithmetic math functors @endlink.
template <class _Tp>
struct negate : public unary_function<_Tp,_Tp>
{
_Tp operator()(const _Tp& __x) const { return -__x; }
};
/** @} */
/** The @c identity_element functions are not part of the C++ standard; SGI
* provided them as an extension. Its argument is an operation, and its
* return value is the identity element for that operation. It is overloaded
* for addition and multiplication, and you can overload it for your own
* nefarious operations.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Tp> inline _Tp identity_element(plus<_Tp>) {
return _Tp(0);
}
/// An \link SGIextensions SGI extension \endlink.
template <class _Tp> inline _Tp identity_element(multiplies<_Tp>) {
return _Tp(1);
}
/** @} */
// 20.3.3 comparisons
/** @defgroup s20_3_3_comparisons Comparison Classes
* The library provides six wrapper functors for all the basic comparisons
* in C++, like @c <.
*
* @{
*/
/// One of the @link s20_3_3_comparisons comparison functors @endlink.
template <class _Tp>
struct equal_to : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
};
/// One of the @link s20_3_3_comparisons comparison functors @endlink.
template <class _Tp>
struct not_equal_to : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
};
/// One of the @link s20_3_3_comparisons comparison functors @endlink.
template <class _Tp>
struct greater : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
};
/// One of the @link s20_3_3_comparisons comparison functors @endlink.
template <class _Tp>
struct less : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
};
/// One of the @link s20_3_3_comparisons comparison functors @endlink.
template <class _Tp>
struct greater_equal : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
};
/// One of the @link s20_3_3_comparisons comparison functors @endlink.
template <class _Tp>
struct less_equal : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
};
/** @} */
// 20.3.4 logical operations
/** @defgroup s20_3_4_logical Boolean Operations Classes
* Here are wrapper functors for Boolean operations: @c &&, @c ||, and @c !.
*
* @{
*/
/// One of the @link s20_3_4_logical Boolean operations functors @endlink.
template <class _Tp>
struct logical_and : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
};
/// One of the @link s20_3_4_logical Boolean operations functors @endlink.
template <class _Tp>
struct logical_or : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
};
/// One of the @link s20_3_4_logical Boolean operations functors @endlink.
template <class _Tp>
struct logical_not : public unary_function<_Tp,bool>
{
bool operator()(const _Tp& __x) const { return !__x; }
};
/** @} */
// 20.3.5 negators
/** @defgroup s20_3_5_negators Negators
* The functions @c not1 and @c not2 each take a predicate functor
* and return an instance of @c unary_negate or
* @c binary_negate, respectively. These classes are functors whose
* @c operator() performs the stored predicate function and then returns
* the negation of the result.
*
* For example, given a vector of integers and a trivial predicate,
* \code
* struct IntGreaterThanThree
* : public std::unary_function<int, bool>
* {
* bool operator() (int x) { return x > 3; }
* };
*
* std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
* \endcode
* The call to @c find_if will locate the first index (i) of @c v for which
* "!(v[i] > 3)" is true.
*
* The not1/unary_negate combination works on predicates taking a single
* argument. The not2/binary_negate combination works on predicates which
* take two arguments.
*
* @{
*/
/// One of the @link s20_3_5_negators negation functors @endlink.
template <class _Predicate>
class unary_negate
: public unary_function<typename _Predicate::argument_type, bool> {
protected:
_Predicate _M_pred;
public:
explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
bool operator()(const typename _Predicate::argument_type& __x) const {
return !_M_pred(__x);
}
};
/// One of the @link s20_3_5_negators negation functors @endlink.
template <class _Predicate>
inline unary_negate<_Predicate>
not1(const _Predicate& __pred)
{
return unary_negate<_Predicate>(__pred);
}
/// One of the @link s20_3_5_negators negation functors @endlink.
template <class _Predicate>
class binary_negate
: public binary_function<typename _Predicate::first_argument_type,
typename _Predicate::second_argument_type,
bool> {
protected:
_Predicate _M_pred;
public:
explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
bool operator()(const typename _Predicate::first_argument_type& __x,
const typename _Predicate::second_argument_type& __y) const
{
return !_M_pred(__x, __y);
}
};
/// One of the @link s20_3_5_negators negation functors @endlink.
template <class _Predicate>
inline binary_negate<_Predicate>
not2(const _Predicate& __pred)
{
return binary_negate<_Predicate>(__pred);
}
/** @} */
// 20.3.6 binders
/** @defgroup s20_3_6_binder Binder Classes
* Binders turn functions/functors with two arguments into functors with
* a single argument, storing an argument to be applied later. For
* example, an variable @c B of type @c binder1st is constructed from a functor
* @c f and an argument @c x. Later, B's @c operator() is called with a
* single argument @c y. The return value is the value of @c f(x,y).
