mirror of
git://gcc.gnu.org/git/gcc.git
synced 2024-12-26 02:49:03 +08:00
3d90ff9352
2001-12-31 Phil Edwards <pme@gcc.gnu.org> * include/bits/stl_bvector.h: Change calls to 3-argument distance() into standard 2-argument version. * include/bits/stl_deque.h: Likewise. * include/bits/stl_tempbuf.h: Likewise. * include/bits/stl_tree.h: Likewise. * include/bits/stl_vector.h: Likewise. * include/ext/stl_hashtable.h: Likewise. * include/bits/stl_iterator_base_funcs.h: Move distance() extension... * include/ext/iterator: to here. New file. * include/Makefile.am (ext_headers): Add new file, alphabatize. * include/Makefile.in: Regenerate. From-SVN: r48428
1576 lines
49 KiB
C++
1576 lines
49 KiB
C++
// deque implementation -*- C++ -*-
|
|
|
|
// Copyright (C) 2001 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1997
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/** @file stl_deque.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#include <bits/concept_check.h>
|
|
#include <bits/stl_iterator_base_types.h>
|
|
#include <bits/stl_iterator_base_funcs.h>
|
|
|
|
#ifndef __GLIBCPP_INTERNAL_DEQUE_H
|
|
#define __GLIBCPP_INTERNAL_DEQUE_H
|
|
|
|
|
|
// Since this entire file is within namespace std, there's no reason to
|
|
// waste two spaces along the left column. Thus the leading indentation is
|
|
// slightly violated from here on.
|
|
namespace std
|
|
{
|
|
|
|
/**
|
|
* @maint
|
|
* @brief This function controls the size of memory nodes.
|
|
* @param size The size of an element.
|
|
* @return The number (not bytesize) of elements per node.
|
|
*
|
|
* This function started off as a compiler kludge from SGI, but seems to
|
|
* be a useful wrapper around a repeated constant expression.
|
|
* @endmaint
|
|
*/
|
|
inline size_t
|
|
__deque_buf_size(size_t __size)
|
|
{ return __size < 512 ? size_t(512 / __size) : size_t(1); }
|
|
|
|
|
|
/// A deque::iterator.
|
|
/**
|
|
* Quite a bit of intelligence here. Much of the functionality of deque is
|
|
* actually passed off to this class. A deque holds two of these internally,
|
|
* marking its valid range. Access to elements is done as offsets of either
|
|
* of those two, relying on operator overloading in this class.
|
|
*
|
|
* @maint
|
|
* All the functions are op overloads except for _M_set_node.
|
|
* @endmaint
|
|
*/
|
|
template <class _Tp, class _Ref, class _Ptr>
|
|
struct _Deque_iterator
|
|
{
|
|
typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
|
|
typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
|
|
static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
|
|
|
|
typedef random_access_iterator_tag iterator_category;
|
|
typedef _Tp value_type;
|
|
typedef _Ptr pointer;
|
|
typedef _Ref reference;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef _Tp** _Map_pointer;
|
|
typedef _Deque_iterator _Self;
|
|
|
|
_Tp* _M_cur;
|
|
_Tp* _M_first;
|
|
_Tp* _M_last;
|
|
_Map_pointer _M_node;
|
|
|
|
_Deque_iterator(_Tp* __x, _Map_pointer __y)
|
|
: _M_cur(__x), _M_first(*__y),
|
|
_M_last(*__y + _S_buffer_size()), _M_node(__y) {}
|
|
_Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
|
|
_Deque_iterator(const iterator& __x)
|
|
: _M_cur(__x._M_cur), _M_first(__x._M_first),
|
|
_M_last(__x._M_last), _M_node(__x._M_node) {}
|
|
|
|
reference operator*() const { return *_M_cur; }
|
|
pointer operator->() const { return _M_cur; }
|
|
|
|
difference_type operator-(const _Self& __x) const {
|
|
return difference_type(_S_buffer_size()) * (_M_node - __x._M_node - 1) +
|
|
(_M_cur - _M_first) + (__x._M_last - __x._M_cur);
|
|
}
|
|
|
|
_Self& operator++() {
|
|
++_M_cur;
|
|
if (_M_cur == _M_last) {
|
|
_M_set_node(_M_node + 1);
|
|
_M_cur = _M_first;
|
|
}
|
|
return *this;
|
|
}
|
|
_Self operator++(int) {
|
|
_Self __tmp = *this;
|
|
++*this;
|
|
return __tmp;
|
|
}
|
|
|
|
_Self& operator--() {
|
|
if (_M_cur == _M_first) {
|
|
_M_set_node(_M_node - 1);
|
|
_M_cur = _M_last;
|
|
}
|
|
--_M_cur;
|
|
return *this;
|
|
}
|
|
_Self operator--(int) {
|
|
_Self __tmp = *this;
|
|
--*this;
|
|
return __tmp;
|
|
}
|
|
|
|
_Self& operator+=(difference_type __n)
|
|
{
|
|
difference_type __offset = __n + (_M_cur - _M_first);
|
|
if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
|
|
_M_cur += __n;
|
|
else {
|
|
difference_type __node_offset =
|
|
__offset > 0 ? __offset / difference_type(_S_buffer_size())
|
|
: -difference_type((-__offset - 1) / _S_buffer_size()) - 1;
|
|
_M_set_node(_M_node + __node_offset);
|
|
_M_cur = _M_first +
|
|
(__offset - __node_offset * difference_type(_S_buffer_size()));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
_Self operator+(difference_type __n) const
|
|
{
|
|
_Self __tmp = *this;
|
|
return __tmp += __n;
|
|
}
|
|
|
|
_Self& operator-=(difference_type __n) { return *this += -__n; }
|
|
|
|
_Self operator-(difference_type __n) const {
|
|
_Self __tmp = *this;
|
|
return __tmp -= __n;
|
|
}
|
|
|
|
reference operator[](difference_type __n) const { return *(*this + __n); }
|
|
|
|
bool operator==(const _Self& __x) const { return _M_cur == __x._M_cur; }
|
|
bool operator!=(const _Self& __x) const { return !(*this == __x); }
|
|
bool operator<(const _Self& __x) const {
|
|
return (_M_node == __x._M_node) ?
|
|
(_M_cur < __x._M_cur) : (_M_node < __x._M_node);
|
|
}
|
|
bool operator>(const _Self& __x) const { return __x < *this; }
|
|
bool operator<=(const _Self& __x) const { return !(__x < *this); }
|
|
bool operator>=(const _Self& __x) const { return !(*this < __x); }
|
|
|
|
/** @maint
|
|
* Prepares to traverse new_node. Sets everything except _M_cur, which
|
|
* should therefore be set by the caller immediately afterwards, based on
|
|
* _M_first and _M_last.
|
|
* @endmaint
|
|
*/
|
|
void _M_set_node(_Map_pointer __new_node) {
|
|
_M_node = __new_node;
|
|
_M_first = *__new_node;
|
|
_M_last = _M_first + difference_type(_S_buffer_size());
|
|
}
|
|
};
|
|
|
|
template <class _Tp, class _Ref, class _Ptr>
|
|
inline _Deque_iterator<_Tp, _Ref, _Ptr>
|
|
operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
|
|
{
|
|
return __x + __n;
|
|
}
|
|
|
|
|
|
/// @maint Primary default version. @endmaint
|
|
/**
|
|
* @maint
|
|
* Deque base class. It has two purposes. First, its constructor
|
|
* and destructor allocate (but don't initialize) storage. This makes
|
|
* exception safety easier. Second, the base class encapsulates all of
|
|
* the differences between SGI-style allocators and standard-conforming
|
|
* allocators. There are two versions: this ordinary one, and the
|
|
* space-saving specialization for instanceless allocators.
|
|
* @endmaint
|
|
*/
|
|
template <class _Tp, class _Alloc, bool __is_static>
|
|
class _Deque_alloc_base
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
|
|
allocator_type get_allocator() const { return _M_node_allocator; }
|
|
|
|
_Deque_alloc_base(const allocator_type& __a)
|
|
: _M_node_allocator(__a), _M_map_allocator(__a),
|
|
_M_map(0), _M_map_size(0)
|
|
{}
|
|
|
|
protected:
|
|
typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type
|
|
_Map_allocator_type;
|
|
|
|
allocator_type _M_node_allocator;
|
|
_Map_allocator_type _M_map_allocator;
|
|
|
|
_Tp* _M_allocate_node() {
|
|
return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp)));
|
|
}
|
|
void _M_deallocate_node(_Tp* __p) {
|
|
_M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp)));
|
|
}
|
|
_Tp** _M_allocate_map(size_t __n)
|
|
{ return _M_map_allocator.allocate(__n); }
|
|
void _M_deallocate_map(_Tp** __p, size_t __n)
|
|
{ _M_map_allocator.deallocate(__p, __n); }
|
|
|
|
_Tp** _M_map;
|
|
size_t _M_map_size;
|
|
};
|
|
|
|
/// Specialization for instanceless allocators.
|
|
template <class _Tp, class _Alloc>
|
|
class _Deque_alloc_base<_Tp, _Alloc, true>
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
|
|
allocator_type get_allocator() const { return allocator_type(); }
|
|
|
|
_Deque_alloc_base(const allocator_type&) : _M_map(0), _M_map_size(0) {}
|
|
|
|
protected:
|
|
typedef typename _Alloc_traits<_Tp, _Alloc>::_Alloc_type _Node_alloc_type;
|
|
typedef typename _Alloc_traits<_Tp*, _Alloc>::_Alloc_type _Map_alloc_type;
|
|
|
|
_Tp* _M_allocate_node() {
|
|
return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
|
|
}
|
|
void _M_deallocate_node(_Tp* __p) {
|
|
_Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
|
|
}
|
|
_Tp** _M_allocate_map(size_t __n)
|
|
{ return _Map_alloc_type::allocate(__n); }
|
|
void _M_deallocate_map(_Tp** __p, size_t __n)
|
|
{ _Map_alloc_type::deallocate(__p, __n); }
|
|
|
|
_Tp** _M_map;
|
|
size_t _M_map_size;
|
|
};
|
|
|
|
|
|
/**
|
|
* @maint
|
|
* Deque base class. Using _Alloc_traits in the instantiation of the parent
|
|
* class provides the compile-time dispatching mentioned in the parent's docs.
|
|
* This class provides the unified face for deque's allocation.
|
|
*
|
|
* Nothing in this class ever constructs or destroys an actual Tp element.
|
|
* (Deque handles that itself.) Only/All memory management is performed here.
|
|
* @endmaint
|
|
*/
|
|
template <class _Tp, class _Alloc>
|
|
class _Deque_base
|
|
: public _Deque_alloc_base<_Tp,_Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
{
|
|
public:
|
|
typedef _Deque_alloc_base<_Tp,_Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
_Base;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator;
|
|
typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
|
|
|
|
_Deque_base(const allocator_type& __a, size_t __num_elements)
|
|
: _Base(__a), _M_start(), _M_finish()
|
|
{ _M_initialize_map(__num_elements); }
|
|
_Deque_base(const allocator_type& __a)
|
|
: _Base(__a), _M_start(), _M_finish() {}
|
|
~_Deque_base();
|
|
|
|
protected:
|
|
void _M_initialize_map(size_t);
|
|
void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
|
|
void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
|
|
enum { _S_initial_map_size = 8 };
|
|
|
|
protected:
|
|
iterator _M_start;
|
|
iterator _M_finish;
|
|
};
|
|
|
|
|
|
template <class _Tp, class _Alloc>
|
|
_Deque_base<_Tp,_Alloc>::~_Deque_base()
|
|
{
|
|
if (_M_map) {
|
|
_M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1);
|
|
_M_deallocate_map(_M_map, _M_map_size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @maint
|
|
* @brief Layout storage.
|
|
* @param num_elements The count of T's for which to allocate space at first.
|
|
* @return Nothing.
|
|
*
|
|
* The initial underlying memory layout is a bit complicated...
|
|
* @endmaint
|
|
*/
|
|
template <class _Tp, class _Alloc>
|
|
void
|
|
_Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
|
|
{
|
|
size_t __num_nodes =
|
|
__num_elements / __deque_buf_size(sizeof(_Tp)) + 1;
|
|
|
|
_M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2);
|
|
_M_map = _M_allocate_map(_M_map_size);
|
|
|
|
_Tp** __nstart = _M_map + (_M_map_size - __num_nodes) / 2;
|
|
_Tp** __nfinish = __nstart + __num_nodes;
|
|
|
|
try
|
|
{ _M_create_nodes(__nstart, __nfinish); }
|
|
catch(...)
|
|
{
|
|
_M_deallocate_map(_M_map, _M_map_size);
|
|
_M_map = 0;
|
|
_M_map_size = 0;
|
|
__throw_exception_again;
|
|
}
|
|
|
|
_M_start._M_set_node(__nstart);
|
|
_M_finish._M_set_node(__nfinish - 1);
|
|
_M_start._M_cur = _M_start._M_first;
|
|
_M_finish._M_cur = _M_finish._M_first +
|
|
__num_elements % __deque_buf_size(sizeof(_Tp));
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
|
|
{
|
|
_Tp** __cur;
|
|
try {
|
|
for (__cur = __nstart; __cur < __nfinish; ++__cur)
|
|
*__cur = _M_allocate_node();
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(__nstart, __cur);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void
|
|
_Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
|
|
{
|
|
for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
|
|
_M_deallocate_node(*__n);
|
|
}
|
|
|
|
|
|
/**
|
|
* Placeholder: see http://www.sgi.com/tech/stl/Deque.html for now.