* @c B can be "called" with various arguments (y1, y2, ...) and will in
* turn call @c f(x,y1), @c f(x,y2), ...
*
* The function @c bind1st is provided to save some typing. It takes the
* function and an argument as parameters, and returns an instance of
* @c binder1st.
*
* The type @c binder2nd and its creator function @c bind2nd do the same
* thing, but the stored argument is passed as the second parameter instead
* of the first, e.g., @c bind2nd(std::minus<float>,1.3) will create a
* functor whose @c operator() accepts a floating-point number, subtracts
* 1.3 from it, and returns the result. (If @c bind1st had been used,
* the functor would perform "1.3 - x" instead.
*
* Creator-wrapper functions like @c bind1st are intended to be used in
* calling algorithms. Their return values will be temporary objects.
* (The goal is to not require you to type names like
* @c std::binder1st<std::plus<int>> for declaring a variable to hold the
* return value from @c bind1st(std::plus<int>,5).
*
* These become more useful when combined with the composition functions.
*
* @{
*/
/// One of the @link s20_3_6_binder binder functors @endlink.
template <class _Operation>
class binder1st
: public unary_function<typename _Operation::second_argument_type,
typename _Operation::result_type> {
protected:
_Operation op;
typename _Operation::first_argument_type value;
public:
binder1st(const _Operation& __x,
const typename _Operation::first_argument_type& __y)
: op(__x), value(__y) {}
typename _Operation::result_type
operator()(const typename _Operation::second_argument_type& __x) const {
return op(value, __x);
}
#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
//109. Missing binders for non-const sequence elements
typename _Operation::result_type
operator()(typename _Operation::second_argument_type& __x) const {
return op(value, __x);
}
#endif
};
/// One of the @link s20_3_6_binder binder functors @endlink.
template <class _Operation, class _Tp>
inline binder1st<_Operation>
bind1st(const _Operation& __fn, const _Tp& __x)
{
typedef typename _Operation::first_argument_type _Arg1_type;
return binder1st<_Operation>(__fn, _Arg1_type(__x));
}
/// One of the @link s20_3_6_binder binder functors @endlink.
template <class _Operation>
class binder2nd
: public unary_function<typename _Operation::first_argument_type,
typename _Operation::result_type> {
protected:
_Operation op;
typename _Operation::second_argument_type value;
public:
binder2nd(const _Operation& __x,
const typename _Operation::second_argument_type& __y)
: op(__x), value(__y) {}
typename _Operation::result_type
operator()(const typename _Operation::first_argument_type& __x) const {
return op(__x, value);
}
#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
//109. Missing binders for non-const sequence elements
typename _Operation::result_type
operator()(typename _Operation::first_argument_type& __x) const {
return op(__x, value);
}
#endif
};
/// One of the @link s20_3_6_binder binder functors @endlink.
template <class _Operation, class _Tp>
inline binder2nd<_Operation>
bind2nd(const _Operation& __fn, const _Tp& __x)
{
typedef typename _Operation::second_argument_type _Arg2_type;
return binder2nd<_Operation>(__fn, _Arg2_type(__x));
}
/** @} */
/** As an extension to the binders, SGI provided composition functors and
* wrapper functions to aid in their creation. The @c unary_compose
* functor is constructed from two functions/functors, @c f and @c g.
* Calling @c operator() with a single argument @c x returns @c f(g(x)).
* The function @c compose1 takes the two functions and constructs a
* @c unary_compose variable for you.