|
|
*
|
|
* In previous HP/SGI versions of deque, there was an extra template parameter
|
|
* so users could control the node size. This extension turned out to violate
|
|
* the C++ standard (it can be detected using template template parameters),
|
|
* and it was removed.
|
|
*
|
|
* @maint
|
|
* Here's how a deque<Tp> manages memory. Each deque has 4 members:
|
|
*
|
|
* - Tp** _M_map
|
|
* - size_t _M_map_size
|
|
* - iterator _M_start, _M_finish
|
|
*
|
|
* map_size is at least 8. map is an array of map_size pointers-to-"nodes".
|
|
*
|
|
* A "node" has no specific type name as such, but it is referred to as
|
|
* "node" in this file. It is a simple array-of-Tp. If Tp is very large,
|
|
* there will be one Tp element per node (i.e., an "array" of one).
|
|
* For non-huge Tp's, node size is inversely related to Tp size: the
|
|
* larger the Tp, the fewer Tp's will fit in a node. The goal here is to
|
|
* keep the total size of a node relatively small and constant over different
|
|
* Tp's, to improve allocator efficiency.
|
|
*
|
|
* **** As I write this, the nodes are /not/ allocated using the high-speed
|
|
* memory pool. There are 20 hours left in the year; perhaps I can fix
|
|
* this before 2002.
|
|
*
|
|
* Not every pointer in the map array will point to a node. If the initial
|
|
* number of elements in the deque is small, the /middle/ map pointers will
|
|
* be valid, and the ones at the edges will be unused. This same situation
|
|
* will arise as the map grows: available map pointers, if any, will be on
|
|
* the ends. As new nodes are created, only a subset of the map's pointers
|
|
* need to be copied "outward".
|
|
*
|
|
* Class invariants:
|
|
* - For any nonsingular iterator i:
|
|
* - i.node points to a member of the map array. (Yes, you read that
|
|
* correctly: i.node does not actually point to a node.) The member of
|
|
* the map array is what actually points to the node.
|
|
* - i.first == *(i.node) (This points to the node (first Tp element).)
|
|
* - i.last == i.first + node_size
|
|
* - i.cur is a pointer in the range [i.first, i.last). NOTE:
|
|
* the implication of this is that i.cur is always a dereferenceable
|
|
* pointer, even if i is a past-the-end iterator.
|
|
* - Start and Finish are always nonsingular iterators. NOTE: this means that
|
|
* an empty deque must have one node, a deque with <N elements (where N is
|
|
* the node buffer size) must have one node, a deque with N through (2N-1)
|
|
* elements must have two nodes, etc.
|
|
* - For every node other than start.node and finish.node, every element in the
|
|
* node is an initialized object. If start.node == finish.node, then
|
|
* [start.cur, finish.cur) are initialized objects, and the elements outside
|
|
* that range are uninitialized storage. Otherwise, [start.cur, start.last)
|
|
* and [finish.first, finish.cur) are initialized objects, and [start.first,
|
|
* start.cur) and [finish.cur, finish.last) are uninitialized storage.
|
|
* - [map, map + map_size) is a valid, non-empty range.
|
|
* - [start.node, finish.node] is a valid range contained within
|
|
* [map, map + map_size).
|
|
* - A pointer in the range [map, map + map_size) points to an allocated node
|
|
* if and only if the pointer is in the range [start.node, finish.node].
|
|
*
|
|
* Here's the magic: nothing in deque is "aware" of the discontiguous storage!
|
|
*
|
|
* The memory setup and layout occurs in the parent, _Base, and the iterator
|
|
* class is entirely responsible for "leaping" from one node to the next. All
|
|
* the implementation routines for deque itself work only through the start
|
|
* and finish iterators. This keeps the routines simple and sane, and we can
|
|
* use other standard algorithms as well.
|
|
*
|
|
* @endmaint
|
|
*/
|
|
template <class _Tp, class _Alloc = allocator<_Tp> >
|
|
class deque : protected _Deque_base<_Tp, _Alloc>
|
|
{
|
|
// concept requirements
|
|
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
|
|
|
|
typedef _Deque_base<_Tp, _Alloc> _Base;
|
|
|
|
public:
|
|
typedef _Tp value_type;
|
|
typedef value_type* pointer;
|
|
typedef const value_type* const_pointer;
|
|
typedef value_type& reference;
|
|
typedef const value_type& const_reference;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
allocator_type get_allocator() const { return _Base::get_allocator(); }
|
|
|
|
typedef typename _Base::iterator iterator;
|
|
typedef typename _Base::const_iterator const_iterator;
|
|
typedef reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef reverse_iterator<iterator> reverse_iterator;
|
|
|
|
protected:
|
|
typedef pointer* _Map_pointer;
|
|
static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
|
|
|
|
// Functions controlling memory layout, and nothing else.
|
|
using _Base::_M_initialize_map;
|
|
using _Base::_M_create_nodes;
|
|
using _Base::_M_destroy_nodes;
|
|
using _Base::_M_allocate_node;
|
|
using _Base::_M_deallocate_node;
|
|
using _Base::_M_allocate_map;
|
|
using _Base::_M_deallocate_map;
|
|
|
|
/** @maint
|
|
* A total of four data members accumulated down the heirarchy. If the
|
|
* _Alloc type requires separate instances, then two of them will also be
|
|
* included in each deque.
|
|
* @endmaint
|
|
*/
|
|
using _Base::_M_map;
|
|
using _Base::_M_map_size;
|
|
using _Base::_M_start;
|
|
using _Base::_M_finish;
|
|
|
|
public: // Basic accessors
|
|
iterator begin() { return _M_start; }
|
|
iterator end() { return _M_finish; }
|
|
const_iterator begin() const { return _M_start; }
|
|
const_iterator end() const { return _M_finish; }
|
|
|
|
reverse_iterator rbegin() { return reverse_iterator(_M_finish); }
|
|
reverse_iterator rend() { return reverse_iterator(_M_start); }
|
|
const_reverse_iterator rbegin() const
|
|
{ return const_reverse_iterator(_M_finish); }
|
|
const_reverse_iterator rend() const
|
|
{ return const_reverse_iterator(_M_start); }
|
|
|
|
reference operator[](size_type __n)
|
|
{ return _M_start[difference_type(__n)]; }
|
|
const_reference operator[](size_type __n) const
|
|
{ return _M_start[difference_type(__n)]; }
|
|
|
|
void _M_range_check(size_type __n) const {
|
|
if (__n >= this->size())
|
|
__throw_range_error("deque");
|
|
}
|
|
|
|
reference at(size_type __n)
|
|
{ _M_range_check(__n); return (*this)[__n]; }
|
|
const_reference at(size_type __n) const
|
|
{ _M_range_check(__n); return (*this)[__n]; }
|
|
|
|
reference front() { return *_M_start; }
|
|
reference back() {
|
|
iterator __tmp = _M_finish;
|
|
--__tmp;
|
|
return *__tmp;
|
|
}
|
|
const_reference front() const { return *_M_start; }
|
|
const_reference back() const {
|
|
const_iterator __tmp = _M_finish;
|
|
--__tmp;
|
|
return *__tmp;
|
|
}
|
|
|
|
size_type size() const { return _M_finish - _M_start; }
|
|
size_type max_size() const { return size_type(-1); }
|
|
bool empty() const { return _M_finish == _M_start; }
|
|
|
|
public: // Constructor, destructor.
|
|
explicit deque(const allocator_type& __a = allocator_type())
|
|
: _Base(__a, 0) {}
|
|
deque(const deque& __x) : _Base(__x.get_allocator(), __x.size())
|
|
{ uninitialized_copy(__x.begin(), __x.end(), _M_start); }
|
|
deque(size_type __n, const value_type& __value,
|
|
const allocator_type& __a = allocator_type()) : _Base(__a, __n)
|
|
{ _M_fill_initialize(__value); }
|
|
|
|
explicit
|
|
deque(size_type __n)
|
|
: _Base(allocator_type(), __n)
|
|
{ _M_fill_initialize(value_type()); }
|
|
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
template<class _InputIterator>
|
|
deque(_InputIterator __first, _InputIterator __last,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_initialize_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
template<class _Integer>
|
|
void
|
|
_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
|
|
{
|
|
_M_initialize_map(__n);
|
|
_M_fill_initialize(__x);
|
|
}
|
|
|
|
template<class _InputIter>
|
|
void
|
|
_M_initialize_dispatch(_InputIter __first, _InputIter __last, __false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory;
|
|
_M_range_initialize(__first, __last, _IterCategory());
|
|
}
|
|
|
|
~deque()
|
|
{ _Destroy(_M_start, _M_finish); }
|
|
|
|
deque& operator= (const deque& __x) {
|
|
const size_type __len = size();
|
|
if (&__x != this) {
|
|
if (__len >= __x.size())
|
|
erase(copy(__x.begin(), __x.end(), _M_start), _M_finish);
|
|
else {
|
|
const_iterator __mid = __x.begin() + difference_type(__len);
|
|
copy(__x.begin(), __mid, _M_start);
|
|
insert(_M_finish, __mid, __x.end());
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void swap(deque& __x) {
|
|
std::swap(_M_start, __x._M_start);
|
|
std::swap(_M_finish, __x._M_finish);
|
|
std::swap(_M_map, __x._M_map);
|
|
std::swap(_M_map_size, __x._M_map_size);
|
|
}
|
|
|
|
public:
|
|
// assign(), a generalized assignment member function. Two
|
|
// versions: one that takes a count, and one that takes a range.
|
|
// The range version is a member template, so we dispatch on whether
|
|
// or not the type is an integer.
|
|
|
|
void _M_fill_assign(size_type __n, const _Tp& __val) {
|
|
if (__n > size()) {
|
|
fill(begin(), end(), __val);
|
|
insert(end(), __n - size(), __val);
|
|
}
|
|
else {
|
|
erase(begin() + __n, end());
|
|
fill(begin(), end(), __val);
|
|
}
|
|
}
|
|
|
|
void
|
|
assign(size_type __n, const _Tp& __val)
|
|
{ _M_fill_assign(__n, __val); }
|
|
|
|
template<class _InputIterator>
|
|
void
|
|
assign(_InputIterator __first, _InputIterator __last)
|
|
{
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_assign_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
private: // helper functions for assign()
|
|
|
|
template<class _Integer>
|
|
void
|
|
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
|
|
{ _M_fill_assign(static_cast<size_type>(__n), static_cast<_Tp>(__val)); }
|
|
|
|
template<class _InputIterator>
|
|
void
|
|
_M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
|
|
_M_assign_aux(__first, __last, _IterCategory());
|
|
}
|
|
|
|
template <class _InputIterator>
|
|
void _M_assign_aux(_InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag);
|
|
|
|
template <class _ForwardIterator>
|
|
void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag) {
|
|
size_type __len = distance(__first, __last);
|
|
if (__len > size()) {
|
|
_ForwardIterator __mid = __first;
|
|
advance(__mid, size());
|
|
copy(__first, __mid, begin());
|
|
insert(end(), __mid, __last);
|
|
}
|
|
else
|
|
erase(copy(__first, __last, begin()), end());
|
|
}
|
|
|
|
public: // push_* and pop_*
|
|
|
|
void
|
|
push_back(const value_type& __t)
|
|
{
|
|
if (_M_finish._M_cur != _M_finish._M_last - 1) {
|
|
_Construct(_M_finish._M_cur, __t);
|
|
++_M_finish._M_cur;
|
|
}
|
|
else
|
|
_M_push_back_aux(__t);
|
|
}
|
|
|
|
void
|
|
push_back()
|
|
{
|
|
if (_M_finish._M_cur != _M_finish._M_last - 1) {
|
|
_Construct(_M_finish._M_cur);
|
|
++_M_finish._M_cur;
|
|
}
|
|
else
|
|
_M_push_back_aux();
|
|
}
|
|
|
|
void
|
|
push_front(const value_type& __t)
|
|
{
|
|
if (_M_start._M_cur != _M_start._M_first) {
|
|
_Construct(_M_start._M_cur - 1, __t);
|
|
--_M_start._M_cur;
|
|
}
|
|
else
|
|
_M_push_front_aux(__t);
|
|
}
|
|
|
|
void
|
|
push_front()
|
|
{
|
|
if (_M_start._M_cur != _M_start._M_first) {
|
|
_Construct(_M_start._M_cur - 1);
|
|
--_M_start._M_cur;
|
|
}
|
|
else
|
|
_M_push_front_aux();
|
|
}
|
|
|
|
|
|
void
|
|
pop_back()
|
|
{
|
|
if (_M_finish._M_cur != _M_finish._M_first) {
|
|
--_M_finish._M_cur;
|
|
_Destroy(_M_finish._M_cur);
|
|
}
|
|
else
|
|
_M_pop_back_aux();
|
|
}
|
|
|
|
void
|
|
pop_front()
|
|
{
|
|
if (_M_start._M_cur != _M_start._M_last - 1) {
|
|
_Destroy(_M_start._M_cur);
|
|
++_M_start._M_cur;
|
|
}
|
|
else
|
|
_M_pop_front_aux();
|
|
}
|
|
|
|
public: // Insert
|
|
|
|
iterator
|
|
insert(iterator position, const value_type& __x)
|
|
{
|
|
if (position._M_cur == _M_start._M_cur) {
|
|
push_front(__x);
|
|
return _M_start;
|
|
}
|
|
else if (position._M_cur == _M_finish._M_cur) {
|
|
push_back(__x);
|
|
iterator __tmp = _M_finish;
|
|
--__tmp;
|
|
return __tmp;
|
|
}
|
|
else {
|
|
return _M_insert_aux(position, __x);
|
|
}
|
|
}
|
|
|
|
iterator
|
|
insert(iterator __position)
|
|
{ return insert(__position, value_type()); }
|
|
|
|
void
|
|
insert(iterator __pos, size_type __n, const value_type& __x)
|
|
{ _M_fill_insert(__pos, __n, __x); }
|
|
|
|
void
|
|
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
|
|
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
template<class _InputIterator>
|
|
void
|
|
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
|
|
{
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_insert_dispatch(__pos, __first, __last, _Integral());
|
|
}
|
|
|
|
template<class _Integer>
|
|
void
|
|
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, __true_type)
|
|
{ _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<value_type>(__x)); }
|
|
|
|
template<class _InputIterator>
|
|
void
|
|
_M_insert_dispatch(iterator __pos,
|
|
_InputIterator __first, _InputIterator __last,
|
|
__false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
|
|
insert(__pos, __first, __last, _IterCategory());
|
|
}
|
|
|
|
void resize(size_type __new_size, const value_type& __x) {
|
|
const size_type __len = size();
|
|
if (__new_size < __len)
|
|
erase(_M_start + __new_size, _M_finish);
|
|
else
|
|
insert(_M_finish, __new_size - __len, __x);
|
|
}
|
|
|
|
void resize(size_type new_size) { resize(new_size, value_type()); }
|
|
|
|
public: // Erase
|
|
iterator erase(iterator __pos) {
|
|
iterator __next = __pos;
|
|
++__next;
|
|
size_type __index = __pos - _M_start;
|
|
if (__index < (size() >> 1)) {
|
|
copy_backward(_M_start, __pos, __next);
|
|
pop_front();
|
|
}
|
|
else {
|
|
copy(__next, _M_finish, __pos);
|
|
pop_back();
|
|
}
|
|
return _M_start + __index;
|
|
}
|
|
|
|
iterator erase(iterator __first, iterator __last);
|
|
void clear();
|
|
|
|
protected: // Internal construction/destruction
|
|
|
|
void _M_fill_initialize(const value_type& __value);
|
|
|
|
template <class _InputIterator>
|
|
void _M_range_initialize(_InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag);
|
|
|
|
template <class _ForwardIterator>
|
|
void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag);
|
|
|
|
protected: // Internal push_* and pop_*
|
|
|
|
void _M_push_back_aux(const value_type&);
|
|
void _M_push_back_aux();
|
|
void _M_push_front_aux(const value_type&);
|
|
void _M_push_front_aux();
|
|
void _M_pop_back_aux();
|
|
void _M_pop_front_aux();
|
|
|
|
protected: // Internal insert functions
|
|
|
|
template <class _InputIterator>
|
|
void insert(iterator __pos, _InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag);
|
|
|
|
template <class _ForwardIterator>
|
|
void insert(iterator __pos,
|
|
_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag);
|
|
|
|
iterator _M_insert_aux(iterator __pos, const value_type& __x);
|
|
iterator _M_insert_aux(iterator __pos);
|
|
void _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
|
|
|
|
template <class _ForwardIterator>
|
|
void _M_insert_aux(iterator __pos,
|
|
_ForwardIterator __first, _ForwardIterator __last,
|
|
size_type __n);
|
|
|
|
iterator _M_reserve_elements_at_front(size_type __n) {
|
|
size_type __vacancies = _M_start._M_cur - _M_start._M_first;
|
|
if (__n > __vacancies)
|
|
_M_new_elements_at_front(__n - __vacancies);
|
|
return _M_start - difference_type(__n);
|
|
}
|
|
|
|
iterator _M_reserve_elements_at_back(size_type __n) {
|
|
size_type __vacancies = (_M_finish._M_last - _M_finish._M_cur) - 1;
|
|
if (__n > __vacancies)
|
|
_M_new_elements_at_back(__n - __vacancies);
|
|
return _M_finish + difference_type(__n);
|
|
}
|
|
|
|
void _M_new_elements_at_front(size_type __new_elements);
|
|
void _M_new_elements_at_back(size_type __new_elements);
|
|
|
|
protected: // Allocation of _M_map and nodes
|
|
|
|
// Makes sure the _M_map has space for new nodes. Does not actually
|
|
// add the nodes. Can invalidate _M_map pointers. (And consequently,
|
|
// deque iterators.)
|
|
|
|
void _M_reserve_map_at_back (size_type __nodes_to_add = 1) {
|
|
if (__nodes_to_add + 1 > _M_map_size - (_M_finish._M_node - _M_map))
|
|
_M_reallocate_map(__nodes_to_add, false);
|
|
}
|
|
|
|
void _M_reserve_map_at_front (size_type __nodes_to_add = 1) {
|
|
if (__nodes_to_add > size_type(_M_start._M_node - _M_map))
|
|
_M_reallocate_map(__nodes_to_add, true);
|
|
}
|
|
|
|
void _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
|
|
};
|
|
|
|
// Non-inline member functions
|
|
|
|
template <class _Tp, class _Alloc>
|
|
template <class _InputIter>
|
|
void deque<_Tp, _Alloc>
|
|
::_M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag)
|
|
{
|
|
iterator __cur = begin();
|
|
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
|
|
*__cur = *__first;
|
|
if (__first == __last)
|
|
erase(__cur, end());
|
|
else
|
|
insert(end(), __first, __last);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void deque<_Tp, _Alloc>::_M_fill_insert(iterator __pos,
|
|
size_type __n, const value_type& __x)
|
|
{
|
|
if (__pos._M_cur == _M_start._M_cur) {
|
|
iterator __new_start = _M_reserve_elements_at_front(__n);
|
|
try {
|
|
uninitialized_fill(__new_start, _M_start, __x);
|
|
_M_start = __new_start;
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(__new_start._M_node, _M_start._M_node);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
else if (__pos._M_cur == _M_finish._M_cur) {
|
|
iterator __new_finish = _M_reserve_elements_at_back(__n);
|
|
try {
|
|
uninitialized_fill(_M_finish, __new_finish, __x);
|
|
_M_finish = __new_finish;
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
else
|
|
_M_insert_aux(__pos, __n, __x);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
typename deque<_Tp,_Alloc>::iterator
|
|
deque<_Tp,_Alloc>::erase(iterator __first, iterator __last)
|
|
{
|
|
if (__first == _M_start && __last == _M_finish) {
|
|
clear();
|
|
return _M_finish;
|
|
}
|
|
else {
|
|
difference_type __n = __last - __first;
|
|
difference_type __elems_before = __first - _M_start;
|
|
if (static_cast<size_type>(__elems_before) < (size() - __n) / 2) {
|
|
copy_backward(_M_start, __first, __last);
|
|
iterator __new_start = _M_start + __n;
|
|
_Destroy(_M_start, __new_start);
|
|
_M_destroy_nodes(_M_start._M_node, __new_start._M_node);
|
|
_M_start = __new_start;
|
|
}
|
|
else {
|
|
copy(__last, _M_finish, __first);
|
|
iterator __new_finish = _M_finish - __n;
|
|
_Destroy(__new_finish, _M_finish);
|
|
_M_destroy_nodes(__new_finish._M_node + 1, _M_finish._M_node + 1);
|
|
_M_finish = __new_finish;
|
|
}
|
|
return _M_start + __elems_before;
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void deque<_Tp,_Alloc>::clear()
|
|
{
|
|
for (_Map_pointer __node = _M_start._M_node + 1;
|
|
__node < _M_finish._M_node;
|
|
++__node) {
|
|
_Destroy(*__node, *__node + _S_buffer_size());
|
|
_M_deallocate_node(*__node);
|
|
}
|
|
|
|
if (_M_start._M_node != _M_finish._M_node) {
|
|
_Destroy(_M_start._M_cur, _M_start._M_last);
|
|
_Destroy(_M_finish._M_first, _M_finish._M_cur);
|
|
_M_deallocate_node(_M_finish._M_first);
|
|
}
|
|
else
|
|
_Destroy(_M_start._M_cur, _M_finish._M_cur);
|
|
|
|
_M_finish = _M_start;
|
|
}
|
|
|
|
/**
|
|
* @maint
|
|
* @brief Fills the deque with copies of value.
|
|
* @param value Initial value.
|
|
* @return Nothing.
|
|
* @pre _M_start and _M_finish have already been initialized, but none of the
|
|
* deque's elements have yet been constructed.
|
|
*
|
|
* This function is called only when the user provides an explicit size (with
|
|
* or without an explicit exemplar value).
|
|
* @endmaint
|
|
*/
|
|
template <class _Tp, class _Alloc>
|
|
void deque<_Tp,_Alloc>::_M_fill_initialize(const value_type& __value)
|
|
{
|
|
_Map_pointer __cur;
|
|
try {
|
|
for (__cur = _M_start._M_node; __cur < _M_finish._M_node; ++__cur)
|
|
uninitialized_fill(*__cur, *__cur + _S_buffer_size(), __value);
|
|
uninitialized_fill(_M_finish._M_first, _M_finish._M_cur, __value);
|
|
}
|
|
catch(...)
|
|
{
|
|
_Destroy(_M_start, iterator(*__cur, __cur));
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
/** @{
|
|
* @maint
|
|
* @brief Fills the deque with whatever is in [first,last).
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
* @return Nothing.
|
|
*
|
|
* If the iterators are actually forward iterators (or better), then the
|
|
* memory layout can be done all at once. Else we move forward using
|
|
* push_back on each value from the iterator.
|
|
* @endmaint
|
|
*/
|
|
template <class _Tp, class _Alloc> template <class _InputIterator>
|
|
void deque<_Tp,_Alloc>::_M_range_initialize(_InputIterator __first,
|
|
_InputIterator __last,
|
|
input_iterator_tag)
|
|
{
|
|
_M_initialize_map(0);
|
|
try {
|
|
for ( ; __first != __last; ++__first)
|
|
push_back(*__first);
|
|
}
|
|
catch(...)
|
|
{
|
|
clear();
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc> template <class _ForwardIterator>
|
|
void deque<_Tp,_Alloc>::_M_range_initialize(_ForwardIterator __first,
|
|
_ForwardIterator __last,
|
|
forward_iterator_tag)
|
|
{
|
|
size_type __n = distance(__first, __last);
|
|
_M_initialize_map(__n);
|
|
|
|
_Map_pointer __cur_node;
|
|
try {
|
|
for (__cur_node = _M_start._M_node;
|
|
__cur_node < _M_finish._M_node;
|
|
++__cur_node) {
|
|
_ForwardIterator __mid = __first;
|
|
advance(__mid, _S_buffer_size());
|
|
uninitialized_copy(__first, __mid, *__cur_node);
|
|
__first = __mid;
|
|
}
|
|
uninitialized_copy(__first, __last, _M_finish._M_first);
|
|
}
|
|
catch(...)
|
|
{
|
|
_Destroy(_M_start, iterator(*__cur_node, __cur_node));
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
/** @} */
|
|
|
|
// Called only if _M_finish._M_cur == _M_finish._M_last - 1.
|
|
template <class _Tp, class _Alloc>
|
|
void
|
|
deque<_Tp,_Alloc>::_M_push_back_aux(const value_type& __t)
|
|
{
|
|
value_type __t_copy = __t;
|
|
_M_reserve_map_at_back();
|
|
*(_M_finish._M_node + 1) = _M_allocate_node();
|
|
try {
|
|
_Construct(_M_finish._M_cur, __t_copy);
|
|
_M_finish._M_set_node(_M_finish._M_node + 1);
|
|
_M_finish._M_cur = _M_finish._M_first;
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_deallocate_node(*(_M_finish._M_node + 1));
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
// Called only if _M_finish._M_cur == _M_finish._M_last - 1.
|
|
template <class _Tp, class _Alloc>
|
|
void
|
|
deque<_Tp,_Alloc>::_M_push_back_aux()
|
|
{
|
|
_M_reserve_map_at_back();
|
|
*(_M_finish._M_node + 1) = _M_allocate_node();
|
|
try {
|
|
_Construct(_M_finish._M_cur);
|
|
_M_finish._M_set_node(_M_finish._M_node + 1);
|
|
_M_finish._M_cur = _M_finish._M_first;
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_deallocate_node(*(_M_finish._M_node + 1));
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
// Called only if _M_start._M_cur == _M_start._M_first.
|
|
template <class _Tp, class _Alloc>
|
|
void
|
|
deque<_Tp,_Alloc>::_M_push_front_aux(const value_type& __t)
|
|
{
|
|
value_type __t_copy = __t;
|
|
_M_reserve_map_at_front();
|
|
*(_M_start._M_node - 1) = _M_allocate_node();
|
|
try {
|
|
_M_start._M_set_node(_M_start._M_node - 1);
|
|
_M_start._M_cur = _M_start._M_last - 1;
|
|
_Construct(_M_start._M_cur, __t_copy);
|
|
}
|
|
catch(...)
|
|
{
|
|
++_M_start;
|
|
_M_deallocate_node(*(_M_start._M_node - 1));
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
// Called only if _M_start._M_cur == _M_start._M_first.
|
|
template <class _Tp, class _Alloc>
|
|
void
|
|
deque<_Tp,_Alloc>::_M_push_front_aux()
|
|
{
|
|
_M_reserve_map_at_front();
|
|
*(_M_start._M_node - 1) = _M_allocate_node();
|
|
try {
|
|
_M_start._M_set_node(_M_start._M_node - 1);
|
|
_M_start._M_cur = _M_start._M_last - 1;
|
|
_Construct(_M_start._M_cur);
|
|
}
|
|
catch(...)
|
|
{
|
|
++_M_start;
|
|
_M_deallocate_node(*(_M_start._M_node - 1));
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
// Called only if _M_finish._M_cur == _M_finish._M_first.
|
|
template <class _Tp, class _Alloc>
|
|
void deque<_Tp,_Alloc>::_M_pop_back_aux()
|
|
{
|
|
_M_deallocate_node(_M_finish._M_first);
|
|
_M_finish._M_set_node(_M_finish._M_node - 1);
|
|
_M_finish._M_cur = _M_finish._M_last - 1;
|
|
_Destroy(_M_finish._M_cur);
|
|
}
|
|
|
|
// Called only if _M_start._M_cur == _M_start._M_last - 1. Note that
|
|
// if the deque has at least one element (a precondition for this member
|
|
// function), and if _M_start._M_cur == _M_start._M_last, then the deque
|
|
// must have at least two nodes.
|
|
template <class _Tp, class _Alloc>
|
|
void deque<_Tp,_Alloc>::_M_pop_front_aux()
|
|
{
|
|
_Destroy(_M_start._M_cur);
|
|
_M_deallocate_node(_M_start._M_first);
|
|
_M_start._M_set_node(_M_start._M_node + 1);
|
|
_M_start._M_cur = _M_start._M_first;
|
|
}
|
|
|
|
template <class _Tp, class _Alloc> template <class _InputIterator>
|
|
void deque<_Tp,_Alloc>::insert(iterator __pos,
|
|
_InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag)
|
|
{
|
|
copy(__first, __last, inserter(*this, __pos));
|
|
}
|
|
|
|
template <class _Tp, class _Alloc> template <class _ForwardIterator>
|
|
void
|
|
deque<_Tp,_Alloc>::insert(iterator __pos,
|
|
_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag) {
|
|
size_type __n = distance(__first, __last);
|
|
if (__pos._M_cur == _M_start._M_cur) {
|
|
iterator __new_start = _M_reserve_elements_at_front(__n);
|
|
try {
|
|
uninitialized_copy(__first, __last, __new_start);
|
|
_M_start = __new_start;
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(__new_start._M_node, _M_start._M_node);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
else if (__pos._M_cur == _M_finish._M_cur) {
|
|
iterator __new_finish = _M_reserve_elements_at_back(__n);
|
|
try {
|
|
uninitialized_copy(__first, __last, _M_finish);
|
|
_M_finish = __new_finish;
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
else
|
|
_M_insert_aux(__pos, __first, __last, __n);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
typename deque<_Tp, _Alloc>::iterator
|
|
deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos, const value_type& __x)
|
|
{
|
|
difference_type __index = __pos - _M_start;
|
|
value_type __x_copy = __x;
|
|
if (static_cast<size_type>(__index) < size() / 2) {
|
|
push_front(front());
|
|
iterator __front1 = _M_start;
|
|
++__front1;
|
|
iterator __front2 = __front1;
|
|
++__front2;
|
|
__pos = _M_start + __index;
|
|
iterator __pos1 = __pos;
|
|
++__pos1;
|
|
copy(__front2, __pos1, __front1);
|
|
}
|
|
else {
|
|
push_back(back());
|
|
iterator __back1 = _M_finish;
|
|
--__back1;
|
|
iterator __back2 = __back1;
|
|
--__back2;
|
|
__pos = _M_start + __index;
|
|
copy_backward(__pos, __back2, __back1);
|
|
}
|
|
*__pos = __x_copy;
|
|
return __pos;
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
typename deque<_Tp,_Alloc>::iterator
|
|
deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos)
|
|
{
|
|
difference_type __index = __pos - _M_start;
|
|
if (static_cast<size_type>(__index) < size() / 2) {
|
|
push_front(front());
|
|
iterator __front1 = _M_start;
|
|
++__front1;
|
|
iterator __front2 = __front1;
|
|
++__front2;
|
|
__pos = _M_start + __index;
|
|
iterator __pos1 = __pos;
|
|
++__pos1;
|
|
copy(__front2, __pos1, __front1);
|
|
}
|
|
else {
|
|
push_back(back());
|
|
iterator __back1 = _M_finish;
|
|
--__back1;
|
|
iterator __back2 = __back1;
|
|
--__back2;
|
|
__pos = _M_start + __index;
|
|
copy_backward(__pos, __back2, __back1);
|
|
}
|
|
*__pos = value_type();
|
|
return __pos;
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos,
|
|
size_type __n,
|
|
const value_type& __x)
|
|
{
|
|
const difference_type __elems_before = __pos - _M_start;
|
|
size_type __length = this->size();
|
|
value_type __x_copy = __x;
|
|
if (__elems_before < difference_type(__length / 2)) {
|
|
iterator __new_start = _M_reserve_elements_at_front(__n);
|
|
iterator __old_start = _M_start;
|
|
__pos = _M_start + __elems_before;
|
|
try {
|
|
if (__elems_before >= difference_type(__n)) {
|
|
iterator __start_n = _M_start + difference_type(__n);
|
|
uninitialized_copy(_M_start, __start_n, __new_start);
|
|
_M_start = __new_start;
|
|
copy(__start_n, __pos, __old_start);
|
|
fill(__pos - difference_type(__n), __pos, __x_copy);
|
|
}
|
|
else {
|
|
__uninitialized_copy_fill(_M_start, __pos, __new_start,
|
|
_M_start, __x_copy);
|
|
_M_start = __new_start;
|
|
fill(__old_start, __pos, __x_copy);
|
|
}
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(__new_start._M_node, _M_start._M_node);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
else {
|
|
iterator __new_finish = _M_reserve_elements_at_back(__n);
|
|
iterator __old_finish = _M_finish;
|
|
const difference_type __elems_after =
|
|
difference_type(__length) - __elems_before;
|
|
__pos = _M_finish - __elems_after;
|
|
try {
|
|
if (__elems_after > difference_type(__n)) {
|
|
iterator __finish_n = _M_finish - difference_type(__n);
|
|
uninitialized_copy(__finish_n, _M_finish, _M_finish);
|
|
_M_finish = __new_finish;
|
|
copy_backward(__pos, __finish_n, __old_finish);
|
|
fill(__pos, __pos + difference_type(__n), __x_copy);
|
|
}
|
|
else {
|
|
__uninitialized_fill_copy(_M_finish, __pos + difference_type(__n),
|
|
__x_copy, __pos, _M_finish);
|
|
_M_finish = __new_finish;
|
|
fill(__pos, __old_finish, __x_copy);
|
|
}
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc> template <class _ForwardIterator>
|
|
void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos,
|
|
_ForwardIterator __first,
|
|
_ForwardIterator __last,
|
|
size_type __n)
|
|
{
|
|
const difference_type __elemsbefore = __pos - _M_start;
|
|
size_type __length = size();
|
|
if (static_cast<size_type>(__elemsbefore) < __length / 2) {
|
|
iterator __new_start = _M_reserve_elements_at_front(__n);
|
|
iterator __old_start = _M_start;
|
|
__pos = _M_start + __elemsbefore;
|
|
try {
|
|
if (__elemsbefore >= difference_type(__n)) {
|
|
iterator __start_n = _M_start + difference_type(__n);
|
|
uninitialized_copy(_M_start, __start_n, __new_start);
|
|
_M_start = __new_start;
|
|
copy(__start_n, __pos, __old_start);
|
|
copy(__first, __last, __pos - difference_type(__n));
|
|
}
|
|
else {
|
|
_ForwardIterator __mid = __first;
|
|
advance(__mid, difference_type(__n) - __elemsbefore);
|
|
__uninitialized_copy_copy(_M_start, __pos, __first, __mid,
|
|
__new_start);
|
|
_M_start = __new_start;
|
|
copy(__mid, __last, __old_start);
|
|
}
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(__new_start._M_node, _M_start._M_node);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
else {
|
|
iterator __new_finish = _M_reserve_elements_at_back(__n);
|
|
iterator __old_finish = _M_finish;
|
|
const difference_type __elemsafter =
|
|
difference_type(__length) - __elemsbefore;
|
|
__pos = _M_finish - __elemsafter;
|
|
try {
|
|
if (__elemsafter > difference_type(__n)) {
|
|
iterator __finish_n = _M_finish - difference_type(__n);
|
|
uninitialized_copy(__finish_n, _M_finish, _M_finish);
|
|
_M_finish = __new_finish;
|
|
copy_backward(__pos, __finish_n, __old_finish);
|
|
copy(__first, __last, __pos);
|
|
}
|
|
else {
|
|
_ForwardIterator __mid = __first;
|
|
advance(__mid, __elemsafter);
|
|
__uninitialized_copy_copy(__mid, __last, __pos, _M_finish, _M_finish);
|
|
_M_finish = __new_finish;
|
|
copy(__first, __mid, __pos);
|
|
}
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void deque<_Tp,_Alloc>::_M_new_elements_at_front(size_type __new_elems)
|
|
{
|
|
size_type __new_nodes
|
|
= (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
|
|
_M_reserve_map_at_front(__new_nodes);
|
|
size_type __i;
|
|
try {
|
|
for (__i = 1; __i <= __new_nodes; ++__i)
|
|
*(_M_start._M_node - __i) = _M_allocate_node();
|
|
}
|
|
catch(...) {
|
|
for (size_type __j = 1; __j < __i; ++__j)
|
|
_M_deallocate_node(*(_M_start._M_node - __j));
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void deque<_Tp,_Alloc>::_M_new_elements_at_back(size_type __new_elems)
|
|
{
|
|
size_type __new_nodes
|
|
= (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
|
|
_M_reserve_map_at_back(__new_nodes);
|
|
size_type __i;
|
|
try {
|
|
for (__i = 1; __i <= __new_nodes; ++__i)
|
|
*(_M_finish._M_node + __i) = _M_allocate_node();
|
|
}
|
|
catch(...) {
|
|
for (size_type __j = 1; __j < __i; ++__j)
|
|
_M_deallocate_node(*(_M_finish._M_node + __j));
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void deque<_Tp,_Alloc>::_M_reallocate_map(size_type __nodes_to_add,
|
|
bool __add_at_front)
|
|
{
|
|
size_type __old_num_nodes = _M_finish._M_node - _M_start._M_node + 1;
|
|
size_type __new_num_nodes = __old_num_nodes + __nodes_to_add;
|
|
|
|
_Map_pointer __new_nstart;
|
|
if (_M_map_size > 2 * __new_num_nodes) {
|
|
__new_nstart = _M_map + (_M_map_size - __new_num_nodes) / 2
|
|
+ (__add_at_front ? __nodes_to_add : 0);
|
|
if (__new_nstart < _M_start._M_node)
|
|
copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart);
|
|
else
|
|
copy_backward(_M_start._M_node, _M_finish._M_node + 1,
|
|
__new_nstart + __old_num_nodes);
|
|
}
|
|
else {
|
|
size_type __new_map_size =
|
|
_M_map_size + max(_M_map_size, __nodes_to_add) + 2;
|
|
|
|
_Map_pointer __new_map = _M_allocate_map(__new_map_size);
|
|
__new_nstart = __new_map + (__new_map_size - __new_num_nodes) / 2
|
|
+ (__add_at_front ? __nodes_to_add : 0);
|
|
copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart);
|
|
_M_deallocate_map(_M_map, _M_map_size);
|
|
|
|
_M_map = __new_map;
|
|
_M_map_size = __new_map_size;
|
|
}
|
|
|
|
_M_start._M_set_node(__new_nstart);
|
|
_M_finish._M_set_node(__new_nstart + __old_num_nodes - 1);
|
|
}
|
|
|
|
|
|
// Nonmember functions.
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool operator==(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return __x.size() == __y.size() &&
|
|
equal(__x.begin(), __x.end(), __y.begin());
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool operator<(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return lexicographical_compare(__x.begin(), __x.end(),
|
|
__y.begin(), __y.end());
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool operator!=(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return !(__x == __y);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool operator>(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return __y < __x;
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool operator<=(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return !(__y < __x);
|
|
}
|
|
template <class _Tp, class _Alloc>
|
|
inline bool operator>=(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return !(__x < __y);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) {
|
|
__x.swap(__y);
|
|
}
|
|
|
|
} // namespace std
|
|
|
|
#endif /* __GLIBCPP_INTERNAL_DEQUE_H */
|
|
|
|
// Local Variables:
|
|
// mode:C++
|
|
// End:
|