*
* @c binary_compose is constructed from three functors, @c f, @c g1,
* and @c g2. Its @c operator() returns @c f(g1(x),g2(x)). The function
* @compose2 takes f, g1, and g2, and constructs the @c binary_compose
* instance for you. For example, if @c f returns an int, then
* \code
* int answer = (compose2(f,g1,g2))(x);
* \endcode
* is equivalent to
* \code
* int temp1 = g1(x);
* int temp2 = g2(x);
* int answer = f(temp1,temp2);
* \endcode
* But the first form is more compact, and can be passed around as a
* functor to other algorithms.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2>
class unary_compose
: public unary_function<typename _Operation2::argument_type,
typename _Operation1::result_type>
{
protected:
_Operation1 _M_fn1;
_Operation2 _M_fn2;
public:
unary_compose(const _Operation1& __x, const _Operation2& __y)
: _M_fn1(__x), _M_fn2(__y) {}
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const {
return _M_fn1(_M_fn2(__x));
}
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2>
inline unary_compose<_Operation1,_Operation2>
compose1(const _Operation1& __fn1, const _Operation2& __fn2)
{
return unary_compose<_Operation1,_Operation2>(__fn1, __fn2);
}
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2, class _Operation3>
class binary_compose
: public unary_function<typename _Operation2::argument_type,
typename _Operation1::result_type> {
protected:
_Operation1 _M_fn1;
_Operation2 _M_fn2;
_Operation3 _M_fn3;
public:
binary_compose(const _Operation1& __x, const _Operation2& __y,
const _Operation3& __z)
: _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { }
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const {
return _M_fn1(_M_fn2(__x), _M_fn3(__x));
}
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Operation1, class _Operation2, class _Operation3>
inline binary_compose<_Operation1, _Operation2, _Operation3>
compose2(const _Operation1& __fn1, const _Operation2& __fn2,
const _Operation3& __fn3)
{
return binary_compose<_Operation1,_Operation2,_Operation3>
(__fn1, __fn2, __fn3);
}
/** @} */
// 20.3.7 adaptors pointers functions
/** @defgroup s20_3_7_adaptors Adaptors for pointers to functions
* The advantage of function objects over pointers to functions is that
* the objects in the standard library declare nested typedefs describing
* their argument and result types with uniform names (e.g., @c result_type
* from the base classes @c unary_function and @c binary_function).
* Sometimes those typedefs are required, not just optional.
*
* Adaptors are provided to turn pointers to unary (single-argument) and
* binary (double-argument) functions into function objects. The long-winded
* functor @c pointer_to_unary_function is constructed with a function
* pointer @c f, and its @c operator() called with argument @c x returns
* @c f(x). The functor @c pointer_to_binary_function does the same thing,
* but with a double-argument @c f and @c operator().
*
* The function @c ptr_fun takes a pointer-to-function @c f and constructs
* an instance of the appropriate functor.
*
* @{
*/
/// One of the @link s20_3_7_adaptors adaptors for function pointers @endlink.
template <class _Arg, class _Result>
class pointer_to_unary_function : public unary_function<_Arg, _Result> {
protected:
_Result (*_M_ptr)(_Arg);
public:
pointer_to_unary_function() {}
explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
_Result operator()(_Arg __x) const { return _M_ptr(__x); }
};
/// One of the @link s20_3_7_adaptors adaptors for function pointers @endlink.
template <class _Arg, class _Result>
inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
{
return pointer_to_unary_function<_Arg, _Result>(__x);
}
/// One of the @link s20_3_7_adaptors adaptors for function pointers @endlink.
template <class _Arg1, class _Arg2, class _Result>
class pointer_to_binary_function :
public binary_function<_Arg1,_Arg2,_Result> {
protected:
_Result (*_M_ptr)(_Arg1, _Arg2);
public:
pointer_to_binary_function() {}
explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
: _M_ptr(__x) {}
_Result operator()(_Arg1 __x, _Arg2 __y) const {
return _M_ptr(__x, __y);
}
};
/// One of the @link s20_3_7_adaptors adaptors for function pointers @endlink.
template <class _Arg1, class _Arg2, class _Result>
inline pointer_to_binary_function<_Arg1,_Arg2,_Result>
ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
}
/** @} */
// extension documented next
template <class _Tp>
struct _Identity : public unary_function<_Tp,_Tp> {
_Tp& operator()(_Tp& __x) const { return __x; }
const _Tp& operator()(const _Tp& __x) const { return __x; }
};
/** As an extension, SGI provided a functor called @c identity. When a
* functor is required but no operations are desired, this can be used as a
* pass-through. Its @c operator() returns its argument unchanged.
*
* @addtogroup SGIextensions
*/
template <class _Tp> struct identity : public _Identity<_Tp> {};
// extension documented next
template <class _Pair>
struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
typename _Pair::first_type& operator()(_Pair& __x) const {
return __x.first;
}
const typename _Pair::first_type& operator()(const _Pair& __x) const {
return __x.first;
}
};
template <class _Pair>
struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
{
typename _Pair::second_type& operator()(_Pair& __x) const {
return __x.second;
}
const typename _Pair::second_type& operator()(const _Pair& __x) const {
return __x.second;
}
};
/** @c select1st and @c select2nd are extensions provided by SGI. Their
* @c operator()s
* take a @c std::pair as an argument, and return either the first member
* or the second member, respectively. They can be used (especially with
* the composition functors) to "strip" data from a sequence before
* performing the remainder of an algorithm.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Pair> struct select1st : public _Select1st<_Pair> {};
/// An \link SGIextensions SGI extension \endlink.
template <class _Pair> struct select2nd : public _Select2nd<_Pair> {};
/** @} */
// extension documented next
template <class _Arg1, class _Arg2>
struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> {
_Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; }
};
template <class _Arg1, class _Arg2>
struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> {
_Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; }
};
/** The @c operator() of the @c project1st functor takes two arbitrary
* arguments and returns the first one, while @c project2nd returns the
* second one. They are extensions provided by SGI.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Arg1, class _Arg2>
struct project1st : public _Project1st<_Arg1, _Arg2> {};
/// An \link SGIextensions SGI extension \endlink.
template <class _Arg1, class _Arg2>
struct project2nd : public _Project2nd<_Arg1, _Arg2> {};
/** @} */
// extension documented next
template <class _Result>
struct _Constant_void_fun {
typedef _Result result_type;
result_type _M_val;
_Constant_void_fun(const result_type& __v) : _M_val(__v) {}
const result_type& operator()() const { return _M_val; }
};
template <class _Result, class _Argument>
struct _Constant_unary_fun {
typedef _Argument argument_type;
typedef _Result result_type;
result_type _M_val;
_Constant_unary_fun(const result_type& __v) : _M_val(__v) {}
const result_type& operator()(const _Argument&) const { return _M_val; }
};
template <class _Result, class _Arg1, class _Arg2>
struct _Constant_binary_fun {
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
_Result _M_val;
_Constant_binary_fun(const _Result& __v) : _M_val(__v) {}
const result_type& operator()(const _Arg1&, const _Arg2&) const {
return _M_val;
}
};
/** These three functors are each constructed from a single arbitrary
* variable/value. Later, their @c operator()s completely ignore any
* arguments passed, and return the stored value.
* - @c constant_void_fun's @c operator() takes no arguments
* - @c constant_unary_fun's @c operator() takes one argument (ignored)
* - @c constant_binary_fun's @c operator() takes two arguments (ignored)
*
* The helper creator functions @c constant0, @c constant1, and
* @c constant2 each take a "result" argument and construct variables of
* the appropriate functor type.
*
* @addtogroup SGIextensions
* @{
*/
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
struct constant_void_fun : public _Constant_void_fun<_Result> {
constant_void_fun(const _Result& __v) : _Constant_void_fun<_Result>(__v) {}
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Result,
class _Argument = _Result>
struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument>
{
constant_unary_fun(const _Result& __v)
: _Constant_unary_fun<_Result, _Argument>(__v) {}
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Result,
class _Arg1 = _Result,
class _Arg2 = _Arg1>
struct constant_binary_fun
: public _Constant_binary_fun<_Result, _Arg1, _Arg2>
{
constant_binary_fun(const _Result& __v)
: _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {}
};
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
inline constant_void_fun<_Result> constant0(const _Result& __val)
{
return constant_void_fun<_Result>(__val);
}
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val)
{
return constant_unary_fun<_Result,_Result>(__val);
}
/// An \link SGIextensions SGI extension \endlink.
template <class _Result>
inline constant_binary_fun<_Result,_Result,_Result>
constant2(const _Result& __val)
{
return constant_binary_fun<_Result,_Result,_Result>(__val);
}
/** @} */
/** The @c subtractive_rng class is documented on
* <a href="http://www.sgi.com/tech/stl/">SGI's site</a>.
* Note that this code assumes that @c int is 32 bits.
*
* @ingroup SGIextensions
*/
class subtractive_rng : public unary_function<unsigned int, unsigned int> {
private:
unsigned int _M_table[55];
size_t _M_index1;
size_t _M_index2;
public:
/// Returns a number less than the argument.
unsigned int operator()(unsigned int __limit) {
_M_index1 = (_M_index1 + 1) % 55;
_M_index2 = (_M_index2 + 1) % 55;
_M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];
return _M_table[_M_index1] % __limit;
}
void _M_initialize(unsigned int __seed)
{
unsigned int __k = 1;
_M_table[54] = __seed;
size_t __i;
for (__i = 0; __i < 54; __i++) {
size_t __ii = (21 * (__i + 1) % 55) - 1;
_M_table[__ii] = __k;
__k = __seed - __k;
__seed = _M_table[__ii];
}
for (int __loop = 0; __loop < 4; __loop++) {
for (__i = 0; __i < 55; __i++)
_M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];
}
_M_index1 = 0;
_M_index2 = 31;
}
/// Ctor allowing you to initialize the seed.
subtractive_rng(unsigned int __seed) { _M_initialize(__seed); }
/// Default ctor; initializes its state with some number you don't see.
subtractive_rng() { _M_initialize(161803398u); }
};
// 20.3.8 adaptors pointers members
/** @defgroup s20_3_8_memadaptors Adaptors for pointers to members
* There are a total of 16 = 2^4 function objects in this family.
* (1) Member functions taking no arguments vs member functions taking
* one argument.
* (2) Call through pointer vs call through reference.
* (3) Member function with void return type vs member function with
* non-void return type.
* (4) Const vs non-const member function.
*
* Note that choice (3) is nothing more than a workaround: according
* to the draft, compilers should handle void and non-void the same way.
* This feature is not yet widely implemented, though. You can only use
* member functions returning void if your compiler supports partial
* specialization.
*
* All of this complexity is in the function objects themselves. You can
* ignore it by using the helper function mem_fun and mem_fun_ref,
* which create whichever type of adaptor is appropriate.
* (mem_fun1 and mem_fun1_ref are no longer part of the C++ standard,
* but they are provided for backward compatibility.)
*
* @{
*/
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Ret, class _Tp>
class mem_fun_t : public unary_function<_Tp*,_Ret> {
public:
explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
_Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
private:
_Ret (_Tp::*_M_f)();
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Ret, class _Tp>
class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
public:
explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
_Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
private:
_Ret (_Tp::*_M_f)() const;
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Ret, class _Tp>
class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
public:
explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
_Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
private:
_Ret (_Tp::*_M_f)();
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Ret, class _Tp>
class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
public:
explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
_Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
private:
_Ret (_Tp::*_M_f)() const;
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Ret, class _Tp, class _Arg>
class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
public:
explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
_Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
private:
_Ret (_Tp::*_M_f)(_Arg);
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Ret, class _Tp, class _Arg>
class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
public:
explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
_Ret operator()(const _Tp* __p, _Arg __x) const
{ return (__p->*_M_f)(__x); }
private:
_Ret (_Tp::*_M_f)(_Arg) const;
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Ret, class _Tp, class _Arg>
class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
public:
explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
_Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
private:
_Ret (_Tp::*_M_f)(_Arg);
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Ret, class _Tp, class _Arg>
class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
public:
explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
_Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
private:
_Ret (_Tp::*_M_f)(_Arg) const;
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Tp>
class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
public:
explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
void operator()(_Tp* __p) const { (__p->*_M_f)(); }
private:
void (_Tp::*_M_f)();
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Tp>
class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
public:
explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
private:
void (_Tp::*_M_f)() const;
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Tp>
class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
public:
explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
void operator()(_Tp& __r) const { (__r.*_M_f)(); }
private:
void (_Tp::*_M_f)();
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Tp>
class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
public:
explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
private:
void (_Tp::*_M_f)() const;
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Tp, class _Arg>
class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
public:
explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
private:
void (_Tp::*_M_f)(_Arg);
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Tp, class _Arg>
class const_mem_fun1_t<void, _Tp, _Arg>
: public binary_function<const _Tp*,_Arg,void> {
public:
explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
private:
void (_Tp::*_M_f)(_Arg) const;
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Tp, class _Arg>
class mem_fun1_ref_t<void, _Tp, _Arg>
: public binary_function<_Tp,_Arg,void> {
public:
explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
private:
void (_Tp::*_M_f)(_Arg);
};
/// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink.
template <class _Tp, class _Arg>
class const_mem_fun1_ref_t<void, _Tp, _Arg>
: public binary_function<_Tp,_Arg,void> {
public:
explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
private:
void (_Tp::*_M_f)(_Arg) const;
};
// Mem_fun adaptor helper functions. There are only two:
// mem_fun and mem_fun_ref. (mem_fun1 and mem_fun1_ref
// are provided for backward compatibility, but they are no longer
// part of the C++ standard.)
template <class _Ret, class _Tp>
inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
{ return mem_fun_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp>
inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
{ return const_mem_fun_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp>
inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)())
{ return mem_fun_ref_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp>
inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
{ return const_mem_fun_ref_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
/** @} */
} // namespace std
#endif /* __SGI_STL_INTERNAL_FUNCTION_H */
// Local Variables:
// mode:C++
// End: