mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-13 10:34:51 +08:00
2ac84cfe01
* expr.c (expand_expr): Cope with COND_EXPRs with one non-returning branch. From-SVN: r28825
9716 lines
303 KiB
C
9716 lines
303 KiB
C
/* Convert tree expression to rtl instructions, for GNU compiler.
|
||
Copyright (C) 1988, 92-98, 1999 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "machmode.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "obstack.h"
|
||
#include "flags.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "except.h"
|
||
#include "function.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
#include "insn-config.h"
|
||
/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
|
||
#include "expr.h"
|
||
#include "recog.h"
|
||
#include "output.h"
|
||
#include "typeclass.h"
|
||
#include "defaults.h"
|
||
#include "toplev.h"
|
||
|
||
#define CEIL(x,y) (((x) + (y) - 1) / (y))
|
||
|
||
/* Decide whether a function's arguments should be processed
|
||
from first to last or from last to first.
|
||
|
||
They should if the stack and args grow in opposite directions, but
|
||
only if we have push insns. */
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
|
||
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
|
||
#define PUSH_ARGS_REVERSED /* If it's last to first */
|
||
#endif
|
||
|
||
#endif
|
||
|
||
#ifndef STACK_PUSH_CODE
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
#define STACK_PUSH_CODE PRE_DEC
|
||
#else
|
||
#define STACK_PUSH_CODE PRE_INC
|
||
#endif
|
||
#endif
|
||
|
||
/* Assume that case vectors are not pc-relative. */
|
||
#ifndef CASE_VECTOR_PC_RELATIVE
|
||
#define CASE_VECTOR_PC_RELATIVE 0
|
||
#endif
|
||
|
||
/* If this is nonzero, we do not bother generating VOLATILE
|
||
around volatile memory references, and we are willing to
|
||
output indirect addresses. If cse is to follow, we reject
|
||
indirect addresses so a useful potential cse is generated;
|
||
if it is used only once, instruction combination will produce
|
||
the same indirect address eventually. */
|
||
int cse_not_expected;
|
||
|
||
/* Nonzero to generate code for all the subroutines within an
|
||
expression before generating the upper levels of the expression.
|
||
Nowadays this is never zero. */
|
||
int do_preexpand_calls = 1;
|
||
|
||
/* Don't check memory usage, since code is being emitted to check a memory
|
||
usage. Used when current_function_check_memory_usage is true, to avoid
|
||
infinite recursion. */
|
||
static int in_check_memory_usage;
|
||
|
||
/* This structure is used by move_by_pieces to describe the move to
|
||
be performed. */
|
||
struct move_by_pieces
|
||
{
|
||
rtx to;
|
||
rtx to_addr;
|
||
int autinc_to;
|
||
int explicit_inc_to;
|
||
int to_struct;
|
||
rtx from;
|
||
rtx from_addr;
|
||
int autinc_from;
|
||
int explicit_inc_from;
|
||
int from_struct;
|
||
int len;
|
||
int offset;
|
||
int reverse;
|
||
};
|
||
|
||
/* This structure is used by clear_by_pieces to describe the clear to
|
||
be performed. */
|
||
|
||
struct clear_by_pieces
|
||
{
|
||
rtx to;
|
||
rtx to_addr;
|
||
int autinc_to;
|
||
int explicit_inc_to;
|
||
int to_struct;
|
||
int len;
|
||
int offset;
|
||
int reverse;
|
||
};
|
||
|
||
extern struct obstack permanent_obstack;
|
||
|
||
static rtx get_push_address PROTO ((int));
|
||
|
||
static rtx enqueue_insn PROTO((rtx, rtx));
|
||
static int move_by_pieces_ninsns PROTO((unsigned int, int));
|
||
static void move_by_pieces_1 PROTO((rtx (*) (rtx, ...), enum machine_mode,
|
||
struct move_by_pieces *));
|
||
static void clear_by_pieces PROTO((rtx, int, int));
|
||
static void clear_by_pieces_1 PROTO((rtx (*) (rtx, ...), enum machine_mode,
|
||
struct clear_by_pieces *));
|
||
static int is_zeros_p PROTO((tree));
|
||
static int mostly_zeros_p PROTO((tree));
|
||
static void store_constructor_field PROTO((rtx, int, int, enum machine_mode,
|
||
tree, tree, int));
|
||
static void store_constructor PROTO((tree, rtx, int));
|
||
static rtx store_field PROTO((rtx, int, int, enum machine_mode, tree,
|
||
enum machine_mode, int, int,
|
||
int, int));
|
||
static enum memory_use_mode
|
||
get_memory_usage_from_modifier PROTO((enum expand_modifier));
|
||
static tree save_noncopied_parts PROTO((tree, tree));
|
||
static tree init_noncopied_parts PROTO((tree, tree));
|
||
static int safe_from_p PROTO((rtx, tree, int));
|
||
static int fixed_type_p PROTO((tree));
|
||
static rtx var_rtx PROTO((tree));
|
||
static rtx expand_increment PROTO((tree, int, int));
|
||
static void preexpand_calls PROTO((tree));
|
||
static void do_jump_by_parts_greater PROTO((tree, int, rtx, rtx));
|
||
static void do_jump_by_parts_equality PROTO((tree, rtx, rtx));
|
||
static void do_compare_and_jump PROTO((tree, enum rtx_code, enum rtx_code, rtx, rtx));
|
||
static rtx do_store_flag PROTO((tree, rtx, enum machine_mode, int));
|
||
|
||
/* Record for each mode whether we can move a register directly to or
|
||
from an object of that mode in memory. If we can't, we won't try
|
||
to use that mode directly when accessing a field of that mode. */
|
||
|
||
static char direct_load[NUM_MACHINE_MODES];
|
||
static char direct_store[NUM_MACHINE_MODES];
|
||
|
||
/* If a memory-to-memory move would take MOVE_RATIO or more simple
|
||
move-instruction sequences, we will do a movstr or libcall instead. */
|
||
|
||
#ifndef MOVE_RATIO
|
||
#if defined (HAVE_movstrqi) || defined (HAVE_movstrhi) || defined (HAVE_movstrsi) || defined (HAVE_movstrdi) || defined (HAVE_movstrti)
|
||
#define MOVE_RATIO 2
|
||
#else
|
||
/* If we are optimizing for space (-Os), cut down the default move ratio */
|
||
#define MOVE_RATIO (optimize_size ? 3 : 15)
|
||
#endif
|
||
#endif
|
||
|
||
/* This macro is used to determine whether move_by_pieces should be called
|
||
to perform a structure copy. */
|
||
#ifndef MOVE_BY_PIECES_P
|
||
#define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns \
|
||
(SIZE, ALIGN) < MOVE_RATIO)
|
||
#endif
|
||
|
||
/* This array records the insn_code of insns to perform block moves. */
|
||
enum insn_code movstr_optab[NUM_MACHINE_MODES];
|
||
|
||
/* This array records the insn_code of insns to perform block clears. */
|
||
enum insn_code clrstr_optab[NUM_MACHINE_MODES];
|
||
|
||
/* SLOW_UNALIGNED_ACCESS is non-zero if unaligned accesses are very slow. */
|
||
|
||
#ifndef SLOW_UNALIGNED_ACCESS
|
||
#define SLOW_UNALIGNED_ACCESS STRICT_ALIGNMENT
|
||
#endif
|
||
|
||
/* This is run once per compilation to set up which modes can be used
|
||
directly in memory and to initialize the block move optab. */
|
||
|
||
void
|
||
init_expr_once ()
|
||
{
|
||
rtx insn, pat;
|
||
enum machine_mode mode;
|
||
int num_clobbers;
|
||
rtx mem, mem1;
|
||
char *free_point;
|
||
|
||
start_sequence ();
|
||
|
||
/* Since we are on the permanent obstack, we must be sure we save this
|
||
spot AFTER we call start_sequence, since it will reuse the rtl it
|
||
makes. */
|
||
free_point = (char *) oballoc (0);
|
||
|
||
/* Try indexing by frame ptr and try by stack ptr.
|
||
It is known that on the Convex the stack ptr isn't a valid index.
|
||
With luck, one or the other is valid on any machine. */
|
||
mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
|
||
mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
|
||
|
||
insn = emit_insn (gen_rtx_SET (0, NULL_RTX, NULL_RTX));
|
||
pat = PATTERN (insn);
|
||
|
||
for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
|
||
mode = (enum machine_mode) ((int) mode + 1))
|
||
{
|
||
int regno;
|
||
rtx reg;
|
||
|
||
direct_load[(int) mode] = direct_store[(int) mode] = 0;
|
||
PUT_MODE (mem, mode);
|
||
PUT_MODE (mem1, mode);
|
||
|
||
/* See if there is some register that can be used in this mode and
|
||
directly loaded or stored from memory. */
|
||
|
||
if (mode != VOIDmode && mode != BLKmode)
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER
|
||
&& (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
|
||
regno++)
|
||
{
|
||
if (! HARD_REGNO_MODE_OK (regno, mode))
|
||
continue;
|
||
|
||
reg = gen_rtx_REG (mode, regno);
|
||
|
||
SET_SRC (pat) = mem;
|
||
SET_DEST (pat) = reg;
|
||
if (recog (pat, insn, &num_clobbers) >= 0)
|
||
direct_load[(int) mode] = 1;
|
||
|
||
SET_SRC (pat) = mem1;
|
||
SET_DEST (pat) = reg;
|
||
if (recog (pat, insn, &num_clobbers) >= 0)
|
||
direct_load[(int) mode] = 1;
|
||
|
||
SET_SRC (pat) = reg;
|
||
SET_DEST (pat) = mem;
|
||
if (recog (pat, insn, &num_clobbers) >= 0)
|
||
direct_store[(int) mode] = 1;
|
||
|
||
SET_SRC (pat) = reg;
|
||
SET_DEST (pat) = mem1;
|
||
if (recog (pat, insn, &num_clobbers) >= 0)
|
||
direct_store[(int) mode] = 1;
|
||
}
|
||
}
|
||
|
||
end_sequence ();
|
||
obfree (free_point);
|
||
}
|
||
|
||
/* This is run at the start of compiling a function. */
|
||
|
||
void
|
||
init_expr ()
|
||
{
|
||
current_function->expr
|
||
= (struct expr_status *) xmalloc (sizeof (struct expr_status));
|
||
|
||
pending_chain = 0;
|
||
pending_stack_adjust = 0;
|
||
inhibit_defer_pop = 0;
|
||
saveregs_value = 0;
|
||
apply_args_value = 0;
|
||
forced_labels = 0;
|
||
}
|
||
|
||
/* Small sanity check that the queue is empty at the end of a function. */
|
||
void
|
||
finish_expr_for_function ()
|
||
{
|
||
if (pending_chain)
|
||
abort ();
|
||
}
|
||
|
||
/* Manage the queue of increment instructions to be output
|
||
for POSTINCREMENT_EXPR expressions, etc. */
|
||
|
||
/* Queue up to increment (or change) VAR later. BODY says how:
|
||
BODY should be the same thing you would pass to emit_insn
|
||
to increment right away. It will go to emit_insn later on.
|
||
|
||
The value is a QUEUED expression to be used in place of VAR
|
||
where you want to guarantee the pre-incrementation value of VAR. */
|
||
|
||
static rtx
|
||
enqueue_insn (var, body)
|
||
rtx var, body;
|
||
{
|
||
pending_chain = gen_rtx_QUEUED (GET_MODE (var),
|
||
var, NULL_RTX, NULL_RTX, body,
|
||
pending_chain);
|
||
return pending_chain;
|
||
}
|
||
|
||
/* Use protect_from_queue to convert a QUEUED expression
|
||
into something that you can put immediately into an instruction.
|
||
If the queued incrementation has not happened yet,
|
||
protect_from_queue returns the variable itself.
|
||
If the incrementation has happened, protect_from_queue returns a temp
|
||
that contains a copy of the old value of the variable.
|
||
|
||
Any time an rtx which might possibly be a QUEUED is to be put
|
||
into an instruction, it must be passed through protect_from_queue first.
|
||
QUEUED expressions are not meaningful in instructions.
|
||
|
||
Do not pass a value through protect_from_queue and then hold
|
||
on to it for a while before putting it in an instruction!
|
||
If the queue is flushed in between, incorrect code will result. */
|
||
|
||
rtx
|
||
protect_from_queue (x, modify)
|
||
register rtx x;
|
||
int modify;
|
||
{
|
||
register RTX_CODE code = GET_CODE (x);
|
||
|
||
#if 0 /* A QUEUED can hang around after the queue is forced out. */
|
||
/* Shortcut for most common case. */
|
||
if (pending_chain == 0)
|
||
return x;
|
||
#endif
|
||
|
||
if (code != QUEUED)
|
||
{
|
||
/* A special hack for read access to (MEM (QUEUED ...)) to facilitate
|
||
use of autoincrement. Make a copy of the contents of the memory
|
||
location rather than a copy of the address, but not if the value is
|
||
of mode BLKmode. Don't modify X in place since it might be
|
||
shared. */
|
||
if (code == MEM && GET_MODE (x) != BLKmode
|
||
&& GET_CODE (XEXP (x, 0)) == QUEUED && !modify)
|
||
{
|
||
register rtx y = XEXP (x, 0);
|
||
register rtx new = gen_rtx_MEM (GET_MODE (x), QUEUED_VAR (y));
|
||
|
||
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
|
||
MEM_COPY_ATTRIBUTES (new, x);
|
||
MEM_ALIAS_SET (new) = MEM_ALIAS_SET (x);
|
||
|
||
if (QUEUED_INSN (y))
|
||
{
|
||
register rtx temp = gen_reg_rtx (GET_MODE (new));
|
||
emit_insn_before (gen_move_insn (temp, new),
|
||
QUEUED_INSN (y));
|
||
return temp;
|
||
}
|
||
return new;
|
||
}
|
||
/* Otherwise, recursively protect the subexpressions of all
|
||
the kinds of rtx's that can contain a QUEUED. */
|
||
if (code == MEM)
|
||
{
|
||
rtx tem = protect_from_queue (XEXP (x, 0), 0);
|
||
if (tem != XEXP (x, 0))
|
||
{
|
||
x = copy_rtx (x);
|
||
XEXP (x, 0) = tem;
|
||
}
|
||
}
|
||
else if (code == PLUS || code == MULT)
|
||
{
|
||
rtx new0 = protect_from_queue (XEXP (x, 0), 0);
|
||
rtx new1 = protect_from_queue (XEXP (x, 1), 0);
|
||
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
|
||
{
|
||
x = copy_rtx (x);
|
||
XEXP (x, 0) = new0;
|
||
XEXP (x, 1) = new1;
|
||
}
|
||
}
|
||
return x;
|
||
}
|
||
/* If the increment has not happened, use the variable itself. */
|
||
if (QUEUED_INSN (x) == 0)
|
||
return QUEUED_VAR (x);
|
||
/* If the increment has happened and a pre-increment copy exists,
|
||
use that copy. */
|
||
if (QUEUED_COPY (x) != 0)
|
||
return QUEUED_COPY (x);
|
||
/* The increment has happened but we haven't set up a pre-increment copy.
|
||
Set one up now, and use it. */
|
||
QUEUED_COPY (x) = gen_reg_rtx (GET_MODE (QUEUED_VAR (x)));
|
||
emit_insn_before (gen_move_insn (QUEUED_COPY (x), QUEUED_VAR (x)),
|
||
QUEUED_INSN (x));
|
||
return QUEUED_COPY (x);
|
||
}
|
||
|
||
/* Return nonzero if X contains a QUEUED expression:
|
||
if it contains anything that will be altered by a queued increment.
|
||
We handle only combinations of MEM, PLUS, MINUS and MULT operators
|
||
since memory addresses generally contain only those. */
|
||
|
||
int
|
||
queued_subexp_p (x)
|
||
rtx x;
|
||
{
|
||
register enum rtx_code code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case QUEUED:
|
||
return 1;
|
||
case MEM:
|
||
return queued_subexp_p (XEXP (x, 0));
|
||
case MULT:
|
||
case PLUS:
|
||
case MINUS:
|
||
return (queued_subexp_p (XEXP (x, 0))
|
||
|| queued_subexp_p (XEXP (x, 1)));
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Perform all the pending incrementations. */
|
||
|
||
void
|
||
emit_queue ()
|
||
{
|
||
register rtx p;
|
||
while ((p = pending_chain))
|
||
{
|
||
rtx body = QUEUED_BODY (p);
|
||
|
||
if (GET_CODE (body) == SEQUENCE)
|
||
{
|
||
QUEUED_INSN (p) = XVECEXP (QUEUED_BODY (p), 0, 0);
|
||
emit_insn (QUEUED_BODY (p));
|
||
}
|
||
else
|
||
QUEUED_INSN (p) = emit_insn (QUEUED_BODY (p));
|
||
pending_chain = QUEUED_NEXT (p);
|
||
}
|
||
}
|
||
|
||
/* Copy data from FROM to TO, where the machine modes are not the same.
|
||
Both modes may be integer, or both may be floating.
|
||
UNSIGNEDP should be nonzero if FROM is an unsigned type.
|
||
This causes zero-extension instead of sign-extension. */
|
||
|
||
void
|
||
convert_move (to, from, unsignedp)
|
||
register rtx to, from;
|
||
int unsignedp;
|
||
{
|
||
enum machine_mode to_mode = GET_MODE (to);
|
||
enum machine_mode from_mode = GET_MODE (from);
|
||
int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT;
|
||
int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT;
|
||
enum insn_code code;
|
||
rtx libcall;
|
||
|
||
/* rtx code for making an equivalent value. */
|
||
enum rtx_code equiv_code = (unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
|
||
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (to_real != from_real)
|
||
abort ();
|
||
|
||
/* If FROM is a SUBREG that indicates that we have already done at least
|
||
the required extension, strip it. We don't handle such SUBREGs as
|
||
TO here. */
|
||
|
||
if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
|
||
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
|
||
>= GET_MODE_SIZE (to_mode))
|
||
&& SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
|
||
from = gen_lowpart (to_mode, from), from_mode = to_mode;
|
||
|
||
if (GET_CODE (to) == SUBREG && SUBREG_PROMOTED_VAR_P (to))
|
||
abort ();
|
||
|
||
if (to_mode == from_mode
|
||
|| (from_mode == VOIDmode && CONSTANT_P (from)))
|
||
{
|
||
emit_move_insn (to, from);
|
||
return;
|
||
}
|
||
|
||
if (to_real)
|
||
{
|
||
rtx value;
|
||
|
||
if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode))
|
||
{
|
||
/* Try converting directly if the insn is supported. */
|
||
if ((code = can_extend_p (to_mode, from_mode, 0))
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
emit_unop_insn (code, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
}
|
||
|
||
#ifdef HAVE_trunchfqf2
|
||
if (HAVE_trunchfqf2 && from_mode == HFmode && to_mode == QFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunchfqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_trunctqfqf2
|
||
if (HAVE_trunctqfqf2 && from_mode == TQFmode && to_mode == QFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctqfqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncsfqf2
|
||
if (HAVE_truncsfqf2 && from_mode == SFmode && to_mode == QFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncsfqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncdfqf2
|
||
if (HAVE_truncdfqf2 && from_mode == DFmode && to_mode == QFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncdfqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncxfqf2
|
||
if (HAVE_truncxfqf2 && from_mode == XFmode && to_mode == QFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncxfqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_trunctfqf2
|
||
if (HAVE_trunctfqf2 && from_mode == TFmode && to_mode == QFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctfqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
#ifdef HAVE_trunctqfhf2
|
||
if (HAVE_trunctqfhf2 && from_mode == TQFmode && to_mode == HFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctqfhf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncsfhf2
|
||
if (HAVE_truncsfhf2 && from_mode == SFmode && to_mode == HFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncsfhf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncdfhf2
|
||
if (HAVE_truncdfhf2 && from_mode == DFmode && to_mode == HFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncdfhf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncxfhf2
|
||
if (HAVE_truncxfhf2 && from_mode == XFmode && to_mode == HFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncxfhf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_trunctfhf2
|
||
if (HAVE_trunctfhf2 && from_mode == TFmode && to_mode == HFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctfhf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
#ifdef HAVE_truncsftqf2
|
||
if (HAVE_truncsftqf2 && from_mode == SFmode && to_mode == TQFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncsftqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncdftqf2
|
||
if (HAVE_truncdftqf2 && from_mode == DFmode && to_mode == TQFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncdftqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncxftqf2
|
||
if (HAVE_truncxftqf2 && from_mode == XFmode && to_mode == TQFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncxftqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_trunctftqf2
|
||
if (HAVE_trunctftqf2 && from_mode == TFmode && to_mode == TQFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctftqf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
#ifdef HAVE_truncdfsf2
|
||
if (HAVE_truncdfsf2 && from_mode == DFmode && to_mode == SFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncdfsf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncxfsf2
|
||
if (HAVE_truncxfsf2 && from_mode == XFmode && to_mode == SFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncxfsf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_trunctfsf2
|
||
if (HAVE_trunctfsf2 && from_mode == TFmode && to_mode == SFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctfsf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_truncxfdf2
|
||
if (HAVE_truncxfdf2 && from_mode == XFmode && to_mode == DFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncxfdf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
#ifdef HAVE_trunctfdf2
|
||
if (HAVE_trunctfdf2 && from_mode == TFmode && to_mode == DFmode)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctfdf2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
libcall = (rtx) 0;
|
||
switch (from_mode)
|
||
{
|
||
case SFmode:
|
||
switch (to_mode)
|
||
{
|
||
case DFmode:
|
||
libcall = extendsfdf2_libfunc;
|
||
break;
|
||
|
||
case XFmode:
|
||
libcall = extendsfxf2_libfunc;
|
||
break;
|
||
|
||
case TFmode:
|
||
libcall = extendsftf2_libfunc;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case DFmode:
|
||
switch (to_mode)
|
||
{
|
||
case SFmode:
|
||
libcall = truncdfsf2_libfunc;
|
||
break;
|
||
|
||
case XFmode:
|
||
libcall = extenddfxf2_libfunc;
|
||
break;
|
||
|
||
case TFmode:
|
||
libcall = extenddftf2_libfunc;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case XFmode:
|
||
switch (to_mode)
|
||
{
|
||
case SFmode:
|
||
libcall = truncxfsf2_libfunc;
|
||
break;
|
||
|
||
case DFmode:
|
||
libcall = truncxfdf2_libfunc;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case TFmode:
|
||
switch (to_mode)
|
||
{
|
||
case SFmode:
|
||
libcall = trunctfsf2_libfunc;
|
||
break;
|
||
|
||
case DFmode:
|
||
libcall = trunctfdf2_libfunc;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (libcall == (rtx) 0)
|
||
/* This conversion is not implemented yet. */
|
||
abort ();
|
||
|
||
value = emit_library_call_value (libcall, NULL_RTX, 1, to_mode,
|
||
1, from, from_mode);
|
||
emit_move_insn (to, value);
|
||
return;
|
||
}
|
||
|
||
/* Now both modes are integers. */
|
||
|
||
/* Handle expanding beyond a word. */
|
||
if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
|
||
&& GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
|
||
{
|
||
rtx insns;
|
||
rtx lowpart;
|
||
rtx fill_value;
|
||
rtx lowfrom;
|
||
int i;
|
||
enum machine_mode lowpart_mode;
|
||
int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
|
||
|
||
/* Try converting directly if the insn is supported. */
|
||
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
/* If FROM is a SUBREG, put it into a register. Do this
|
||
so that we always generate the same set of insns for
|
||
better cse'ing; if an intermediate assignment occurred,
|
||
we won't be doing the operation directly on the SUBREG. */
|
||
if (optimize > 0 && GET_CODE (from) == SUBREG)
|
||
from = force_reg (from_mode, from);
|
||
emit_unop_insn (code, to, from, equiv_code);
|
||
return;
|
||
}
|
||
/* Next, try converting via full word. */
|
||
else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
|
||
&& ((code = can_extend_p (to_mode, word_mode, unsignedp))
|
||
!= CODE_FOR_nothing))
|
||
{
|
||
if (GET_CODE (to) == REG)
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
|
||
convert_move (gen_lowpart (word_mode, to), from, unsignedp);
|
||
emit_unop_insn (code, to,
|
||
gen_lowpart (word_mode, to), equiv_code);
|
||
return;
|
||
}
|
||
|
||
/* No special multiword conversion insn; do it by hand. */
|
||
start_sequence ();
|
||
|
||
/* Since we will turn this into a no conflict block, we must ensure
|
||
that the source does not overlap the target. */
|
||
|
||
if (reg_overlap_mentioned_p (to, from))
|
||
from = force_reg (from_mode, from);
|
||
|
||
/* Get a copy of FROM widened to a word, if necessary. */
|
||
if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
|
||
lowpart_mode = word_mode;
|
||
else
|
||
lowpart_mode = from_mode;
|
||
|
||
lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
|
||
|
||
lowpart = gen_lowpart (lowpart_mode, to);
|
||
emit_move_insn (lowpart, lowfrom);
|
||
|
||
/* Compute the value to put in each remaining word. */
|
||
if (unsignedp)
|
||
fill_value = const0_rtx;
|
||
else
|
||
{
|
||
#ifdef HAVE_slt
|
||
if (HAVE_slt
|
||
&& insn_operand_mode[(int) CODE_FOR_slt][0] == word_mode
|
||
&& STORE_FLAG_VALUE == -1)
|
||
{
|
||
emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
|
||
lowpart_mode, 0, 0);
|
||
fill_value = gen_reg_rtx (word_mode);
|
||
emit_insn (gen_slt (fill_value));
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
fill_value
|
||
= expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
|
||
size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
|
||
NULL_RTX, 0);
|
||
fill_value = convert_to_mode (word_mode, fill_value, 1);
|
||
}
|
||
}
|
||
|
||
/* Fill the remaining words. */
|
||
for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
|
||
{
|
||
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
||
rtx subword = operand_subword (to, index, 1, to_mode);
|
||
|
||
if (subword == 0)
|
||
abort ();
|
||
|
||
if (fill_value != subword)
|
||
emit_move_insn (subword, fill_value);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_no_conflict_block (insns, to, from, NULL_RTX,
|
||
gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
|
||
return;
|
||
}
|
||
|
||
/* Truncating multi-word to a word or less. */
|
||
if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
|
||
&& GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
|
||
{
|
||
if (!((GET_CODE (from) == MEM
|
||
&& ! MEM_VOLATILE_P (from)
|
||
&& direct_load[(int) to_mode]
|
||
&& ! mode_dependent_address_p (XEXP (from, 0)))
|
||
|| GET_CODE (from) == REG
|
||
|| GET_CODE (from) == SUBREG))
|
||
from = force_reg (from_mode, from);
|
||
convert_move (to, gen_lowpart (word_mode, from), 0);
|
||
return;
|
||
}
|
||
|
||
/* Handle pointer conversion */ /* SPEE 900220 */
|
||
if (to_mode == PQImode)
|
||
{
|
||
if (from_mode != QImode)
|
||
from = convert_to_mode (QImode, from, unsignedp);
|
||
|
||
#ifdef HAVE_truncqipqi2
|
||
if (HAVE_truncqipqi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncqipqi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif /* HAVE_truncqipqi2 */
|
||
abort ();
|
||
}
|
||
|
||
if (from_mode == PQImode)
|
||
{
|
||
if (to_mode != QImode)
|
||
{
|
||
from = convert_to_mode (QImode, from, unsignedp);
|
||
from_mode = QImode;
|
||
}
|
||
else
|
||
{
|
||
#ifdef HAVE_extendpqiqi2
|
||
if (HAVE_extendpqiqi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_extendpqiqi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif /* HAVE_extendpqiqi2 */
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
if (to_mode == PSImode)
|
||
{
|
||
if (from_mode != SImode)
|
||
from = convert_to_mode (SImode, from, unsignedp);
|
||
|
||
#ifdef HAVE_truncsipsi2
|
||
if (HAVE_truncsipsi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncsipsi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif /* HAVE_truncsipsi2 */
|
||
abort ();
|
||
}
|
||
|
||
if (from_mode == PSImode)
|
||
{
|
||
if (to_mode != SImode)
|
||
{
|
||
from = convert_to_mode (SImode, from, unsignedp);
|
||
from_mode = SImode;
|
||
}
|
||
else
|
||
{
|
||
#ifdef HAVE_extendpsisi2
|
||
if (HAVE_extendpsisi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_extendpsisi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif /* HAVE_extendpsisi2 */
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
if (to_mode == PDImode)
|
||
{
|
||
if (from_mode != DImode)
|
||
from = convert_to_mode (DImode, from, unsignedp);
|
||
|
||
#ifdef HAVE_truncdipdi2
|
||
if (HAVE_truncdipdi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncdipdi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif /* HAVE_truncdipdi2 */
|
||
abort ();
|
||
}
|
||
|
||
if (from_mode == PDImode)
|
||
{
|
||
if (to_mode != DImode)
|
||
{
|
||
from = convert_to_mode (DImode, from, unsignedp);
|
||
from_mode = DImode;
|
||
}
|
||
else
|
||
{
|
||
#ifdef HAVE_extendpdidi2
|
||
if (HAVE_extendpdidi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_extendpdidi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif /* HAVE_extendpdidi2 */
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Now follow all the conversions between integers
|
||
no more than a word long. */
|
||
|
||
/* For truncation, usually we can just refer to FROM in a narrower mode. */
|
||
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
|
||
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
|
||
GET_MODE_BITSIZE (from_mode)))
|
||
{
|
||
if (!((GET_CODE (from) == MEM
|
||
&& ! MEM_VOLATILE_P (from)
|
||
&& direct_load[(int) to_mode]
|
||
&& ! mode_dependent_address_p (XEXP (from, 0)))
|
||
|| GET_CODE (from) == REG
|
||
|| GET_CODE (from) == SUBREG))
|
||
from = force_reg (from_mode, from);
|
||
if (GET_CODE (from) == REG && REGNO (from) < FIRST_PSEUDO_REGISTER
|
||
&& ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
|
||
from = copy_to_reg (from);
|
||
emit_move_insn (to, gen_lowpart (to_mode, from));
|
||
return;
|
||
}
|
||
|
||
/* Handle extension. */
|
||
if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
|
||
{
|
||
/* Convert directly if that works. */
|
||
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
emit_unop_insn (code, to, from, equiv_code);
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
enum machine_mode intermediate;
|
||
rtx tmp;
|
||
tree shift_amount;
|
||
|
||
/* Search for a mode to convert via. */
|
||
for (intermediate = from_mode; intermediate != VOIDmode;
|
||
intermediate = GET_MODE_WIDER_MODE (intermediate))
|
||
if (((can_extend_p (to_mode, intermediate, unsignedp)
|
||
!= CODE_FOR_nothing)
|
||
|| (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
|
||
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
|
||
GET_MODE_BITSIZE (intermediate))))
|
||
&& (can_extend_p (intermediate, from_mode, unsignedp)
|
||
!= CODE_FOR_nothing))
|
||
{
|
||
convert_move (to, convert_to_mode (intermediate, from,
|
||
unsignedp), unsignedp);
|
||
return;
|
||
}
|
||
|
||
/* No suitable intermediate mode.
|
||
Generate what we need with shifts. */
|
||
shift_amount = build_int_2 (GET_MODE_BITSIZE (to_mode)
|
||
- GET_MODE_BITSIZE (from_mode), 0);
|
||
from = gen_lowpart (to_mode, force_reg (from_mode, from));
|
||
tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
|
||
to, unsignedp);
|
||
tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
|
||
to, unsignedp);
|
||
if (tmp != to)
|
||
emit_move_insn (to, tmp);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Support special truncate insns for certain modes. */
|
||
|
||
if (from_mode == DImode && to_mode == SImode)
|
||
{
|
||
#ifdef HAVE_truncdisi2
|
||
if (HAVE_truncdisi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncdisi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (from_mode == DImode && to_mode == HImode)
|
||
{
|
||
#ifdef HAVE_truncdihi2
|
||
if (HAVE_truncdihi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncdihi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (from_mode == DImode && to_mode == QImode)
|
||
{
|
||
#ifdef HAVE_truncdiqi2
|
||
if (HAVE_truncdiqi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncdiqi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (from_mode == SImode && to_mode == HImode)
|
||
{
|
||
#ifdef HAVE_truncsihi2
|
||
if (HAVE_truncsihi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncsihi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (from_mode == SImode && to_mode == QImode)
|
||
{
|
||
#ifdef HAVE_truncsiqi2
|
||
if (HAVE_truncsiqi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_truncsiqi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (from_mode == HImode && to_mode == QImode)
|
||
{
|
||
#ifdef HAVE_trunchiqi2
|
||
if (HAVE_trunchiqi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunchiqi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (from_mode == TImode && to_mode == DImode)
|
||
{
|
||
#ifdef HAVE_trunctidi2
|
||
if (HAVE_trunctidi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctidi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (from_mode == TImode && to_mode == SImode)
|
||
{
|
||
#ifdef HAVE_trunctisi2
|
||
if (HAVE_trunctisi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctisi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (from_mode == TImode && to_mode == HImode)
|
||
{
|
||
#ifdef HAVE_trunctihi2
|
||
if (HAVE_trunctihi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctihi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (from_mode == TImode && to_mode == QImode)
|
||
{
|
||
#ifdef HAVE_trunctiqi2
|
||
if (HAVE_trunctiqi2)
|
||
{
|
||
emit_unop_insn (CODE_FOR_trunctiqi2, to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
#endif
|
||
convert_move (to, force_reg (from_mode, from), unsignedp);
|
||
return;
|
||
}
|
||
|
||
/* Handle truncation of volatile memrefs, and so on;
|
||
the things that couldn't be truncated directly,
|
||
and for which there was no special instruction. */
|
||
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
|
||
{
|
||
rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
|
||
emit_move_insn (to, temp);
|
||
return;
|
||
}
|
||
|
||
/* Mode combination is not recognized. */
|
||
abort ();
|
||
}
|
||
|
||
/* Return an rtx for a value that would result
|
||
from converting X to mode MODE.
|
||
Both X and MODE may be floating, or both integer.
|
||
UNSIGNEDP is nonzero if X is an unsigned value.
|
||
This can be done by referring to a part of X in place
|
||
or by copying to a new temporary with conversion.
|
||
|
||
This function *must not* call protect_from_queue
|
||
except when putting X into an insn (in which case convert_move does it). */
|
||
|
||
rtx
|
||
convert_to_mode (mode, x, unsignedp)
|
||
enum machine_mode mode;
|
||
rtx x;
|
||
int unsignedp;
|
||
{
|
||
return convert_modes (mode, VOIDmode, x, unsignedp);
|
||
}
|
||
|
||
/* Return an rtx for a value that would result
|
||
from converting X from mode OLDMODE to mode MODE.
|
||
Both modes may be floating, or both integer.
|
||
UNSIGNEDP is nonzero if X is an unsigned value.
|
||
|
||
This can be done by referring to a part of X in place
|
||
or by copying to a new temporary with conversion.
|
||
|
||
You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.
|
||
|
||
This function *must not* call protect_from_queue
|
||
except when putting X into an insn (in which case convert_move does it). */
|
||
|
||
rtx
|
||
convert_modes (mode, oldmode, x, unsignedp)
|
||
enum machine_mode mode, oldmode;
|
||
rtx x;
|
||
int unsignedp;
|
||
{
|
||
register rtx temp;
|
||
|
||
/* If FROM is a SUBREG that indicates that we have already done at least
|
||
the required extension, strip it. */
|
||
|
||
if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
|
||
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
|
||
&& SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
|
||
x = gen_lowpart (mode, x);
|
||
|
||
if (GET_MODE (x) != VOIDmode)
|
||
oldmode = GET_MODE (x);
|
||
|
||
if (mode == oldmode)
|
||
return x;
|
||
|
||
/* There is one case that we must handle specially: If we are converting
|
||
a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
|
||
we are to interpret the constant as unsigned, gen_lowpart will do
|
||
the wrong if the constant appears negative. What we want to do is
|
||
make the high-order word of the constant zero, not all ones. */
|
||
|
||
if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
|
||
&& GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
|
||
{
|
||
HOST_WIDE_INT val = INTVAL (x);
|
||
|
||
if (oldmode != VOIDmode
|
||
&& HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
|
||
{
|
||
int width = GET_MODE_BITSIZE (oldmode);
|
||
|
||
/* We need to zero extend VAL. */
|
||
val &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
}
|
||
|
||
return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
|
||
}
|
||
|
||
/* We can do this with a gen_lowpart if both desired and current modes
|
||
are integer, and this is either a constant integer, a register, or a
|
||
non-volatile MEM. Except for the constant case where MODE is no
|
||
wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
|
||
|
||
if ((GET_CODE (x) == CONST_INT
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
||
|| (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_CLASS (oldmode) == MODE_INT
|
||
&& (GET_CODE (x) == CONST_DOUBLE
|
||
|| (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
|
||
&& ((GET_CODE (x) == MEM && ! MEM_VOLATILE_P (x)
|
||
&& direct_load[(int) mode])
|
||
|| (GET_CODE (x) == REG
|
||
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
|
||
GET_MODE_BITSIZE (GET_MODE (x)))))))))
|
||
{
|
||
/* ?? If we don't know OLDMODE, we have to assume here that
|
||
X does not need sign- or zero-extension. This may not be
|
||
the case, but it's the best we can do. */
|
||
if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
|
||
&& GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
|
||
{
|
||
HOST_WIDE_INT val = INTVAL (x);
|
||
int width = GET_MODE_BITSIZE (oldmode);
|
||
|
||
/* We must sign or zero-extend in this case. Start by
|
||
zero-extending, then sign extend if we need to. */
|
||
val &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
if (! unsignedp
|
||
&& (val & ((HOST_WIDE_INT) 1 << (width - 1))))
|
||
val |= (HOST_WIDE_INT) (-1) << width;
|
||
|
||
return GEN_INT (val);
|
||
}
|
||
|
||
return gen_lowpart (mode, x);
|
||
}
|
||
|
||
temp = gen_reg_rtx (mode);
|
||
convert_move (temp, x, unsignedp);
|
||
return temp;
|
||
}
|
||
|
||
|
||
/* This macro is used to determine what the largest unit size that
|
||
move_by_pieces can use is. */
|
||
|
||
/* MOVE_MAX_PIECES is the number of bytes at a time which we can
|
||
move efficiently, as opposed to MOVE_MAX which is the maximum
|
||
number of bhytes we can move with a single instruction. */
|
||
|
||
#ifndef MOVE_MAX_PIECES
|
||
#define MOVE_MAX_PIECES MOVE_MAX
|
||
#endif
|
||
|
||
/* Generate several move instructions to copy LEN bytes
|
||
from block FROM to block TO. (These are MEM rtx's with BLKmode).
|
||
The caller must pass FROM and TO
|
||
through protect_from_queue before calling.
|
||
ALIGN (in bytes) is maximum alignment we can assume. */
|
||
|
||
void
|
||
move_by_pieces (to, from, len, align)
|
||
rtx to, from;
|
||
int len, align;
|
||
{
|
||
struct move_by_pieces data;
|
||
rtx to_addr = XEXP (to, 0), from_addr = XEXP (from, 0);
|
||
int max_size = MOVE_MAX_PIECES + 1;
|
||
enum machine_mode mode = VOIDmode, tmode;
|
||
enum insn_code icode;
|
||
|
||
data.offset = 0;
|
||
data.to_addr = to_addr;
|
||
data.from_addr = from_addr;
|
||
data.to = to;
|
||
data.from = from;
|
||
data.autinc_to
|
||
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|
||
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
|
||
data.autinc_from
|
||
= (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
|
||
|| GET_CODE (from_addr) == POST_INC
|
||
|| GET_CODE (from_addr) == POST_DEC);
|
||
|
||
data.explicit_inc_from = 0;
|
||
data.explicit_inc_to = 0;
|
||
data.reverse
|
||
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
|
||
if (data.reverse) data.offset = len;
|
||
data.len = len;
|
||
|
||
data.to_struct = MEM_IN_STRUCT_P (to);
|
||
data.from_struct = MEM_IN_STRUCT_P (from);
|
||
|
||
/* If copying requires more than two move insns,
|
||
copy addresses to registers (to make displacements shorter)
|
||
and use post-increment if available. */
|
||
if (!(data.autinc_from && data.autinc_to)
|
||
&& move_by_pieces_ninsns (len, align) > 2)
|
||
{
|
||
/* Find the mode of the largest move... */
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
|
||
{
|
||
data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
|
||
data.autinc_from = 1;
|
||
data.explicit_inc_from = -1;
|
||
}
|
||
if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
|
||
{
|
||
data.from_addr = copy_addr_to_reg (from_addr);
|
||
data.autinc_from = 1;
|
||
data.explicit_inc_from = 1;
|
||
}
|
||
if (!data.autinc_from && CONSTANT_P (from_addr))
|
||
data.from_addr = copy_addr_to_reg (from_addr);
|
||
if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
|
||
{
|
||
data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
|
||
data.autinc_to = 1;
|
||
data.explicit_inc_to = -1;
|
||
}
|
||
if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
|
||
{
|
||
data.to_addr = copy_addr_to_reg (to_addr);
|
||
data.autinc_to = 1;
|
||
data.explicit_inc_to = 1;
|
||
}
|
||
if (!data.autinc_to && CONSTANT_P (to_addr))
|
||
data.to_addr = copy_addr_to_reg (to_addr);
|
||
}
|
||
|
||
if (! SLOW_UNALIGNED_ACCESS
|
||
|| align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
|
||
align = MOVE_MAX;
|
||
|
||
/* First move what we can in the largest integer mode, then go to
|
||
successively smaller modes. */
|
||
|
||
while (max_size > 1)
|
||
{
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (mode == VOIDmode)
|
||
break;
|
||
|
||
icode = mov_optab->handlers[(int) mode].insn_code;
|
||
if (icode != CODE_FOR_nothing
|
||
&& align >= MIN (BIGGEST_ALIGNMENT / BITS_PER_UNIT,
|
||
GET_MODE_SIZE (mode)))
|
||
move_by_pieces_1 (GEN_FCN (icode), mode, &data);
|
||
|
||
max_size = GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
/* The code above should have handled everything. */
|
||
if (data.len > 0)
|
||
abort ();
|
||
}
|
||
|
||
/* Return number of insns required to move L bytes by pieces.
|
||
ALIGN (in bytes) is maximum alignment we can assume. */
|
||
|
||
static int
|
||
move_by_pieces_ninsns (l, align)
|
||
unsigned int l;
|
||
int align;
|
||
{
|
||
register int n_insns = 0;
|
||
int max_size = MOVE_MAX + 1;
|
||
|
||
if (! SLOW_UNALIGNED_ACCESS
|
||
|| align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
|
||
align = MOVE_MAX;
|
||
|
||
while (max_size > 1)
|
||
{
|
||
enum machine_mode mode = VOIDmode, tmode;
|
||
enum insn_code icode;
|
||
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (mode == VOIDmode)
|
||
break;
|
||
|
||
icode = mov_optab->handlers[(int) mode].insn_code;
|
||
if (icode != CODE_FOR_nothing
|
||
&& align >= MIN (BIGGEST_ALIGNMENT / BITS_PER_UNIT,
|
||
GET_MODE_SIZE (mode)))
|
||
n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
|
||
|
||
max_size = GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
return n_insns;
|
||
}
|
||
|
||
/* Subroutine of move_by_pieces. Move as many bytes as appropriate
|
||
with move instructions for mode MODE. GENFUN is the gen_... function
|
||
to make a move insn for that mode. DATA has all the other info. */
|
||
|
||
static void
|
||
move_by_pieces_1 (genfun, mode, data)
|
||
rtx (*genfun) PROTO ((rtx, ...));
|
||
enum machine_mode mode;
|
||
struct move_by_pieces *data;
|
||
{
|
||
register int size = GET_MODE_SIZE (mode);
|
||
register rtx to1, from1;
|
||
|
||
while (data->len >= size)
|
||
{
|
||
if (data->reverse) data->offset -= size;
|
||
|
||
to1 = (data->autinc_to
|
||
? gen_rtx_MEM (mode, data->to_addr)
|
||
: copy_rtx (change_address (data->to, mode,
|
||
plus_constant (data->to_addr,
|
||
data->offset))));
|
||
MEM_IN_STRUCT_P (to1) = data->to_struct;
|
||
|
||
from1
|
||
= (data->autinc_from
|
||
? gen_rtx_MEM (mode, data->from_addr)
|
||
: copy_rtx (change_address (data->from, mode,
|
||
plus_constant (data->from_addr,
|
||
data->offset))));
|
||
MEM_IN_STRUCT_P (from1) = data->from_struct;
|
||
|
||
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
|
||
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-size)));
|
||
if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
|
||
emit_insn (gen_add2_insn (data->from_addr, GEN_INT (-size)));
|
||
|
||
emit_insn ((*genfun) (to1, from1));
|
||
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
|
||
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
|
||
if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
|
||
emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
|
||
|
||
if (! data->reverse) data->offset += size;
|
||
|
||
data->len -= size;
|
||
}
|
||
}
|
||
|
||
/* Emit code to move a block Y to a block X.
|
||
This may be done with string-move instructions,
|
||
with multiple scalar move instructions, or with a library call.
|
||
|
||
Both X and Y must be MEM rtx's (perhaps inside VOLATILE)
|
||
with mode BLKmode.
|
||
SIZE is an rtx that says how long they are.
|
||
ALIGN is the maximum alignment we can assume they have,
|
||
measured in bytes.
|
||
|
||
Return the address of the new block, if memcpy is called and returns it,
|
||
0 otherwise. */
|
||
|
||
rtx
|
||
emit_block_move (x, y, size, align)
|
||
rtx x, y;
|
||
rtx size;
|
||
int align;
|
||
{
|
||
rtx retval = 0;
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
static tree fn;
|
||
tree call_expr, arg_list;
|
||
#endif
|
||
|
||
if (GET_MODE (x) != BLKmode)
|
||
abort ();
|
||
|
||
if (GET_MODE (y) != BLKmode)
|
||
abort ();
|
||
|
||
x = protect_from_queue (x, 1);
|
||
y = protect_from_queue (y, 0);
|
||
size = protect_from_queue (size, 0);
|
||
|
||
if (GET_CODE (x) != MEM)
|
||
abort ();
|
||
if (GET_CODE (y) != MEM)
|
||
abort ();
|
||
if (size == 0)
|
||
abort ();
|
||
|
||
if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
|
||
move_by_pieces (x, y, INTVAL (size), align);
|
||
else
|
||
{
|
||
/* Try the most limited insn first, because there's no point
|
||
including more than one in the machine description unless
|
||
the more limited one has some advantage. */
|
||
|
||
rtx opalign = GEN_INT (align);
|
||
enum machine_mode mode;
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
enum insn_code code = movstr_optab[(int) mode];
|
||
|
||
if (code != CODE_FOR_nothing
|
||
/* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
|
||
here because if SIZE is less than the mode mask, as it is
|
||
returned by the macro, it will definitely be less than the
|
||
actual mode mask. */
|
||
&& ((GET_CODE (size) == CONST_INT
|
||
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
|
||
<= (GET_MODE_MASK (mode) >> 1)))
|
||
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
|
||
&& (insn_operand_predicate[(int) code][0] == 0
|
||
|| (*insn_operand_predicate[(int) code][0]) (x, BLKmode))
|
||
&& (insn_operand_predicate[(int) code][1] == 0
|
||
|| (*insn_operand_predicate[(int) code][1]) (y, BLKmode))
|
||
&& (insn_operand_predicate[(int) code][3] == 0
|
||
|| (*insn_operand_predicate[(int) code][3]) (opalign,
|
||
VOIDmode)))
|
||
{
|
||
rtx op2;
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
|
||
op2 = convert_to_mode (mode, size, 1);
|
||
if (insn_operand_predicate[(int) code][2] != 0
|
||
&& ! (*insn_operand_predicate[(int) code][2]) (op2, mode))
|
||
op2 = copy_to_mode_reg (mode, op2);
|
||
|
||
pat = GEN_FCN ((int) code) (x, y, op2, opalign);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return 0;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
/* X, Y, or SIZE may have been passed through protect_from_queue.
|
||
|
||
It is unsafe to save the value generated by protect_from_queue
|
||
and reuse it later. Consider what happens if emit_queue is
|
||
called before the return value from protect_from_queue is used.
|
||
|
||
Expansion of the CALL_EXPR below will call emit_queue before
|
||
we are finished emitting RTL for argument setup. So if we are
|
||
not careful we could get the wrong value for an argument.
|
||
|
||
To avoid this problem we go ahead and emit code to copy X, Y &
|
||
SIZE into new pseudos. We can then place those new pseudos
|
||
into an RTL_EXPR and use them later, even after a call to
|
||
emit_queue.
|
||
|
||
Note this is not strictly needed for library calls since they
|
||
do not call emit_queue before loading their arguments. However,
|
||
we may need to have library calls call emit_queue in the future
|
||
since failing to do so could cause problems for targets which
|
||
define SMALL_REGISTER_CLASSES and pass arguments in registers. */
|
||
x = copy_to_mode_reg (Pmode, XEXP (x, 0));
|
||
y = copy_to_mode_reg (Pmode, XEXP (y, 0));
|
||
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
|
||
#else
|
||
size = convert_to_mode (TYPE_MODE (integer_type_node), size,
|
||
TREE_UNSIGNED (integer_type_node));
|
||
size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
|
||
#endif
|
||
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
/* It is incorrect to use the libcall calling conventions to call
|
||
memcpy in this context.
|
||
|
||
This could be a user call to memcpy and the user may wish to
|
||
examine the return value from memcpy.
|
||
|
||
For targets where libcalls and normal calls have different conventions
|
||
for returning pointers, we could end up generating incorrect code.
|
||
|
||
So instead of using a libcall sequence we build up a suitable
|
||
CALL_EXPR and expand the call in the normal fashion. */
|
||
if (fn == NULL_TREE)
|
||
{
|
||
tree fntype;
|
||
|
||
/* This was copied from except.c, I don't know if all this is
|
||
necessary in this context or not. */
|
||
fn = get_identifier ("memcpy");
|
||
push_obstacks_nochange ();
|
||
end_temporary_allocation ();
|
||
fntype = build_pointer_type (void_type_node);
|
||
fntype = build_function_type (fntype, NULL_TREE);
|
||
fn = build_decl (FUNCTION_DECL, fn, fntype);
|
||
DECL_EXTERNAL (fn) = 1;
|
||
TREE_PUBLIC (fn) = 1;
|
||
DECL_ARTIFICIAL (fn) = 1;
|
||
make_decl_rtl (fn, NULL_PTR, 1);
|
||
assemble_external (fn);
|
||
pop_obstacks ();
|
||
}
|
||
|
||
/* We need to make an argument list for the function call.
|
||
|
||
memcpy has three arguments, the first two are void * addresses and
|
||
the last is a size_t byte count for the copy. */
|
||
arg_list
|
||
= build_tree_list (NULL_TREE,
|
||
make_tree (build_pointer_type (void_type_node), x));
|
||
TREE_CHAIN (arg_list)
|
||
= build_tree_list (NULL_TREE,
|
||
make_tree (build_pointer_type (void_type_node), y));
|
||
TREE_CHAIN (TREE_CHAIN (arg_list))
|
||
= build_tree_list (NULL_TREE, make_tree (sizetype, size));
|
||
TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
|
||
|
||
/* Now we have to build up the CALL_EXPR itself. */
|
||
call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
|
||
call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
|
||
call_expr, arg_list, NULL_TREE);
|
||
TREE_SIDE_EFFECTS (call_expr) = 1;
|
||
|
||
retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
|
||
#else
|
||
emit_library_call (bcopy_libfunc, 0,
|
||
VOIDmode, 3, y, Pmode, x, Pmode,
|
||
convert_to_mode (TYPE_MODE (integer_type_node), size,
|
||
TREE_UNSIGNED (integer_type_node)),
|
||
TYPE_MODE (integer_type_node));
|
||
#endif
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Copy all or part of a value X into registers starting at REGNO.
|
||
The number of registers to be filled is NREGS. */
|
||
|
||
void
|
||
move_block_to_reg (regno, x, nregs, mode)
|
||
int regno;
|
||
rtx x;
|
||
int nregs;
|
||
enum machine_mode mode;
|
||
{
|
||
int i;
|
||
#ifdef HAVE_load_multiple
|
||
rtx pat;
|
||
rtx last;
|
||
#endif
|
||
|
||
if (nregs == 0)
|
||
return;
|
||
|
||
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
|
||
x = validize_mem (force_const_mem (mode, x));
|
||
|
||
/* See if the machine can do this with a load multiple insn. */
|
||
#ifdef HAVE_load_multiple
|
||
if (HAVE_load_multiple)
|
||
{
|
||
last = get_last_insn ();
|
||
pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
|
||
GEN_INT (nregs));
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
#endif
|
||
|
||
for (i = 0; i < nregs; i++)
|
||
emit_move_insn (gen_rtx_REG (word_mode, regno + i),
|
||
operand_subword_force (x, i, mode));
|
||
}
|
||
|
||
/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
|
||
The number of registers to be filled is NREGS. SIZE indicates the number
|
||
of bytes in the object X. */
|
||
|
||
|
||
void
|
||
move_block_from_reg (regno, x, nregs, size)
|
||
int regno;
|
||
rtx x;
|
||
int nregs;
|
||
int size;
|
||
{
|
||
int i;
|
||
#ifdef HAVE_store_multiple
|
||
rtx pat;
|
||
rtx last;
|
||
#endif
|
||
enum machine_mode mode;
|
||
|
||
/* If SIZE is that of a mode no bigger than a word, just use that
|
||
mode's store operation. */
|
||
if (size <= UNITS_PER_WORD
|
||
&& (mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0)) != BLKmode)
|
||
{
|
||
emit_move_insn (change_address (x, mode, NULL),
|
||
gen_rtx_REG (mode, regno));
|
||
return;
|
||
}
|
||
|
||
/* Blocks smaller than a word on a BYTES_BIG_ENDIAN machine must be aligned
|
||
to the left before storing to memory. Note that the previous test
|
||
doesn't handle all cases (e.g. SIZE == 3). */
|
||
if (size < UNITS_PER_WORD && BYTES_BIG_ENDIAN)
|
||
{
|
||
rtx tem = operand_subword (x, 0, 1, BLKmode);
|
||
rtx shift;
|
||
|
||
if (tem == 0)
|
||
abort ();
|
||
|
||
shift = expand_shift (LSHIFT_EXPR, word_mode,
|
||
gen_rtx_REG (word_mode, regno),
|
||
build_int_2 ((UNITS_PER_WORD - size)
|
||
* BITS_PER_UNIT, 0), NULL_RTX, 0);
|
||
emit_move_insn (tem, shift);
|
||
return;
|
||
}
|
||
|
||
/* See if the machine can do this with a store multiple insn. */
|
||
#ifdef HAVE_store_multiple
|
||
if (HAVE_store_multiple)
|
||
{
|
||
last = get_last_insn ();
|
||
pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
|
||
GEN_INT (nregs));
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
#endif
|
||
|
||
for (i = 0; i < nregs; i++)
|
||
{
|
||
rtx tem = operand_subword (x, i, 1, BLKmode);
|
||
|
||
if (tem == 0)
|
||
abort ();
|
||
|
||
emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
|
||
}
|
||
}
|
||
|
||
/* Emit code to move a block SRC to a block DST, where DST is non-consecutive
|
||
registers represented by a PARALLEL. SSIZE represents the total size of
|
||
block SRC in bytes, or -1 if not known. ALIGN is the known alignment of
|
||
SRC in bits. */
|
||
/* ??? If SSIZE % UNITS_PER_WORD != 0, we make the blatent assumption that
|
||
the balance will be in what would be the low-order memory addresses, i.e.
|
||
left justified for big endian, right justified for little endian. This
|
||
happens to be true for the targets currently using this support. If this
|
||
ever changes, a new target macro along the lines of FUNCTION_ARG_PADDING
|
||
would be needed. */
|
||
|
||
void
|
||
emit_group_load (dst, orig_src, ssize, align)
|
||
rtx dst, orig_src;
|
||
int align, ssize;
|
||
{
|
||
rtx *tmps, src;
|
||
int start, i;
|
||
|
||
if (GET_CODE (dst) != PARALLEL)
|
||
abort ();
|
||
|
||
/* Check for a NULL entry, used to indicate that the parameter goes
|
||
both on the stack and in registers. */
|
||
if (XEXP (XVECEXP (dst, 0, 0), 0))
|
||
start = 0;
|
||
else
|
||
start = 1;
|
||
|
||
tmps = (rtx *) alloca (sizeof(rtx) * XVECLEN (dst, 0));
|
||
|
||
/* If we won't be loading directly from memory, protect the real source
|
||
from strange tricks we might play. */
|
||
src = orig_src;
|
||
if (GET_CODE (src) != MEM)
|
||
{
|
||
src = gen_reg_rtx (GET_MODE (orig_src));
|
||
emit_move_insn (src, orig_src);
|
||
}
|
||
|
||
/* Process the pieces. */
|
||
for (i = start; i < XVECLEN (dst, 0); i++)
|
||
{
|
||
enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
|
||
int bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
|
||
int bytelen = GET_MODE_SIZE (mode);
|
||
int shift = 0;
|
||
|
||
/* Handle trailing fragments that run over the size of the struct. */
|
||
if (ssize >= 0 && bytepos + bytelen > ssize)
|
||
{
|
||
shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
|
||
bytelen = ssize - bytepos;
|
||
if (bytelen <= 0)
|
||
abort();
|
||
}
|
||
|
||
/* Optimize the access just a bit. */
|
||
if (GET_CODE (src) == MEM
|
||
&& align*BITS_PER_UNIT >= GET_MODE_ALIGNMENT (mode)
|
||
&& bytepos*BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
|
||
&& bytelen == GET_MODE_SIZE (mode))
|
||
{
|
||
tmps[i] = gen_reg_rtx (mode);
|
||
emit_move_insn (tmps[i],
|
||
change_address (src, mode,
|
||
plus_constant (XEXP (src, 0),
|
||
bytepos)));
|
||
}
|
||
else if (GET_CODE (src) == CONCAT)
|
||
{
|
||
if (bytepos == 0
|
||
&& bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 0))))
|
||
tmps[i] = XEXP (src, 0);
|
||
else if (bytepos == GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
|
||
&& bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 1))))
|
||
tmps[i] = XEXP (src, 1);
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
tmps[i] = extract_bit_field (src, bytelen*BITS_PER_UNIT,
|
||
bytepos*BITS_PER_UNIT, 1, NULL_RTX,
|
||
mode, mode, align, ssize);
|
||
}
|
||
|
||
if (BYTES_BIG_ENDIAN && shift)
|
||
{
|
||
expand_binop (mode, ashl_optab, tmps[i], GEN_INT (shift),
|
||
tmps[i], 0, OPTAB_WIDEN);
|
||
}
|
||
}
|
||
emit_queue();
|
||
|
||
/* Copy the extracted pieces into the proper (probable) hard regs. */
|
||
for (i = start; i < XVECLEN (dst, 0); i++)
|
||
emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), tmps[i]);
|
||
}
|
||
|
||
/* Emit code to move a block SRC to a block DST, where SRC is non-consecutive
|
||
registers represented by a PARALLEL. SSIZE represents the total size of
|
||
block DST, or -1 if not known. ALIGN is the known alignment of DST. */
|
||
|
||
void
|
||
emit_group_store (orig_dst, src, ssize, align)
|
||
rtx orig_dst, src;
|
||
int ssize, align;
|
||
{
|
||
rtx *tmps, dst;
|
||
int start, i;
|
||
|
||
if (GET_CODE (src) != PARALLEL)
|
||
abort ();
|
||
|
||
/* Check for a NULL entry, used to indicate that the parameter goes
|
||
both on the stack and in registers. */
|
||
if (XEXP (XVECEXP (src, 0, 0), 0))
|
||
start = 0;
|
||
else
|
||
start = 1;
|
||
|
||
tmps = (rtx *) alloca (sizeof(rtx) * XVECLEN (src, 0));
|
||
|
||
/* Copy the (probable) hard regs into pseudos. */
|
||
for (i = start; i < XVECLEN (src, 0); i++)
|
||
{
|
||
rtx reg = XEXP (XVECEXP (src, 0, i), 0);
|
||
tmps[i] = gen_reg_rtx (GET_MODE (reg));
|
||
emit_move_insn (tmps[i], reg);
|
||
}
|
||
emit_queue();
|
||
|
||
/* If we won't be storing directly into memory, protect the real destination
|
||
from strange tricks we might play. */
|
||
dst = orig_dst;
|
||
if (GET_CODE (dst) == PARALLEL)
|
||
{
|
||
rtx temp;
|
||
|
||
/* We can get a PARALLEL dst if there is a conditional expression in
|
||
a return statement. In that case, the dst and src are the same,
|
||
so no action is necessary. */
|
||
if (rtx_equal_p (dst, src))
|
||
return;
|
||
|
||
/* It is unclear if we can ever reach here, but we may as well handle
|
||
it. Allocate a temporary, and split this into a store/load to/from
|
||
the temporary. */
|
||
|
||
temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
|
||
emit_group_store (temp, src, ssize, align);
|
||
emit_group_load (dst, temp, ssize, align);
|
||
return;
|
||
}
|
||
else if (GET_CODE (dst) != MEM)
|
||
{
|
||
dst = gen_reg_rtx (GET_MODE (orig_dst));
|
||
/* Make life a bit easier for combine. */
|
||
emit_move_insn (dst, const0_rtx);
|
||
}
|
||
else if (! MEM_IN_STRUCT_P (dst))
|
||
{
|
||
/* store_bit_field requires that memory operations have
|
||
mem_in_struct_p set; we might not. */
|
||
|
||
dst = copy_rtx (orig_dst);
|
||
MEM_SET_IN_STRUCT_P (dst, 1);
|
||
}
|
||
|
||
/* Process the pieces. */
|
||
for (i = start; i < XVECLEN (src, 0); i++)
|
||
{
|
||
int bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
|
||
enum machine_mode mode = GET_MODE (tmps[i]);
|
||
int bytelen = GET_MODE_SIZE (mode);
|
||
|
||
/* Handle trailing fragments that run over the size of the struct. */
|
||
if (ssize >= 0 && bytepos + bytelen > ssize)
|
||
{
|
||
if (BYTES_BIG_ENDIAN)
|
||
{
|
||
int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
|
||
expand_binop (mode, ashr_optab, tmps[i], GEN_INT (shift),
|
||
tmps[i], 0, OPTAB_WIDEN);
|
||
}
|
||
bytelen = ssize - bytepos;
|
||
}
|
||
|
||
/* Optimize the access just a bit. */
|
||
if (GET_CODE (dst) == MEM
|
||
&& align*BITS_PER_UNIT >= GET_MODE_ALIGNMENT (mode)
|
||
&& bytepos*BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
|
||
&& bytelen == GET_MODE_SIZE (mode))
|
||
{
|
||
emit_move_insn (change_address (dst, mode,
|
||
plus_constant (XEXP (dst, 0),
|
||
bytepos)),
|
||
tmps[i]);
|
||
}
|
||
else
|
||
{
|
||
store_bit_field (dst, bytelen*BITS_PER_UNIT, bytepos*BITS_PER_UNIT,
|
||
mode, tmps[i], align, ssize);
|
||
}
|
||
}
|
||
emit_queue();
|
||
|
||
/* Copy from the pseudo into the (probable) hard reg. */
|
||
if (GET_CODE (dst) == REG)
|
||
emit_move_insn (orig_dst, dst);
|
||
}
|
||
|
||
/* Generate code to copy a BLKmode object of TYPE out of a
|
||
set of registers starting with SRCREG into TGTBLK. If TGTBLK
|
||
is null, a stack temporary is created. TGTBLK is returned.
|
||
|
||
The primary purpose of this routine is to handle functions
|
||
that return BLKmode structures in registers. Some machines
|
||
(the PA for example) want to return all small structures
|
||
in registers regardless of the structure's alignment.
|
||
*/
|
||
|
||
rtx
|
||
copy_blkmode_from_reg(tgtblk,srcreg,type)
|
||
rtx tgtblk;
|
||
rtx srcreg;
|
||
tree type;
|
||
{
|
||
int bytes = int_size_in_bytes (type);
|
||
rtx src = NULL, dst = NULL;
|
||
int bitsize = MIN (TYPE_ALIGN (type), (unsigned int) BITS_PER_WORD);
|
||
int bitpos, xbitpos, big_endian_correction = 0;
|
||
|
||
if (tgtblk == 0)
|
||
{
|
||
tgtblk = assign_stack_temp (BLKmode, bytes, 0);
|
||
MEM_SET_IN_STRUCT_P (tgtblk, AGGREGATE_TYPE_P (type));
|
||
preserve_temp_slots (tgtblk);
|
||
}
|
||
|
||
/* This code assumes srcreg is at least a full word. If it isn't,
|
||
copy it into a new pseudo which is a full word. */
|
||
if (GET_MODE (srcreg) != BLKmode
|
||
&& GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
|
||
srcreg = convert_to_mode (word_mode, srcreg,
|
||
TREE_UNSIGNED (type));
|
||
|
||
/* Structures whose size is not a multiple of a word are aligned
|
||
to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
|
||
machine, this means we must skip the empty high order bytes when
|
||
calculating the bit offset. */
|
||
if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
|
||
big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
|
||
* BITS_PER_UNIT));
|
||
|
||
/* Copy the structure BITSIZE bites at a time.
|
||
|
||
We could probably emit more efficient code for machines
|
||
which do not use strict alignment, but it doesn't seem
|
||
worth the effort at the current time. */
|
||
for (bitpos = 0, xbitpos = big_endian_correction;
|
||
bitpos < bytes * BITS_PER_UNIT;
|
||
bitpos += bitsize, xbitpos += bitsize)
|
||
{
|
||
|
||
/* We need a new source operand each time xbitpos is on a
|
||
word boundary and when xbitpos == big_endian_correction
|
||
(the first time through). */
|
||
if (xbitpos % BITS_PER_WORD == 0
|
||
|| xbitpos == big_endian_correction)
|
||
src = operand_subword_force (srcreg,
|
||
xbitpos / BITS_PER_WORD,
|
||
BLKmode);
|
||
|
||
/* We need a new destination operand each time bitpos is on
|
||
a word boundary. */
|
||
if (bitpos % BITS_PER_WORD == 0)
|
||
dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
|
||
|
||
/* Use xbitpos for the source extraction (right justified) and
|
||
xbitpos for the destination store (left justified). */
|
||
store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
|
||
extract_bit_field (src, bitsize,
|
||
xbitpos % BITS_PER_WORD, 1,
|
||
NULL_RTX, word_mode,
|
||
word_mode,
|
||
bitsize / BITS_PER_UNIT,
|
||
BITS_PER_WORD),
|
||
bitsize / BITS_PER_UNIT, BITS_PER_WORD);
|
||
}
|
||
return tgtblk;
|
||
}
|
||
|
||
|
||
/* Add a USE expression for REG to the (possibly empty) list pointed
|
||
to by CALL_FUSAGE. REG must denote a hard register. */
|
||
|
||
void
|
||
use_reg (call_fusage, reg)
|
||
rtx *call_fusage, reg;
|
||
{
|
||
if (GET_CODE (reg) != REG
|
||
|| REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
||
abort();
|
||
|
||
*call_fusage
|
||
= gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_USE (VOIDmode, reg), *call_fusage);
|
||
}
|
||
|
||
/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
|
||
starting at REGNO. All of these registers must be hard registers. */
|
||
|
||
void
|
||
use_regs (call_fusage, regno, nregs)
|
||
rtx *call_fusage;
|
||
int regno;
|
||
int nregs;
|
||
{
|
||
int i;
|
||
|
||
if (regno + nregs > FIRST_PSEUDO_REGISTER)
|
||
abort ();
|
||
|
||
for (i = 0; i < nregs; i++)
|
||
use_reg (call_fusage, gen_rtx_REG (reg_raw_mode[regno + i], regno + i));
|
||
}
|
||
|
||
/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
|
||
PARALLEL REGS. This is for calls that pass values in multiple
|
||
non-contiguous locations. The Irix 6 ABI has examples of this. */
|
||
|
||
void
|
||
use_group_regs (call_fusage, regs)
|
||
rtx *call_fusage;
|
||
rtx regs;
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (regs, 0); i++)
|
||
{
|
||
rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
|
||
|
||
/* A NULL entry means the parameter goes both on the stack and in
|
||
registers. This can also be a MEM for targets that pass values
|
||
partially on the stack and partially in registers. */
|
||
if (reg != 0 && GET_CODE (reg) == REG)
|
||
use_reg (call_fusage, reg);
|
||
}
|
||
}
|
||
|
||
/* Generate several move instructions to clear LEN bytes of block TO.
|
||
(A MEM rtx with BLKmode). The caller must pass TO through
|
||
protect_from_queue before calling. ALIGN (in bytes) is maximum alignment
|
||
we can assume. */
|
||
|
||
static void
|
||
clear_by_pieces (to, len, align)
|
||
rtx to;
|
||
int len, align;
|
||
{
|
||
struct clear_by_pieces data;
|
||
rtx to_addr = XEXP (to, 0);
|
||
int max_size = MOVE_MAX_PIECES + 1;
|
||
enum machine_mode mode = VOIDmode, tmode;
|
||
enum insn_code icode;
|
||
|
||
data.offset = 0;
|
||
data.to_addr = to_addr;
|
||
data.to = to;
|
||
data.autinc_to
|
||
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|
||
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
|
||
|
||
data.explicit_inc_to = 0;
|
||
data.reverse
|
||
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
|
||
if (data.reverse) data.offset = len;
|
||
data.len = len;
|
||
|
||
data.to_struct = MEM_IN_STRUCT_P (to);
|
||
|
||
/* If copying requires more than two move insns,
|
||
copy addresses to registers (to make displacements shorter)
|
||
and use post-increment if available. */
|
||
if (!data.autinc_to
|
||
&& move_by_pieces_ninsns (len, align) > 2)
|
||
{
|
||
/* Determine the main mode we'll be using */
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
|
||
{
|
||
data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
|
||
data.autinc_to = 1;
|
||
data.explicit_inc_to = -1;
|
||
}
|
||
if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
|
||
{
|
||
data.to_addr = copy_addr_to_reg (to_addr);
|
||
data.autinc_to = 1;
|
||
data.explicit_inc_to = 1;
|
||
}
|
||
if (!data.autinc_to && CONSTANT_P (to_addr))
|
||
data.to_addr = copy_addr_to_reg (to_addr);
|
||
}
|
||
|
||
if (! SLOW_UNALIGNED_ACCESS
|
||
|| align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
|
||
align = MOVE_MAX;
|
||
|
||
/* First move what we can in the largest integer mode, then go to
|
||
successively smaller modes. */
|
||
|
||
while (max_size > 1)
|
||
{
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (mode == VOIDmode)
|
||
break;
|
||
|
||
icode = mov_optab->handlers[(int) mode].insn_code;
|
||
if (icode != CODE_FOR_nothing
|
||
&& align >= MIN (BIGGEST_ALIGNMENT / BITS_PER_UNIT,
|
||
GET_MODE_SIZE (mode)))
|
||
clear_by_pieces_1 (GEN_FCN (icode), mode, &data);
|
||
|
||
max_size = GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
/* The code above should have handled everything. */
|
||
if (data.len != 0)
|
||
abort ();
|
||
}
|
||
|
||
/* Subroutine of clear_by_pieces. Clear as many bytes as appropriate
|
||
with move instructions for mode MODE. GENFUN is the gen_... function
|
||
to make a move insn for that mode. DATA has all the other info. */
|
||
|
||
static void
|
||
clear_by_pieces_1 (genfun, mode, data)
|
||
rtx (*genfun) PROTO ((rtx, ...));
|
||
enum machine_mode mode;
|
||
struct clear_by_pieces *data;
|
||
{
|
||
register int size = GET_MODE_SIZE (mode);
|
||
register rtx to1;
|
||
|
||
while (data->len >= size)
|
||
{
|
||
if (data->reverse) data->offset -= size;
|
||
|
||
to1 = (data->autinc_to
|
||
? gen_rtx_MEM (mode, data->to_addr)
|
||
: copy_rtx (change_address (data->to, mode,
|
||
plus_constant (data->to_addr,
|
||
data->offset))));
|
||
MEM_IN_STRUCT_P (to1) = data->to_struct;
|
||
|
||
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
|
||
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-size)));
|
||
|
||
emit_insn ((*genfun) (to1, const0_rtx));
|
||
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
|
||
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
|
||
|
||
if (! data->reverse) data->offset += size;
|
||
|
||
data->len -= size;
|
||
}
|
||
}
|
||
|
||
/* Write zeros through the storage of OBJECT.
|
||
If OBJECT has BLKmode, SIZE is its length in bytes and ALIGN is
|
||
the maximum alignment we can is has, measured in bytes.
|
||
|
||
If we call a function that returns the length of the block, return it. */
|
||
|
||
rtx
|
||
clear_storage (object, size, align)
|
||
rtx object;
|
||
rtx size;
|
||
int align;
|
||
{
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
static tree fn;
|
||
tree call_expr, arg_list;
|
||
#endif
|
||
rtx retval = 0;
|
||
|
||
if (GET_MODE (object) == BLKmode)
|
||
{
|
||
object = protect_from_queue (object, 1);
|
||
size = protect_from_queue (size, 0);
|
||
|
||
if (GET_CODE (size) == CONST_INT
|
||
&& MOVE_BY_PIECES_P (INTVAL (size), align))
|
||
clear_by_pieces (object, INTVAL (size), align);
|
||
|
||
else
|
||
{
|
||
/* Try the most limited insn first, because there's no point
|
||
including more than one in the machine description unless
|
||
the more limited one has some advantage. */
|
||
|
||
rtx opalign = GEN_INT (align);
|
||
enum machine_mode mode;
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
enum insn_code code = clrstr_optab[(int) mode];
|
||
|
||
if (code != CODE_FOR_nothing
|
||
/* We don't need MODE to be narrower than
|
||
BITS_PER_HOST_WIDE_INT here because if SIZE is less than
|
||
the mode mask, as it is returned by the macro, it will
|
||
definitely be less than the actual mode mask. */
|
||
&& ((GET_CODE (size) == CONST_INT
|
||
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
|
||
<= (GET_MODE_MASK (mode) >> 1)))
|
||
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
|
||
&& (insn_operand_predicate[(int) code][0] == 0
|
||
|| (*insn_operand_predicate[(int) code][0]) (object,
|
||
BLKmode))
|
||
&& (insn_operand_predicate[(int) code][2] == 0
|
||
|| (*insn_operand_predicate[(int) code][2]) (opalign,
|
||
VOIDmode)))
|
||
{
|
||
rtx op1;
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
|
||
op1 = convert_to_mode (mode, size, 1);
|
||
if (insn_operand_predicate[(int) code][1] != 0
|
||
&& ! (*insn_operand_predicate[(int) code][1]) (op1,
|
||
mode))
|
||
op1 = copy_to_mode_reg (mode, op1);
|
||
|
||
pat = GEN_FCN ((int) code) (object, op1, opalign);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return 0;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
/* OBJECT or SIZE may have been passed through protect_from_queue.
|
||
|
||
It is unsafe to save the value generated by protect_from_queue
|
||
and reuse it later. Consider what happens if emit_queue is
|
||
called before the return value from protect_from_queue is used.
|
||
|
||
Expansion of the CALL_EXPR below will call emit_queue before
|
||
we are finished emitting RTL for argument setup. So if we are
|
||
not careful we could get the wrong value for an argument.
|
||
|
||
To avoid this problem we go ahead and emit code to copy OBJECT
|
||
and SIZE into new pseudos. We can then place those new pseudos
|
||
into an RTL_EXPR and use them later, even after a call to
|
||
emit_queue.
|
||
|
||
Note this is not strictly needed for library calls since they
|
||
do not call emit_queue before loading their arguments. However,
|
||
we may need to have library calls call emit_queue in the future
|
||
since failing to do so could cause problems for targets which
|
||
define SMALL_REGISTER_CLASSES and pass arguments in registers. */
|
||
object = copy_to_mode_reg (Pmode, XEXP (object, 0));
|
||
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
|
||
#else
|
||
size = convert_to_mode (TYPE_MODE (integer_type_node), size,
|
||
TREE_UNSIGNED (integer_type_node));
|
||
size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
|
||
#endif
|
||
|
||
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
/* It is incorrect to use the libcall calling conventions to call
|
||
memset in this context.
|
||
|
||
This could be a user call to memset and the user may wish to
|
||
examine the return value from memset.
|
||
|
||
For targets where libcalls and normal calls have different
|
||
conventions for returning pointers, we could end up generating
|
||
incorrect code.
|
||
|
||
So instead of using a libcall sequence we build up a suitable
|
||
CALL_EXPR and expand the call in the normal fashion. */
|
||
if (fn == NULL_TREE)
|
||
{
|
||
tree fntype;
|
||
|
||
/* This was copied from except.c, I don't know if all this is
|
||
necessary in this context or not. */
|
||
fn = get_identifier ("memset");
|
||
push_obstacks_nochange ();
|
||
end_temporary_allocation ();
|
||
fntype = build_pointer_type (void_type_node);
|
||
fntype = build_function_type (fntype, NULL_TREE);
|
||
fn = build_decl (FUNCTION_DECL, fn, fntype);
|
||
DECL_EXTERNAL (fn) = 1;
|
||
TREE_PUBLIC (fn) = 1;
|
||
DECL_ARTIFICIAL (fn) = 1;
|
||
make_decl_rtl (fn, NULL_PTR, 1);
|
||
assemble_external (fn);
|
||
pop_obstacks ();
|
||
}
|
||
|
||
/* We need to make an argument list for the function call.
|
||
|
||
memset has three arguments, the first is a void * addresses, the
|
||
second a integer with the initialization value, the last is a
|
||
size_t byte count for the copy. */
|
||
arg_list
|
||
= build_tree_list (NULL_TREE,
|
||
make_tree (build_pointer_type (void_type_node),
|
||
object));
|
||
TREE_CHAIN (arg_list)
|
||
= build_tree_list (NULL_TREE,
|
||
make_tree (integer_type_node, const0_rtx));
|
||
TREE_CHAIN (TREE_CHAIN (arg_list))
|
||
= build_tree_list (NULL_TREE, make_tree (sizetype, size));
|
||
TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
|
||
|
||
/* Now we have to build up the CALL_EXPR itself. */
|
||
call_expr = build1 (ADDR_EXPR,
|
||
build_pointer_type (TREE_TYPE (fn)), fn);
|
||
call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
|
||
call_expr, arg_list, NULL_TREE);
|
||
TREE_SIDE_EFFECTS (call_expr) = 1;
|
||
|
||
retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
|
||
#else
|
||
emit_library_call (bzero_libfunc, 0,
|
||
VOIDmode, 2, object, Pmode, size,
|
||
TYPE_MODE (integer_type_node));
|
||
#endif
|
||
}
|
||
}
|
||
else
|
||
emit_move_insn (object, CONST0_RTX (GET_MODE (object)));
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Generate code to copy Y into X.
|
||
Both Y and X must have the same mode, except that
|
||
Y can be a constant with VOIDmode.
|
||
This mode cannot be BLKmode; use emit_block_move for that.
|
||
|
||
Return the last instruction emitted. */
|
||
|
||
rtx
|
||
emit_move_insn (x, y)
|
||
rtx x, y;
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
|
||
x = protect_from_queue (x, 1);
|
||
y = protect_from_queue (y, 0);
|
||
|
||
if (mode == BLKmode || (GET_MODE (y) != mode && GET_MODE (y) != VOIDmode))
|
||
abort ();
|
||
|
||
/* Never force constant_p_rtx to memory. */
|
||
if (GET_CODE (y) == CONSTANT_P_RTX)
|
||
;
|
||
else if (CONSTANT_P (y) && ! LEGITIMATE_CONSTANT_P (y))
|
||
y = force_const_mem (mode, y);
|
||
|
||
/* If X or Y are memory references, verify that their addresses are valid
|
||
for the machine. */
|
||
if (GET_CODE (x) == MEM
|
||
&& ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
|
||
&& ! push_operand (x, GET_MODE (x)))
|
||
|| (flag_force_addr
|
||
&& CONSTANT_ADDRESS_P (XEXP (x, 0)))))
|
||
x = change_address (x, VOIDmode, XEXP (x, 0));
|
||
|
||
if (GET_CODE (y) == MEM
|
||
&& (! memory_address_p (GET_MODE (y), XEXP (y, 0))
|
||
|| (flag_force_addr
|
||
&& CONSTANT_ADDRESS_P (XEXP (y, 0)))))
|
||
y = change_address (y, VOIDmode, XEXP (y, 0));
|
||
|
||
if (mode == BLKmode)
|
||
abort ();
|
||
|
||
return emit_move_insn_1 (x, y);
|
||
}
|
||
|
||
/* Low level part of emit_move_insn.
|
||
Called just like emit_move_insn, but assumes X and Y
|
||
are basically valid. */
|
||
|
||
rtx
|
||
emit_move_insn_1 (x, y)
|
||
rtx x, y;
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
enum machine_mode submode;
|
||
enum mode_class class = GET_MODE_CLASS (mode);
|
||
int i;
|
||
|
||
if (mode >= MAX_MACHINE_MODE)
|
||
abort ();
|
||
|
||
if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
return
|
||
emit_insn (GEN_FCN (mov_optab->handlers[(int) mode].insn_code) (x, y));
|
||
|
||
/* Expand complex moves by moving real part and imag part, if possible. */
|
||
else if ((class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
|
||
&& BLKmode != (submode = mode_for_size ((GET_MODE_UNIT_SIZE (mode)
|
||
* BITS_PER_UNIT),
|
||
(class == MODE_COMPLEX_INT
|
||
? MODE_INT : MODE_FLOAT),
|
||
0))
|
||
&& (mov_optab->handlers[(int) submode].insn_code
|
||
!= CODE_FOR_nothing))
|
||
{
|
||
/* Don't split destination if it is a stack push. */
|
||
int stack = push_operand (x, GET_MODE (x));
|
||
|
||
/* If this is a stack, push the highpart first, so it
|
||
will be in the argument order.
|
||
|
||
In that case, change_address is used only to convert
|
||
the mode, not to change the address. */
|
||
if (stack)
|
||
{
|
||
/* Note that the real part always precedes the imag part in memory
|
||
regardless of machine's endianness. */
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
|
||
(gen_rtx_MEM (submode, (XEXP (x, 0))),
|
||
gen_imagpart (submode, y)));
|
||
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
|
||
(gen_rtx_MEM (submode, (XEXP (x, 0))),
|
||
gen_realpart (submode, y)));
|
||
#else
|
||
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
|
||
(gen_rtx_MEM (submode, (XEXP (x, 0))),
|
||
gen_realpart (submode, y)));
|
||
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
|
||
(gen_rtx_MEM (submode, (XEXP (x, 0))),
|
||
gen_imagpart (submode, y)));
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* Show the output dies here. This is necessary for pseudos;
|
||
hard regs shouldn't appear here except as return values.
|
||
We never want to emit such a clobber after reload. */
|
||
if (x != y
|
||
&& ! (reload_in_progress || reload_completed))
|
||
{
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
|
||
}
|
||
|
||
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
|
||
(gen_realpart (submode, x), gen_realpart (submode, y)));
|
||
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
|
||
(gen_imagpart (submode, x), gen_imagpart (submode, y)));
|
||
}
|
||
|
||
return get_last_insn ();
|
||
}
|
||
|
||
/* This will handle any multi-word mode that lacks a move_insn pattern.
|
||
However, you will get better code if you define such patterns,
|
||
even if they must turn into multiple assembler instructions. */
|
||
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
|
||
{
|
||
rtx last_insn = 0;
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
|
||
/* If X is a push on the stack, do the push now and replace
|
||
X with a reference to the stack pointer. */
|
||
if (push_operand (x, GET_MODE (x)))
|
||
{
|
||
anti_adjust_stack (GEN_INT (GET_MODE_SIZE (GET_MODE (x))));
|
||
x = change_address (x, VOIDmode, stack_pointer_rtx);
|
||
}
|
||
#endif
|
||
|
||
/* Show the output dies here. This is necessary for pseudos;
|
||
hard regs shouldn't appear here except as return values.
|
||
We never want to emit such a clobber after reload. */
|
||
if (x != y
|
||
&& ! (reload_in_progress || reload_completed))
|
||
{
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
|
||
}
|
||
|
||
for (i = 0;
|
||
i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
|
||
i++)
|
||
{
|
||
rtx xpart = operand_subword (x, i, 1, mode);
|
||
rtx ypart = operand_subword (y, i, 1, mode);
|
||
|
||
/* If we can't get a part of Y, put Y into memory if it is a
|
||
constant. Otherwise, force it into a register. If we still
|
||
can't get a part of Y, abort. */
|
||
if (ypart == 0 && CONSTANT_P (y))
|
||
{
|
||
y = force_const_mem (mode, y);
|
||
ypart = operand_subword (y, i, 1, mode);
|
||
}
|
||
else if (ypart == 0)
|
||
ypart = operand_subword_force (y, i, mode);
|
||
|
||
if (xpart == 0 || ypart == 0)
|
||
abort ();
|
||
|
||
last_insn = emit_move_insn (xpart, ypart);
|
||
}
|
||
|
||
return last_insn;
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Pushing data onto the stack. */
|
||
|
||
/* Push a block of length SIZE (perhaps variable)
|
||
and return an rtx to address the beginning of the block.
|
||
Note that it is not possible for the value returned to be a QUEUED.
|
||
The value may be virtual_outgoing_args_rtx.
|
||
|
||
EXTRA is the number of bytes of padding to push in addition to SIZE.
|
||
BELOW nonzero means this padding comes at low addresses;
|
||
otherwise, the padding comes at high addresses. */
|
||
|
||
rtx
|
||
push_block (size, extra, below)
|
||
rtx size;
|
||
int extra, below;
|
||
{
|
||
register rtx temp;
|
||
|
||
size = convert_modes (Pmode, ptr_mode, size, 1);
|
||
if (CONSTANT_P (size))
|
||
anti_adjust_stack (plus_constant (size, extra));
|
||
else if (GET_CODE (size) == REG && extra == 0)
|
||
anti_adjust_stack (size);
|
||
else
|
||
{
|
||
rtx temp = copy_to_mode_reg (Pmode, size);
|
||
if (extra != 0)
|
||
temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
|
||
temp, 0, OPTAB_LIB_WIDEN);
|
||
anti_adjust_stack (temp);
|
||
}
|
||
|
||
#if defined (STACK_GROWS_DOWNWARD) \
|
||
|| (defined (ARGS_GROW_DOWNWARD) \
|
||
&& !defined (ACCUMULATE_OUTGOING_ARGS))
|
||
|
||
/* Return the lowest stack address when STACK or ARGS grow downward and
|
||
we are not aaccumulating outgoing arguments (the c4x port uses such
|
||
conventions). */
|
||
temp = virtual_outgoing_args_rtx;
|
||
if (extra != 0 && below)
|
||
temp = plus_constant (temp, extra);
|
||
#else
|
||
if (GET_CODE (size) == CONST_INT)
|
||
temp = plus_constant (virtual_outgoing_args_rtx,
|
||
- INTVAL (size) - (below ? 0 : extra));
|
||
else if (extra != 0 && !below)
|
||
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
|
||
negate_rtx (Pmode, plus_constant (size, extra)));
|
||
else
|
||
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
|
||
negate_rtx (Pmode, size));
|
||
#endif
|
||
|
||
return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
|
||
}
|
||
|
||
rtx
|
||
gen_push_operand ()
|
||
{
|
||
return gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
|
||
}
|
||
|
||
/* Return an rtx for the address of the beginning of a as-if-it-was-pushed
|
||
block of SIZE bytes. */
|
||
|
||
static rtx
|
||
get_push_address (size)
|
||
int size;
|
||
{
|
||
register rtx temp;
|
||
|
||
if (STACK_PUSH_CODE == POST_DEC)
|
||
temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (size));
|
||
else if (STACK_PUSH_CODE == POST_INC)
|
||
temp = gen_rtx_MINUS (Pmode, stack_pointer_rtx, GEN_INT (size));
|
||
else
|
||
temp = stack_pointer_rtx;
|
||
|
||
return copy_to_reg (temp);
|
||
}
|
||
|
||
/* Generate code to push X onto the stack, assuming it has mode MODE and
|
||
type TYPE.
|
||
MODE is redundant except when X is a CONST_INT (since they don't
|
||
carry mode info).
|
||
SIZE is an rtx for the size of data to be copied (in bytes),
|
||
needed only if X is BLKmode.
|
||
|
||
ALIGN (in bytes) is maximum alignment we can assume.
|
||
|
||
If PARTIAL and REG are both nonzero, then copy that many of the first
|
||
words of X into registers starting with REG, and push the rest of X.
|
||
The amount of space pushed is decreased by PARTIAL words,
|
||
rounded *down* to a multiple of PARM_BOUNDARY.
|
||
REG must be a hard register in this case.
|
||
If REG is zero but PARTIAL is not, take any all others actions for an
|
||
argument partially in registers, but do not actually load any
|
||
registers.
|
||
|
||
EXTRA is the amount in bytes of extra space to leave next to this arg.
|
||
This is ignored if an argument block has already been allocated.
|
||
|
||
On a machine that lacks real push insns, ARGS_ADDR is the address of
|
||
the bottom of the argument block for this call. We use indexing off there
|
||
to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
|
||
argument block has not been preallocated.
|
||
|
||
ARGS_SO_FAR is the size of args previously pushed for this call.
|
||
|
||
REG_PARM_STACK_SPACE is nonzero if functions require stack space
|
||
for arguments passed in registers. If nonzero, it will be the number
|
||
of bytes required. */
|
||
|
||
void
|
||
emit_push_insn (x, mode, type, size, align, partial, reg, extra,
|
||
args_addr, args_so_far, reg_parm_stack_space)
|
||
register rtx x;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
rtx size;
|
||
int align;
|
||
int partial;
|
||
rtx reg;
|
||
int extra;
|
||
rtx args_addr;
|
||
rtx args_so_far;
|
||
int reg_parm_stack_space;
|
||
{
|
||
rtx xinner;
|
||
enum direction stack_direction
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
= downward;
|
||
#else
|
||
= upward;
|
||
#endif
|
||
|
||
/* Decide where to pad the argument: `downward' for below,
|
||
`upward' for above, or `none' for don't pad it.
|
||
Default is below for small data on big-endian machines; else above. */
|
||
enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
|
||
|
||
/* Invert direction if stack is post-update. */
|
||
if (STACK_PUSH_CODE == POST_INC || STACK_PUSH_CODE == POST_DEC)
|
||
if (where_pad != none)
|
||
where_pad = (where_pad == downward ? upward : downward);
|
||
|
||
xinner = x = protect_from_queue (x, 0);
|
||
|
||
if (mode == BLKmode)
|
||
{
|
||
/* Copy a block into the stack, entirely or partially. */
|
||
|
||
register rtx temp;
|
||
int used = partial * UNITS_PER_WORD;
|
||
int offset = used % (PARM_BOUNDARY / BITS_PER_UNIT);
|
||
int skip;
|
||
|
||
if (size == 0)
|
||
abort ();
|
||
|
||
used -= offset;
|
||
|
||
/* USED is now the # of bytes we need not copy to the stack
|
||
because registers will take care of them. */
|
||
|
||
if (partial != 0)
|
||
xinner = change_address (xinner, BLKmode,
|
||
plus_constant (XEXP (xinner, 0), used));
|
||
|
||
/* If the partial register-part of the arg counts in its stack size,
|
||
skip the part of stack space corresponding to the registers.
|
||
Otherwise, start copying to the beginning of the stack space,
|
||
by setting SKIP to 0. */
|
||
skip = (reg_parm_stack_space == 0) ? 0 : used;
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
/* Do it with several push insns if that doesn't take lots of insns
|
||
and if there is no difficulty with push insns that skip bytes
|
||
on the stack for alignment purposes. */
|
||
if (args_addr == 0
|
||
&& GET_CODE (size) == CONST_INT
|
||
&& skip == 0
|
||
&& (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
|
||
/* Here we avoid the case of a structure whose weak alignment
|
||
forces many pushes of a small amount of data,
|
||
and such small pushes do rounding that causes trouble. */
|
||
&& ((! SLOW_UNALIGNED_ACCESS)
|
||
|| align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT
|
||
|| PUSH_ROUNDING (align) == align)
|
||
&& PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
|
||
{
|
||
/* Push padding now if padding above and stack grows down,
|
||
or if padding below and stack grows up.
|
||
But if space already allocated, this has already been done. */
|
||
if (extra && args_addr == 0
|
||
&& where_pad != none && where_pad != stack_direction)
|
||
anti_adjust_stack (GEN_INT (extra));
|
||
|
||
move_by_pieces (gen_rtx_MEM (BLKmode, gen_push_operand ()), xinner,
|
||
INTVAL (size) - used, align);
|
||
|
||
if (current_function_check_memory_usage && ! in_check_memory_usage)
|
||
{
|
||
rtx temp;
|
||
|
||
in_check_memory_usage = 1;
|
||
temp = get_push_address (INTVAL(size) - used);
|
||
if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
|
||
emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
|
||
temp, Pmode,
|
||
XEXP (xinner, 0), Pmode,
|
||
GEN_INT (INTVAL(size) - used),
|
||
TYPE_MODE (sizetype));
|
||
else
|
||
emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
|
||
temp, Pmode,
|
||
GEN_INT (INTVAL(size) - used),
|
||
TYPE_MODE (sizetype),
|
||
GEN_INT (MEMORY_USE_RW),
|
||
TYPE_MODE (integer_type_node));
|
||
in_check_memory_usage = 0;
|
||
}
|
||
}
|
||
else
|
||
#endif /* PUSH_ROUNDING */
|
||
{
|
||
/* Otherwise make space on the stack and copy the data
|
||
to the address of that space. */
|
||
|
||
/* Deduct words put into registers from the size we must copy. */
|
||
if (partial != 0)
|
||
{
|
||
if (GET_CODE (size) == CONST_INT)
|
||
size = GEN_INT (INTVAL (size) - used);
|
||
else
|
||
size = expand_binop (GET_MODE (size), sub_optab, size,
|
||
GEN_INT (used), NULL_RTX, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
/* Get the address of the stack space.
|
||
In this case, we do not deal with EXTRA separately.
|
||
A single stack adjust will do. */
|
||
if (! args_addr)
|
||
{
|
||
temp = push_block (size, extra, where_pad == downward);
|
||
extra = 0;
|
||
}
|
||
else if (GET_CODE (args_so_far) == CONST_INT)
|
||
temp = memory_address (BLKmode,
|
||
plus_constant (args_addr,
|
||
skip + INTVAL (args_so_far)));
|
||
else
|
||
temp = memory_address (BLKmode,
|
||
plus_constant (gen_rtx_PLUS (Pmode,
|
||
args_addr,
|
||
args_so_far),
|
||
skip));
|
||
if (current_function_check_memory_usage && ! in_check_memory_usage)
|
||
{
|
||
rtx target;
|
||
|
||
in_check_memory_usage = 1;
|
||
target = copy_to_reg (temp);
|
||
if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
|
||
emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
|
||
target, Pmode,
|
||
XEXP (xinner, 0), Pmode,
|
||
size, TYPE_MODE (sizetype));
|
||
else
|
||
emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
|
||
target, Pmode,
|
||
size, TYPE_MODE (sizetype),
|
||
GEN_INT (MEMORY_USE_RW),
|
||
TYPE_MODE (integer_type_node));
|
||
in_check_memory_usage = 0;
|
||
}
|
||
|
||
/* TEMP is the address of the block. Copy the data there. */
|
||
if (GET_CODE (size) == CONST_INT
|
||
&& (MOVE_BY_PIECES_P ((unsigned) INTVAL (size), align)))
|
||
{
|
||
move_by_pieces (gen_rtx_MEM (BLKmode, temp), xinner,
|
||
INTVAL (size), align);
|
||
goto ret;
|
||
}
|
||
else
|
||
{
|
||
rtx opalign = GEN_INT (align);
|
||
enum machine_mode mode;
|
||
rtx target = gen_rtx_MEM (BLKmode, temp);
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
enum insn_code code = movstr_optab[(int) mode];
|
||
|
||
if (code != CODE_FOR_nothing
|
||
&& ((GET_CODE (size) == CONST_INT
|
||
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
|
||
<= (GET_MODE_MASK (mode) >> 1)))
|
||
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
|
||
&& (insn_operand_predicate[(int) code][0] == 0
|
||
|| ((*insn_operand_predicate[(int) code][0])
|
||
(target, BLKmode)))
|
||
&& (insn_operand_predicate[(int) code][1] == 0
|
||
|| ((*insn_operand_predicate[(int) code][1])
|
||
(xinner, BLKmode)))
|
||
&& (insn_operand_predicate[(int) code][3] == 0
|
||
|| ((*insn_operand_predicate[(int) code][3])
|
||
(opalign, VOIDmode))))
|
||
{
|
||
rtx op2 = convert_to_mode (mode, size, 1);
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
|
||
if (insn_operand_predicate[(int) code][2] != 0
|
||
&& ! ((*insn_operand_predicate[(int) code][2])
|
||
(op2, mode)))
|
||
op2 = copy_to_mode_reg (mode, op2);
|
||
|
||
pat = GEN_FCN ((int) code) (target, xinner,
|
||
op2, opalign);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
goto ret;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifndef ACCUMULATE_OUTGOING_ARGS
|
||
/* If the source is referenced relative to the stack pointer,
|
||
copy it to another register to stabilize it. We do not need
|
||
to do this if we know that we won't be changing sp. */
|
||
|
||
if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
|
||
|| reg_mentioned_p (virtual_outgoing_args_rtx, temp))
|
||
temp = copy_to_reg (temp);
|
||
#endif
|
||
|
||
/* Make inhibit_defer_pop nonzero around the library call
|
||
to force it to pop the bcopy-arguments right away. */
|
||
NO_DEFER_POP;
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
emit_library_call (memcpy_libfunc, 0,
|
||
VOIDmode, 3, temp, Pmode, XEXP (xinner, 0), Pmode,
|
||
convert_to_mode (TYPE_MODE (sizetype),
|
||
size, TREE_UNSIGNED (sizetype)),
|
||
TYPE_MODE (sizetype));
|
||
#else
|
||
emit_library_call (bcopy_libfunc, 0,
|
||
VOIDmode, 3, XEXP (xinner, 0), Pmode, temp, Pmode,
|
||
convert_to_mode (TYPE_MODE (integer_type_node),
|
||
size,
|
||
TREE_UNSIGNED (integer_type_node)),
|
||
TYPE_MODE (integer_type_node));
|
||
#endif
|
||
OK_DEFER_POP;
|
||
}
|
||
}
|
||
else if (partial > 0)
|
||
{
|
||
/* Scalar partly in registers. */
|
||
|
||
int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
|
||
int i;
|
||
int not_stack;
|
||
/* # words of start of argument
|
||
that we must make space for but need not store. */
|
||
int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD);
|
||
int args_offset = INTVAL (args_so_far);
|
||
int skip;
|
||
|
||
/* Push padding now if padding above and stack grows down,
|
||
or if padding below and stack grows up.
|
||
But if space already allocated, this has already been done. */
|
||
if (extra && args_addr == 0
|
||
&& where_pad != none && where_pad != stack_direction)
|
||
anti_adjust_stack (GEN_INT (extra));
|
||
|
||
/* If we make space by pushing it, we might as well push
|
||
the real data. Otherwise, we can leave OFFSET nonzero
|
||
and leave the space uninitialized. */
|
||
if (args_addr == 0)
|
||
offset = 0;
|
||
|
||
/* Now NOT_STACK gets the number of words that we don't need to
|
||
allocate on the stack. */
|
||
not_stack = partial - offset;
|
||
|
||
/* If the partial register-part of the arg counts in its stack size,
|
||
skip the part of stack space corresponding to the registers.
|
||
Otherwise, start copying to the beginning of the stack space,
|
||
by setting SKIP to 0. */
|
||
skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
|
||
|
||
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
|
||
x = validize_mem (force_const_mem (mode, x));
|
||
|
||
/* If X is a hard register in a non-integer mode, copy it into a pseudo;
|
||
SUBREGs of such registers are not allowed. */
|
||
if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
|
||
x = copy_to_reg (x);
|
||
|
||
/* Loop over all the words allocated on the stack for this arg. */
|
||
/* We can do it by words, because any scalar bigger than a word
|
||
has a size a multiple of a word. */
|
||
#ifndef PUSH_ARGS_REVERSED
|
||
for (i = not_stack; i < size; i++)
|
||
#else
|
||
for (i = size - 1; i >= not_stack; i--)
|
||
#endif
|
||
if (i >= not_stack + offset)
|
||
emit_push_insn (operand_subword_force (x, i, mode),
|
||
word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
|
||
0, args_addr,
|
||
GEN_INT (args_offset + ((i - not_stack + skip)
|
||
* UNITS_PER_WORD)),
|
||
reg_parm_stack_space);
|
||
}
|
||
else
|
||
{
|
||
rtx addr;
|
||
rtx target = NULL_RTX;
|
||
|
||
/* Push padding now if padding above and stack grows down,
|
||
or if padding below and stack grows up.
|
||
But if space already allocated, this has already been done. */
|
||
if (extra && args_addr == 0
|
||
&& where_pad != none && where_pad != stack_direction)
|
||
anti_adjust_stack (GEN_INT (extra));
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
if (args_addr == 0)
|
||
addr = gen_push_operand ();
|
||
else
|
||
#endif
|
||
{
|
||
if (GET_CODE (args_so_far) == CONST_INT)
|
||
addr
|
||
= memory_address (mode,
|
||
plus_constant (args_addr,
|
||
INTVAL (args_so_far)));
|
||
else
|
||
addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
|
||
args_so_far));
|
||
target = addr;
|
||
}
|
||
|
||
emit_move_insn (gen_rtx_MEM (mode, addr), x);
|
||
|
||
if (current_function_check_memory_usage && ! in_check_memory_usage)
|
||
{
|
||
in_check_memory_usage = 1;
|
||
if (target == 0)
|
||
target = get_push_address (GET_MODE_SIZE (mode));
|
||
|
||
if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
|
||
emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
|
||
target, Pmode,
|
||
XEXP (x, 0), Pmode,
|
||
GEN_INT (GET_MODE_SIZE (mode)),
|
||
TYPE_MODE (sizetype));
|
||
else
|
||
emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
|
||
target, Pmode,
|
||
GEN_INT (GET_MODE_SIZE (mode)),
|
||
TYPE_MODE (sizetype),
|
||
GEN_INT (MEMORY_USE_RW),
|
||
TYPE_MODE (integer_type_node));
|
||
in_check_memory_usage = 0;
|
||
}
|
||
}
|
||
|
||
ret:
|
||
/* If part should go in registers, copy that part
|
||
into the appropriate registers. Do this now, at the end,
|
||
since mem-to-mem copies above may do function calls. */
|
||
if (partial > 0 && reg != 0)
|
||
{
|
||
/* Handle calls that pass values in multiple non-contiguous locations.
|
||
The Irix 6 ABI has examples of this. */
|
||
if (GET_CODE (reg) == PARALLEL)
|
||
emit_group_load (reg, x, -1, align); /* ??? size? */
|
||
else
|
||
move_block_to_reg (REGNO (reg), x, partial, mode);
|
||
}
|
||
|
||
if (extra && args_addr == 0 && where_pad == stack_direction)
|
||
anti_adjust_stack (GEN_INT (extra));
|
||
}
|
||
|
||
/* Expand an assignment that stores the value of FROM into TO.
|
||
If WANT_VALUE is nonzero, return an rtx for the value of TO.
|
||
(This may contain a QUEUED rtx;
|
||
if the value is constant, this rtx is a constant.)
|
||
Otherwise, the returned value is NULL_RTX.
|
||
|
||
SUGGEST_REG is no longer actually used.
|
||
It used to mean, copy the value through a register
|
||
and return that register, if that is possible.
|
||
We now use WANT_VALUE to decide whether to do this. */
|
||
|
||
rtx
|
||
expand_assignment (to, from, want_value, suggest_reg)
|
||
tree to, from;
|
||
int want_value;
|
||
int suggest_reg;
|
||
{
|
||
register rtx to_rtx = 0;
|
||
rtx result;
|
||
|
||
/* Don't crash if the lhs of the assignment was erroneous. */
|
||
|
||
if (TREE_CODE (to) == ERROR_MARK)
|
||
{
|
||
result = expand_expr (from, NULL_RTX, VOIDmode, 0);
|
||
return want_value ? result : NULL_RTX;
|
||
}
|
||
|
||
/* Assignment of a structure component needs special treatment
|
||
if the structure component's rtx is not simply a MEM.
|
||
Assignment of an array element at a constant index, and assignment of
|
||
an array element in an unaligned packed structure field, has the same
|
||
problem. */
|
||
|
||
if (TREE_CODE (to) == COMPONENT_REF || TREE_CODE (to) == BIT_FIELD_REF
|
||
|| TREE_CODE (to) == ARRAY_REF)
|
||
{
|
||
enum machine_mode mode1;
|
||
int bitsize;
|
||
int bitpos;
|
||
tree offset;
|
||
int unsignedp;
|
||
int volatilep = 0;
|
||
tree tem;
|
||
int alignment;
|
||
|
||
push_temp_slots ();
|
||
tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
|
||
&unsignedp, &volatilep, &alignment);
|
||
|
||
/* If we are going to use store_bit_field and extract_bit_field,
|
||
make sure to_rtx will be safe for multiple use. */
|
||
|
||
if (mode1 == VOIDmode && want_value)
|
||
tem = stabilize_reference (tem);
|
||
|
||
to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_DONT);
|
||
if (offset != 0)
|
||
{
|
||
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
|
||
|
||
if (GET_CODE (to_rtx) != MEM)
|
||
abort ();
|
||
|
||
if (GET_MODE (offset_rtx) != ptr_mode)
|
||
{
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
|
||
#else
|
||
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
|
||
#endif
|
||
}
|
||
|
||
/* A constant address in TO_RTX can have VOIDmode, we must not try
|
||
to call force_reg for that case. Avoid that case. */
|
||
if (GET_CODE (to_rtx) == MEM
|
||
&& GET_MODE (to_rtx) == BLKmode
|
||
&& GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
|
||
&& bitsize
|
||
&& (bitpos % bitsize) == 0
|
||
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
|
||
&& (alignment * BITS_PER_UNIT) == GET_MODE_ALIGNMENT (mode1))
|
||
{
|
||
rtx temp = change_address (to_rtx, mode1,
|
||
plus_constant (XEXP (to_rtx, 0),
|
||
(bitpos /
|
||
BITS_PER_UNIT)));
|
||
if (GET_CODE (XEXP (temp, 0)) == REG)
|
||
to_rtx = temp;
|
||
else
|
||
to_rtx = change_address (to_rtx, mode1,
|
||
force_reg (GET_MODE (XEXP (temp, 0)),
|
||
XEXP (temp, 0)));
|
||
bitpos = 0;
|
||
}
|
||
|
||
to_rtx = change_address (to_rtx, VOIDmode,
|
||
gen_rtx_PLUS (ptr_mode, XEXP (to_rtx, 0),
|
||
force_reg (ptr_mode, offset_rtx)));
|
||
}
|
||
if (volatilep)
|
||
{
|
||
if (GET_CODE (to_rtx) == MEM)
|
||
{
|
||
/* When the offset is zero, to_rtx is the address of the
|
||
structure we are storing into, and hence may be shared.
|
||
We must make a new MEM before setting the volatile bit. */
|
||
if (offset == 0)
|
||
to_rtx = copy_rtx (to_rtx);
|
||
|
||
MEM_VOLATILE_P (to_rtx) = 1;
|
||
}
|
||
#if 0 /* This was turned off because, when a field is volatile
|
||
in an object which is not volatile, the object may be in a register,
|
||
and then we would abort over here. */
|
||
else
|
||
abort ();
|
||
#endif
|
||
}
|
||
|
||
if (TREE_CODE (to) == COMPONENT_REF
|
||
&& TREE_READONLY (TREE_OPERAND (to, 1)))
|
||
{
|
||
if (offset == 0)
|
||
to_rtx = copy_rtx (to_rtx);
|
||
|
||
RTX_UNCHANGING_P (to_rtx) = 1;
|
||
}
|
||
|
||
/* Check the access. */
|
||
if (current_function_check_memory_usage && GET_CODE (to_rtx) == MEM)
|
||
{
|
||
rtx to_addr;
|
||
int size;
|
||
int best_mode_size;
|
||
enum machine_mode best_mode;
|
||
|
||
best_mode = get_best_mode (bitsize, bitpos,
|
||
TYPE_ALIGN (TREE_TYPE (tem)),
|
||
mode1, volatilep);
|
||
if (best_mode == VOIDmode)
|
||
best_mode = QImode;
|
||
|
||
best_mode_size = GET_MODE_BITSIZE (best_mode);
|
||
to_addr = plus_constant (XEXP (to_rtx, 0), (bitpos / BITS_PER_UNIT));
|
||
size = CEIL ((bitpos % best_mode_size) + bitsize, best_mode_size);
|
||
size *= GET_MODE_SIZE (best_mode);
|
||
|
||
/* Check the access right of the pointer. */
|
||
if (size)
|
||
emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
|
||
to_addr, Pmode,
|
||
GEN_INT (size), TYPE_MODE (sizetype),
|
||
GEN_INT (MEMORY_USE_WO),
|
||
TYPE_MODE (integer_type_node));
|
||
}
|
||
|
||
result = store_field (to_rtx, bitsize, bitpos, mode1, from,
|
||
(want_value
|
||
/* Spurious cast makes HPUX compiler happy. */
|
||
? (enum machine_mode) TYPE_MODE (TREE_TYPE (to))
|
||
: VOIDmode),
|
||
unsignedp,
|
||
/* Required alignment of containing datum. */
|
||
alignment,
|
||
int_size_in_bytes (TREE_TYPE (tem)),
|
||
get_alias_set (to));
|
||
preserve_temp_slots (result);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
|
||
/* If the value is meaningful, convert RESULT to the proper mode.
|
||
Otherwise, return nothing. */
|
||
return (want_value ? convert_modes (TYPE_MODE (TREE_TYPE (to)),
|
||
TYPE_MODE (TREE_TYPE (from)),
|
||
result,
|
||
TREE_UNSIGNED (TREE_TYPE (to)))
|
||
: NULL_RTX);
|
||
}
|
||
|
||
/* If the rhs is a function call and its value is not an aggregate,
|
||
call the function before we start to compute the lhs.
|
||
This is needed for correct code for cases such as
|
||
val = setjmp (buf) on machines where reference to val
|
||
requires loading up part of an address in a separate insn.
|
||
|
||
Don't do this if TO is a VAR_DECL whose DECL_RTL is REG since it might be
|
||
a promoted variable where the zero- or sign- extension needs to be done.
|
||
Handling this in the normal way is safe because no computation is done
|
||
before the call. */
|
||
if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from)
|
||
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
|
||
&& ! (TREE_CODE (to) == VAR_DECL && GET_CODE (DECL_RTL (to)) == REG))
|
||
{
|
||
rtx value;
|
||
|
||
push_temp_slots ();
|
||
value = expand_expr (from, NULL_RTX, VOIDmode, 0);
|
||
if (to_rtx == 0)
|
||
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_WO);
|
||
|
||
/* Handle calls that return values in multiple non-contiguous locations.
|
||
The Irix 6 ABI has examples of this. */
|
||
if (GET_CODE (to_rtx) == PARALLEL)
|
||
emit_group_load (to_rtx, value, int_size_in_bytes (TREE_TYPE (from)),
|
||
TYPE_ALIGN (TREE_TYPE (from)) / BITS_PER_UNIT);
|
||
else if (GET_MODE (to_rtx) == BLKmode)
|
||
emit_block_move (to_rtx, value, expr_size (from),
|
||
TYPE_ALIGN (TREE_TYPE (from)) / BITS_PER_UNIT);
|
||
else
|
||
{
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (TREE_CODE (TREE_TYPE (to)) == REFERENCE_TYPE
|
||
|| TREE_CODE (TREE_TYPE (to)) == POINTER_TYPE)
|
||
value = convert_memory_address (GET_MODE (to_rtx), value);
|
||
#endif
|
||
emit_move_insn (to_rtx, value);
|
||
}
|
||
preserve_temp_slots (to_rtx);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
return want_value ? to_rtx : NULL_RTX;
|
||
}
|
||
|
||
/* Ordinary treatment. Expand TO to get a REG or MEM rtx.
|
||
Don't re-expand if it was expanded already (in COMPONENT_REF case). */
|
||
|
||
if (to_rtx == 0)
|
||
{
|
||
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_WO);
|
||
if (GET_CODE (to_rtx) == MEM)
|
||
MEM_ALIAS_SET (to_rtx) = get_alias_set (to);
|
||
}
|
||
|
||
/* Don't move directly into a return register. */
|
||
if (TREE_CODE (to) == RESULT_DECL && GET_CODE (to_rtx) == REG)
|
||
{
|
||
rtx temp;
|
||
|
||
push_temp_slots ();
|
||
temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
|
||
emit_move_insn (to_rtx, temp);
|
||
preserve_temp_slots (to_rtx);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
return want_value ? to_rtx : NULL_RTX;
|
||
}
|
||
|
||
/* In case we are returning the contents of an object which overlaps
|
||
the place the value is being stored, use a safe function when copying
|
||
a value through a pointer into a structure value return block. */
|
||
if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
|
||
&& current_function_returns_struct
|
||
&& !current_function_returns_pcc_struct)
|
||
{
|
||
rtx from_rtx, size;
|
||
|
||
push_temp_slots ();
|
||
size = expr_size (from);
|
||
from_rtx = expand_expr (from, NULL_RTX, VOIDmode,
|
||
EXPAND_MEMORY_USE_DONT);
|
||
|
||
/* Copy the rights of the bitmap. */
|
||
if (current_function_check_memory_usage)
|
||
emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
|
||
XEXP (to_rtx, 0), Pmode,
|
||
XEXP (from_rtx, 0), Pmode,
|
||
convert_to_mode (TYPE_MODE (sizetype),
|
||
size, TREE_UNSIGNED (sizetype)),
|
||
TYPE_MODE (sizetype));
|
||
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
emit_library_call (memcpy_libfunc, 0,
|
||
VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
|
||
XEXP (from_rtx, 0), Pmode,
|
||
convert_to_mode (TYPE_MODE (sizetype),
|
||
size, TREE_UNSIGNED (sizetype)),
|
||
TYPE_MODE (sizetype));
|
||
#else
|
||
emit_library_call (bcopy_libfunc, 0,
|
||
VOIDmode, 3, XEXP (from_rtx, 0), Pmode,
|
||
XEXP (to_rtx, 0), Pmode,
|
||
convert_to_mode (TYPE_MODE (integer_type_node),
|
||
size, TREE_UNSIGNED (integer_type_node)),
|
||
TYPE_MODE (integer_type_node));
|
||
#endif
|
||
|
||
preserve_temp_slots (to_rtx);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
return want_value ? to_rtx : NULL_RTX;
|
||
}
|
||
|
||
/* Compute FROM and store the value in the rtx we got. */
|
||
|
||
push_temp_slots ();
|
||
result = store_expr (from, to_rtx, want_value);
|
||
preserve_temp_slots (result);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
return want_value ? result : NULL_RTX;
|
||
}
|
||
|
||
/* Generate code for computing expression EXP,
|
||
and storing the value into TARGET.
|
||
TARGET may contain a QUEUED rtx.
|
||
|
||
If WANT_VALUE is nonzero, return a copy of the value
|
||
not in TARGET, so that we can be sure to use the proper
|
||
value in a containing expression even if TARGET has something
|
||
else stored in it. If possible, we copy the value through a pseudo
|
||
and return that pseudo. Or, if the value is constant, we try to
|
||
return the constant. In some cases, we return a pseudo
|
||
copied *from* TARGET.
|
||
|
||
If the mode is BLKmode then we may return TARGET itself.
|
||
It turns out that in BLKmode it doesn't cause a problem.
|
||
because C has no operators that could combine two different
|
||
assignments into the same BLKmode object with different values
|
||
with no sequence point. Will other languages need this to
|
||
be more thorough?
|
||
|
||
If WANT_VALUE is 0, we return NULL, to make sure
|
||
to catch quickly any cases where the caller uses the value
|
||
and fails to set WANT_VALUE. */
|
||
|
||
rtx
|
||
store_expr (exp, target, want_value)
|
||
register tree exp;
|
||
register rtx target;
|
||
int want_value;
|
||
{
|
||
register rtx temp;
|
||
int dont_return_target = 0;
|
||
|
||
if (TREE_CODE (exp) == COMPOUND_EXPR)
|
||
{
|
||
/* Perform first part of compound expression, then assign from second
|
||
part. */
|
||
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
|
||
emit_queue ();
|
||
return store_expr (TREE_OPERAND (exp, 1), target, want_value);
|
||
}
|
||
else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
|
||
{
|
||
/* For conditional expression, get safe form of the target. Then
|
||
test the condition, doing the appropriate assignment on either
|
||
side. This avoids the creation of unnecessary temporaries.
|
||
For non-BLKmode, it is more efficient not to do this. */
|
||
|
||
rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
|
||
|
||
emit_queue ();
|
||
target = protect_from_queue (target, 1);
|
||
|
||
do_pending_stack_adjust ();
|
||
NO_DEFER_POP;
|
||
jumpifnot (TREE_OPERAND (exp, 0), lab1);
|
||
start_cleanup_deferral ();
|
||
store_expr (TREE_OPERAND (exp, 1), target, 0);
|
||
end_cleanup_deferral ();
|
||
emit_queue ();
|
||
emit_jump_insn (gen_jump (lab2));
|
||
emit_barrier ();
|
||
emit_label (lab1);
|
||
start_cleanup_deferral ();
|
||
store_expr (TREE_OPERAND (exp, 2), target, 0);
|
||
end_cleanup_deferral ();
|
||
emit_queue ();
|
||
emit_label (lab2);
|
||
OK_DEFER_POP;
|
||
|
||
return want_value ? target : NULL_RTX;
|
||
}
|
||
else if (queued_subexp_p (target))
|
||
/* If target contains a postincrement, let's not risk
|
||
using it as the place to generate the rhs. */
|
||
{
|
||
if (GET_MODE (target) != BLKmode && GET_MODE (target) != VOIDmode)
|
||
{
|
||
/* Expand EXP into a new pseudo. */
|
||
temp = gen_reg_rtx (GET_MODE (target));
|
||
temp = expand_expr (exp, temp, GET_MODE (target), 0);
|
||
}
|
||
else
|
||
temp = expand_expr (exp, NULL_RTX, GET_MODE (target), 0);
|
||
|
||
/* If target is volatile, ANSI requires accessing the value
|
||
*from* the target, if it is accessed. So make that happen.
|
||
In no case return the target itself. */
|
||
if (! MEM_VOLATILE_P (target) && want_value)
|
||
dont_return_target = 1;
|
||
}
|
||
else if (want_value && GET_CODE (target) == MEM && ! MEM_VOLATILE_P (target)
|
||
&& GET_MODE (target) != BLKmode)
|
||
/* If target is in memory and caller wants value in a register instead,
|
||
arrange that. Pass TARGET as target for expand_expr so that,
|
||
if EXP is another assignment, WANT_VALUE will be nonzero for it.
|
||
We know expand_expr will not use the target in that case.
|
||
Don't do this if TARGET is volatile because we are supposed
|
||
to write it and then read it. */
|
||
{
|
||
temp = expand_expr (exp, target, GET_MODE (target), 0);
|
||
if (GET_MODE (temp) != BLKmode && GET_MODE (temp) != VOIDmode)
|
||
temp = copy_to_reg (temp);
|
||
dont_return_target = 1;
|
||
}
|
||
else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
|
||
/* If this is an scalar in a register that is stored in a wider mode
|
||
than the declared mode, compute the result into its declared mode
|
||
and then convert to the wider mode. Our value is the computed
|
||
expression. */
|
||
{
|
||
/* If we don't want a value, we can do the conversion inside EXP,
|
||
which will often result in some optimizations. Do the conversion
|
||
in two steps: first change the signedness, if needed, then
|
||
the extend. But don't do this if the type of EXP is a subtype
|
||
of something else since then the conversion might involve
|
||
more than just converting modes. */
|
||
if (! want_value && INTEGRAL_TYPE_P (TREE_TYPE (exp))
|
||
&& TREE_TYPE (TREE_TYPE (exp)) == 0)
|
||
{
|
||
if (TREE_UNSIGNED (TREE_TYPE (exp))
|
||
!= SUBREG_PROMOTED_UNSIGNED_P (target))
|
||
exp
|
||
= convert
|
||
(signed_or_unsigned_type (SUBREG_PROMOTED_UNSIGNED_P (target),
|
||
TREE_TYPE (exp)),
|
||
exp);
|
||
|
||
exp = convert (type_for_mode (GET_MODE (SUBREG_REG (target)),
|
||
SUBREG_PROMOTED_UNSIGNED_P (target)),
|
||
exp);
|
||
}
|
||
|
||
temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
|
||
|
||
/* If TEMP is a volatile MEM and we want a result value, make
|
||
the access now so it gets done only once. Likewise if
|
||
it contains TARGET. */
|
||
if (GET_CODE (temp) == MEM && want_value
|
||
&& (MEM_VOLATILE_P (temp)
|
||
|| reg_mentioned_p (SUBREG_REG (target), XEXP (temp, 0))))
|
||
temp = copy_to_reg (temp);
|
||
|
||
/* If TEMP is a VOIDmode constant, use convert_modes to make
|
||
sure that we properly convert it. */
|
||
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
|
||
temp = convert_modes (GET_MODE (SUBREG_REG (target)),
|
||
TYPE_MODE (TREE_TYPE (exp)), temp,
|
||
SUBREG_PROMOTED_UNSIGNED_P (target));
|
||
|
||
convert_move (SUBREG_REG (target), temp,
|
||
SUBREG_PROMOTED_UNSIGNED_P (target));
|
||
|
||
/* If we promoted a constant, change the mode back down to match
|
||
target. Otherwise, the caller might get confused by a result whose
|
||
mode is larger than expected. */
|
||
|
||
if (want_value && GET_MODE (temp) != GET_MODE (target)
|
||
&& GET_MODE (temp) != VOIDmode)
|
||
{
|
||
temp = gen_rtx_SUBREG (GET_MODE (target), temp, 0);
|
||
SUBREG_PROMOTED_VAR_P (temp) = 1;
|
||
SUBREG_PROMOTED_UNSIGNED_P (temp)
|
||
= SUBREG_PROMOTED_UNSIGNED_P (target);
|
||
}
|
||
|
||
return want_value ? temp : NULL_RTX;
|
||
}
|
||
else
|
||
{
|
||
temp = expand_expr (exp, target, GET_MODE (target), 0);
|
||
/* Return TARGET if it's a specified hardware register.
|
||
If TARGET is a volatile mem ref, either return TARGET
|
||
or return a reg copied *from* TARGET; ANSI requires this.
|
||
|
||
Otherwise, if TEMP is not TARGET, return TEMP
|
||
if it is constant (for efficiency),
|
||
or if we really want the correct value. */
|
||
if (!(target && GET_CODE (target) == REG
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER)
|
||
&& !(GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
|
||
&& ! rtx_equal_p (temp, target)
|
||
&& (CONSTANT_P (temp) || want_value))
|
||
dont_return_target = 1;
|
||
}
|
||
|
||
/* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
|
||
the same as that of TARGET, adjust the constant. This is needed, for
|
||
example, in case it is a CONST_DOUBLE and we want only a word-sized
|
||
value. */
|
||
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
|
||
&& TREE_CODE (exp) != ERROR_MARK
|
||
&& GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
|
||
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
|
||
temp, TREE_UNSIGNED (TREE_TYPE (exp)));
|
||
|
||
if (current_function_check_memory_usage
|
||
&& GET_CODE (target) == MEM
|
||
&& AGGREGATE_TYPE_P (TREE_TYPE (exp)))
|
||
{
|
||
if (GET_CODE (temp) == MEM)
|
||
emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
|
||
XEXP (target, 0), Pmode,
|
||
XEXP (temp, 0), Pmode,
|
||
expr_size (exp), TYPE_MODE (sizetype));
|
||
else
|
||
emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
|
||
XEXP (target, 0), Pmode,
|
||
expr_size (exp), TYPE_MODE (sizetype),
|
||
GEN_INT (MEMORY_USE_WO),
|
||
TYPE_MODE (integer_type_node));
|
||
}
|
||
|
||
/* If value was not generated in the target, store it there.
|
||
Convert the value to TARGET's type first if nec. */
|
||
/* If TEMP and TARGET compare equal according to rtx_equal_p, but
|
||
one or both of them are volatile memory refs, we have to distinguish
|
||
two cases:
|
||
- expand_expr has used TARGET. In this case, we must not generate
|
||
another copy. This can be detected by TARGET being equal according
|
||
to == .
|
||
- expand_expr has not used TARGET - that means that the source just
|
||
happens to have the same RTX form. Since temp will have been created
|
||
by expand_expr, it will compare unequal according to == .
|
||
We must generate a copy in this case, to reach the correct number
|
||
of volatile memory references. */
|
||
|
||
if ((! rtx_equal_p (temp, target)
|
||
|| (temp != target && (side_effects_p (temp)
|
||
|| side_effects_p (target))))
|
||
&& TREE_CODE (exp) != ERROR_MARK)
|
||
{
|
||
target = protect_from_queue (target, 1);
|
||
if (GET_MODE (temp) != GET_MODE (target)
|
||
&& GET_MODE (temp) != VOIDmode)
|
||
{
|
||
int unsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
|
||
if (dont_return_target)
|
||
{
|
||
/* In this case, we will return TEMP,
|
||
so make sure it has the proper mode.
|
||
But don't forget to store the value into TARGET. */
|
||
temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
|
||
emit_move_insn (target, temp);
|
||
}
|
||
else
|
||
convert_move (target, temp, unsignedp);
|
||
}
|
||
|
||
else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
|
||
{
|
||
/* Handle copying a string constant into an array.
|
||
The string constant may be shorter than the array.
|
||
So copy just the string's actual length, and clear the rest. */
|
||
rtx size;
|
||
rtx addr;
|
||
|
||
/* Get the size of the data type of the string,
|
||
which is actually the size of the target. */
|
||
size = expr_size (exp);
|
||
if (GET_CODE (size) == CONST_INT
|
||
&& INTVAL (size) < TREE_STRING_LENGTH (exp))
|
||
emit_block_move (target, temp, size,
|
||
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
|
||
else
|
||
{
|
||
/* Compute the size of the data to copy from the string. */
|
||
tree copy_size
|
||
= size_binop (MIN_EXPR,
|
||
make_tree (sizetype, size),
|
||
convert (sizetype,
|
||
build_int_2 (TREE_STRING_LENGTH (exp), 0)));
|
||
rtx copy_size_rtx = expand_expr (copy_size, NULL_RTX,
|
||
VOIDmode, 0);
|
||
rtx label = 0;
|
||
|
||
/* Copy that much. */
|
||
emit_block_move (target, temp, copy_size_rtx,
|
||
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
|
||
|
||
/* Figure out how much is left in TARGET that we have to clear.
|
||
Do all calculations in ptr_mode. */
|
||
|
||
addr = XEXP (target, 0);
|
||
addr = convert_modes (ptr_mode, Pmode, addr, 1);
|
||
|
||
if (GET_CODE (copy_size_rtx) == CONST_INT)
|
||
{
|
||
addr = plus_constant (addr, TREE_STRING_LENGTH (exp));
|
||
size = plus_constant (size, - TREE_STRING_LENGTH (exp));
|
||
}
|
||
else
|
||
{
|
||
addr = force_reg (ptr_mode, addr);
|
||
addr = expand_binop (ptr_mode, add_optab, addr,
|
||
copy_size_rtx, NULL_RTX, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
|
||
size = expand_binop (ptr_mode, sub_optab, size,
|
||
copy_size_rtx, NULL_RTX, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
|
||
label = gen_label_rtx ();
|
||
emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
|
||
GET_MODE (size), 0, 0, label);
|
||
}
|
||
|
||
if (size != const0_rtx)
|
||
{
|
||
/* Be sure we can write on ADDR. */
|
||
if (current_function_check_memory_usage)
|
||
emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
|
||
addr, Pmode,
|
||
size, TYPE_MODE (sizetype),
|
||
GEN_INT (MEMORY_USE_WO),
|
||
TYPE_MODE (integer_type_node));
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
emit_library_call (memset_libfunc, 0, VOIDmode, 3,
|
||
addr, ptr_mode,
|
||
const0_rtx, TYPE_MODE (integer_type_node),
|
||
convert_to_mode (TYPE_MODE (sizetype),
|
||
size,
|
||
TREE_UNSIGNED (sizetype)),
|
||
TYPE_MODE (sizetype));
|
||
#else
|
||
emit_library_call (bzero_libfunc, 0, VOIDmode, 2,
|
||
addr, ptr_mode,
|
||
convert_to_mode (TYPE_MODE (integer_type_node),
|
||
size,
|
||
TREE_UNSIGNED (integer_type_node)),
|
||
TYPE_MODE (integer_type_node));
|
||
#endif
|
||
}
|
||
|
||
if (label)
|
||
emit_label (label);
|
||
}
|
||
}
|
||
/* Handle calls that return values in multiple non-contiguous locations.
|
||
The Irix 6 ABI has examples of this. */
|
||
else if (GET_CODE (target) == PARALLEL)
|
||
emit_group_load (target, temp, int_size_in_bytes (TREE_TYPE (exp)),
|
||
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
|
||
else if (GET_MODE (temp) == BLKmode)
|
||
emit_block_move (target, temp, expr_size (exp),
|
||
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
|
||
else
|
||
emit_move_insn (target, temp);
|
||
}
|
||
|
||
/* If we don't want a value, return NULL_RTX. */
|
||
if (! want_value)
|
||
return NULL_RTX;
|
||
|
||
/* If we are supposed to return TEMP, do so as long as it isn't a MEM.
|
||
??? The latter test doesn't seem to make sense. */
|
||
else if (dont_return_target && GET_CODE (temp) != MEM)
|
||
return temp;
|
||
|
||
/* Return TARGET itself if it is a hard register. */
|
||
else if (want_value && GET_MODE (target) != BLKmode
|
||
&& ! (GET_CODE (target) == REG
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
|
||
return copy_to_reg (target);
|
||
|
||
else
|
||
return target;
|
||
}
|
||
|
||
/* Return 1 if EXP just contains zeros. */
|
||
|
||
static int
|
||
is_zeros_p (exp)
|
||
tree exp;
|
||
{
|
||
tree elt;
|
||
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case CONVERT_EXPR:
|
||
case NOP_EXPR:
|
||
case NON_LVALUE_EXPR:
|
||
return is_zeros_p (TREE_OPERAND (exp, 0));
|
||
|
||
case INTEGER_CST:
|
||
return TREE_INT_CST_LOW (exp) == 0 && TREE_INT_CST_HIGH (exp) == 0;
|
||
|
||
case COMPLEX_CST:
|
||
return
|
||
is_zeros_p (TREE_REALPART (exp)) && is_zeros_p (TREE_IMAGPART (exp));
|
||
|
||
case REAL_CST:
|
||
return REAL_VALUES_IDENTICAL (TREE_REAL_CST (exp), dconst0);
|
||
|
||
case CONSTRUCTOR:
|
||
if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
|
||
return CONSTRUCTOR_ELTS (exp) == NULL_TREE;
|
||
for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
|
||
if (! is_zeros_p (TREE_VALUE (elt)))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if EXP contains mostly (3/4) zeros. */
|
||
|
||
static int
|
||
mostly_zeros_p (exp)
|
||
tree exp;
|
||
{
|
||
if (TREE_CODE (exp) == CONSTRUCTOR)
|
||
{
|
||
int elts = 0, zeros = 0;
|
||
tree elt = CONSTRUCTOR_ELTS (exp);
|
||
if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
|
||
{
|
||
/* If there are no ranges of true bits, it is all zero. */
|
||
return elt == NULL_TREE;
|
||
}
|
||
for (; elt; elt = TREE_CHAIN (elt))
|
||
{
|
||
/* We do not handle the case where the index is a RANGE_EXPR,
|
||
so the statistic will be somewhat inaccurate.
|
||
We do make a more accurate count in store_constructor itself,
|
||
so since this function is only used for nested array elements,
|
||
this should be close enough. */
|
||
if (mostly_zeros_p (TREE_VALUE (elt)))
|
||
zeros++;
|
||
elts++;
|
||
}
|
||
|
||
return 4 * zeros >= 3 * elts;
|
||
}
|
||
|
||
return is_zeros_p (exp);
|
||
}
|
||
|
||
/* Helper function for store_constructor.
|
||
TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
|
||
TYPE is the type of the CONSTRUCTOR, not the element type.
|
||
CLEARED is as for store_constructor.
|
||
|
||
This provides a recursive shortcut back to store_constructor when it isn't
|
||
necessary to go through store_field. This is so that we can pass through
|
||
the cleared field to let store_constructor know that we may not have to
|
||
clear a substructure if the outer structure has already been cleared. */
|
||
|
||
static void
|
||
store_constructor_field (target, bitsize, bitpos,
|
||
mode, exp, type, cleared)
|
||
rtx target;
|
||
int bitsize, bitpos;
|
||
enum machine_mode mode;
|
||
tree exp, type;
|
||
int cleared;
|
||
{
|
||
if (TREE_CODE (exp) == CONSTRUCTOR
|
||
&& bitpos % BITS_PER_UNIT == 0
|
||
/* If we have a non-zero bitpos for a register target, then we just
|
||
let store_field do the bitfield handling. This is unlikely to
|
||
generate unnecessary clear instructions anyways. */
|
||
&& (bitpos == 0 || GET_CODE (target) == MEM))
|
||
{
|
||
if (bitpos != 0)
|
||
target = change_address (target, VOIDmode,
|
||
plus_constant (XEXP (target, 0),
|
||
bitpos / BITS_PER_UNIT));
|
||
store_constructor (exp, target, cleared);
|
||
}
|
||
else
|
||
store_field (target, bitsize, bitpos, mode, exp,
|
||
VOIDmode, 0, TYPE_ALIGN (type) / BITS_PER_UNIT,
|
||
int_size_in_bytes (type), 0);
|
||
}
|
||
|
||
/* Store the value of constructor EXP into the rtx TARGET.
|
||
TARGET is either a REG or a MEM.
|
||
CLEARED is true if TARGET is known to have been zero'd. */
|
||
|
||
static void
|
||
store_constructor (exp, target, cleared)
|
||
tree exp;
|
||
rtx target;
|
||
int cleared;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
#ifdef WORD_REGISTER_OPERATIONS
|
||
rtx exp_size = expr_size (exp);
|
||
#endif
|
||
|
||
/* We know our target cannot conflict, since safe_from_p has been called. */
|
||
#if 0
|
||
/* Don't try copying piece by piece into a hard register
|
||
since that is vulnerable to being clobbered by EXP.
|
||
Instead, construct in a pseudo register and then copy it all. */
|
||
if (GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
rtx temp = gen_reg_rtx (GET_MODE (target));
|
||
store_constructor (exp, temp, 0);
|
||
emit_move_insn (target, temp);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
if (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == QUAL_UNION_TYPE)
|
||
{
|
||
register tree elt;
|
||
|
||
/* Inform later passes that the whole union value is dead. */
|
||
if (TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == QUAL_UNION_TYPE)
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
|
||
|
||
/* If we are building a static constructor into a register,
|
||
set the initial value as zero so we can fold the value into
|
||
a constant. But if more than one register is involved,
|
||
this probably loses. */
|
||
else if (GET_CODE (target) == REG && TREE_STATIC (exp)
|
||
&& GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
|
||
{
|
||
if (! cleared)
|
||
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
|
||
|
||
cleared = 1;
|
||
}
|
||
|
||
/* If the constructor has fewer fields than the structure
|
||
or if we are initializing the structure to mostly zeros,
|
||
clear the whole structure first. */
|
||
else if ((list_length (CONSTRUCTOR_ELTS (exp))
|
||
!= list_length (TYPE_FIELDS (type)))
|
||
|| mostly_zeros_p (exp))
|
||
{
|
||
if (! cleared)
|
||
clear_storage (target, expr_size (exp),
|
||
TYPE_ALIGN (type) / BITS_PER_UNIT);
|
||
|
||
cleared = 1;
|
||
}
|
||
else
|
||
/* Inform later passes that the old value is dead. */
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
|
||
|
||
/* Store each element of the constructor into
|
||
the corresponding field of TARGET. */
|
||
|
||
for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
|
||
{
|
||
register tree field = TREE_PURPOSE (elt);
|
||
tree value = TREE_VALUE (elt);
|
||
register enum machine_mode mode;
|
||
int bitsize;
|
||
int bitpos = 0;
|
||
int unsignedp;
|
||
tree pos, constant = 0, offset = 0;
|
||
rtx to_rtx = target;
|
||
|
||
/* Just ignore missing fields.
|
||
We cleared the whole structure, above,
|
||
if any fields are missing. */
|
||
if (field == 0)
|
||
continue;
|
||
|
||
if (cleared && is_zeros_p (TREE_VALUE (elt)))
|
||
continue;
|
||
|
||
bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
|
||
unsignedp = TREE_UNSIGNED (field);
|
||
mode = DECL_MODE (field);
|
||
if (DECL_BIT_FIELD (field))
|
||
mode = VOIDmode;
|
||
|
||
pos = DECL_FIELD_BITPOS (field);
|
||
if (TREE_CODE (pos) == INTEGER_CST)
|
||
constant = pos;
|
||
else if (TREE_CODE (pos) == PLUS_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (pos, 1)) == INTEGER_CST)
|
||
constant = TREE_OPERAND (pos, 1), offset = TREE_OPERAND (pos, 0);
|
||
else
|
||
offset = pos;
|
||
|
||
if (constant)
|
||
bitpos = TREE_INT_CST_LOW (constant);
|
||
|
||
if (offset)
|
||
{
|
||
rtx offset_rtx;
|
||
|
||
if (contains_placeholder_p (offset))
|
||
offset = build (WITH_RECORD_EXPR, sizetype,
|
||
offset, make_tree (TREE_TYPE (exp), target));
|
||
|
||
offset = size_binop (FLOOR_DIV_EXPR, offset,
|
||
size_int (BITS_PER_UNIT));
|
||
|
||
offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
|
||
if (GET_CODE (to_rtx) != MEM)
|
||
abort ();
|
||
|
||
if (GET_MODE (offset_rtx) != ptr_mode)
|
||
{
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
|
||
#else
|
||
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
|
||
#endif
|
||
}
|
||
|
||
to_rtx
|
||
= change_address (to_rtx, VOIDmode,
|
||
gen_rtx_PLUS (ptr_mode, XEXP (to_rtx, 0),
|
||
force_reg (ptr_mode, offset_rtx)));
|
||
}
|
||
if (TREE_READONLY (field))
|
||
{
|
||
if (GET_CODE (to_rtx) == MEM)
|
||
to_rtx = copy_rtx (to_rtx);
|
||
|
||
RTX_UNCHANGING_P (to_rtx) = 1;
|
||
}
|
||
|
||
#ifdef WORD_REGISTER_OPERATIONS
|
||
/* If this initializes a field that is smaller than a word, at the
|
||
start of a word, try to widen it to a full word.
|
||
This special case allows us to output C++ member function
|
||
initializations in a form that the optimizers can understand. */
|
||
if (constant
|
||
&& GET_CODE (target) == REG
|
||
&& bitsize < BITS_PER_WORD
|
||
&& bitpos % BITS_PER_WORD == 0
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& TREE_CODE (value) == INTEGER_CST
|
||
&& GET_CODE (exp_size) == CONST_INT
|
||
&& bitpos + BITS_PER_WORD <= INTVAL (exp_size) * BITS_PER_UNIT)
|
||
{
|
||
tree type = TREE_TYPE (value);
|
||
if (TYPE_PRECISION (type) < BITS_PER_WORD)
|
||
{
|
||
type = type_for_size (BITS_PER_WORD, TREE_UNSIGNED (type));
|
||
value = convert (type, value);
|
||
}
|
||
if (BYTES_BIG_ENDIAN)
|
||
value
|
||
= fold (build (LSHIFT_EXPR, type, value,
|
||
build_int_2 (BITS_PER_WORD - bitsize, 0)));
|
||
bitsize = BITS_PER_WORD;
|
||
mode = word_mode;
|
||
}
|
||
#endif
|
||
store_constructor_field (to_rtx, bitsize, bitpos,
|
||
mode, value, type, cleared);
|
||
}
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
register tree elt;
|
||
register int i;
|
||
int need_to_clear;
|
||
tree domain = TYPE_DOMAIN (type);
|
||
HOST_WIDE_INT minelt = TREE_INT_CST_LOW (TYPE_MIN_VALUE (domain));
|
||
HOST_WIDE_INT maxelt = TREE_INT_CST_LOW (TYPE_MAX_VALUE (domain));
|
||
tree elttype = TREE_TYPE (type);
|
||
|
||
/* If the constructor has fewer elements than the array,
|
||
clear the whole array first. Similarly if this is
|
||
static constructor of a non-BLKmode object. */
|
||
if (cleared || (GET_CODE (target) == REG && TREE_STATIC (exp)))
|
||
need_to_clear = 1;
|
||
else
|
||
{
|
||
HOST_WIDE_INT count = 0, zero_count = 0;
|
||
need_to_clear = 0;
|
||
/* This loop is a more accurate version of the loop in
|
||
mostly_zeros_p (it handles RANGE_EXPR in an index).
|
||
It is also needed to check for missing elements. */
|
||
for (elt = CONSTRUCTOR_ELTS (exp);
|
||
elt != NULL_TREE;
|
||
elt = TREE_CHAIN (elt))
|
||
{
|
||
tree index = TREE_PURPOSE (elt);
|
||
HOST_WIDE_INT this_node_count;
|
||
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
|
||
{
|
||
tree lo_index = TREE_OPERAND (index, 0);
|
||
tree hi_index = TREE_OPERAND (index, 1);
|
||
if (TREE_CODE (lo_index) != INTEGER_CST
|
||
|| TREE_CODE (hi_index) != INTEGER_CST)
|
||
{
|
||
need_to_clear = 1;
|
||
break;
|
||
}
|
||
this_node_count = TREE_INT_CST_LOW (hi_index)
|
||
- TREE_INT_CST_LOW (lo_index) + 1;
|
||
}
|
||
else
|
||
this_node_count = 1;
|
||
count += this_node_count;
|
||
if (mostly_zeros_p (TREE_VALUE (elt)))
|
||
zero_count += this_node_count;
|
||
}
|
||
/* Clear the entire array first if there are any missing elements,
|
||
or if the incidence of zero elements is >= 75%. */
|
||
if (count < maxelt - minelt + 1
|
||
|| 4 * zero_count >= 3 * count)
|
||
need_to_clear = 1;
|
||
}
|
||
if (need_to_clear)
|
||
{
|
||
if (! cleared)
|
||
clear_storage (target, expr_size (exp),
|
||
TYPE_ALIGN (type) / BITS_PER_UNIT);
|
||
cleared = 1;
|
||
}
|
||
else
|
||
/* Inform later passes that the old value is dead. */
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
|
||
|
||
/* Store each element of the constructor into
|
||
the corresponding element of TARGET, determined
|
||
by counting the elements. */
|
||
for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
|
||
elt;
|
||
elt = TREE_CHAIN (elt), i++)
|
||
{
|
||
register enum machine_mode mode;
|
||
int bitsize;
|
||
int bitpos;
|
||
int unsignedp;
|
||
tree value = TREE_VALUE (elt);
|
||
tree index = TREE_PURPOSE (elt);
|
||
rtx xtarget = target;
|
||
|
||
if (cleared && is_zeros_p (value))
|
||
continue;
|
||
|
||
mode = TYPE_MODE (elttype);
|
||
bitsize = GET_MODE_BITSIZE (mode);
|
||
unsignedp = TREE_UNSIGNED (elttype);
|
||
|
||
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
|
||
{
|
||
tree lo_index = TREE_OPERAND (index, 0);
|
||
tree hi_index = TREE_OPERAND (index, 1);
|
||
rtx index_r, pos_rtx, addr, hi_r, loop_top, loop_end;
|
||
struct nesting *loop;
|
||
HOST_WIDE_INT lo, hi, count;
|
||
tree position;
|
||
|
||
/* If the range is constant and "small", unroll the loop. */
|
||
if (TREE_CODE (lo_index) == INTEGER_CST
|
||
&& TREE_CODE (hi_index) == INTEGER_CST
|
||
&& (lo = TREE_INT_CST_LOW (lo_index),
|
||
hi = TREE_INT_CST_LOW (hi_index),
|
||
count = hi - lo + 1,
|
||
(GET_CODE (target) != MEM
|
||
|| count <= 2
|
||
|| (TREE_CODE (TYPE_SIZE (elttype)) == INTEGER_CST
|
||
&& TREE_INT_CST_LOW (TYPE_SIZE (elttype)) * count
|
||
<= 40 * 8))))
|
||
{
|
||
lo -= minelt; hi -= minelt;
|
||
for (; lo <= hi; lo++)
|
||
{
|
||
bitpos = lo * TREE_INT_CST_LOW (TYPE_SIZE (elttype));
|
||
store_constructor_field (target, bitsize, bitpos,
|
||
mode, value, type, cleared);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
hi_r = expand_expr (hi_index, NULL_RTX, VOIDmode, 0);
|
||
loop_top = gen_label_rtx ();
|
||
loop_end = gen_label_rtx ();
|
||
|
||
unsignedp = TREE_UNSIGNED (domain);
|
||
|
||
index = build_decl (VAR_DECL, NULL_TREE, domain);
|
||
|
||
DECL_RTL (index) = index_r
|
||
= gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
|
||
&unsignedp, 0));
|
||
|
||
if (TREE_CODE (value) == SAVE_EXPR
|
||
&& SAVE_EXPR_RTL (value) == 0)
|
||
{
|
||
/* Make sure value gets expanded once before the
|
||
loop. */
|
||
expand_expr (value, const0_rtx, VOIDmode, 0);
|
||
emit_queue ();
|
||
}
|
||
store_expr (lo_index, index_r, 0);
|
||
loop = expand_start_loop (0);
|
||
|
||
/* Assign value to element index. */
|
||
position = size_binop (EXACT_DIV_EXPR, TYPE_SIZE (elttype),
|
||
size_int (BITS_PER_UNIT));
|
||
position = size_binop (MULT_EXPR,
|
||
size_binop (MINUS_EXPR, index,
|
||
TYPE_MIN_VALUE (domain)),
|
||
position);
|
||
pos_rtx = expand_expr (position, 0, VOIDmode, 0);
|
||
addr = gen_rtx_PLUS (Pmode, XEXP (target, 0), pos_rtx);
|
||
xtarget = change_address (target, mode, addr);
|
||
if (TREE_CODE (value) == CONSTRUCTOR)
|
||
store_constructor (value, xtarget, cleared);
|
||
else
|
||
store_expr (value, xtarget, 0);
|
||
|
||
expand_exit_loop_if_false (loop,
|
||
build (LT_EXPR, integer_type_node,
|
||
index, hi_index));
|
||
|
||
expand_increment (build (PREINCREMENT_EXPR,
|
||
TREE_TYPE (index),
|
||
index, integer_one_node), 0, 0);
|
||
expand_end_loop ();
|
||
emit_label (loop_end);
|
||
|
||
/* Needed by stupid register allocation. to extend the
|
||
lifetime of pseudo-regs used by target past the end
|
||
of the loop. */
|
||
emit_insn (gen_rtx_USE (GET_MODE (target), target));
|
||
}
|
||
}
|
||
else if ((index != 0 && TREE_CODE (index) != INTEGER_CST)
|
||
|| TREE_CODE (TYPE_SIZE (elttype)) != INTEGER_CST)
|
||
{
|
||
rtx pos_rtx, addr;
|
||
tree position;
|
||
|
||
if (index == 0)
|
||
index = size_int (i);
|
||
|
||
if (minelt)
|
||
index = size_binop (MINUS_EXPR, index,
|
||
TYPE_MIN_VALUE (domain));
|
||
position = size_binop (EXACT_DIV_EXPR, TYPE_SIZE (elttype),
|
||
size_int (BITS_PER_UNIT));
|
||
position = size_binop (MULT_EXPR, index, position);
|
||
pos_rtx = expand_expr (position, 0, VOIDmode, 0);
|
||
addr = gen_rtx_PLUS (Pmode, XEXP (target, 0), pos_rtx);
|
||
xtarget = change_address (target, mode, addr);
|
||
store_expr (value, xtarget, 0);
|
||
}
|
||
else
|
||
{
|
||
if (index != 0)
|
||
bitpos = ((TREE_INT_CST_LOW (index) - minelt)
|
||
* TREE_INT_CST_LOW (TYPE_SIZE (elttype)));
|
||
else
|
||
bitpos = (i * TREE_INT_CST_LOW (TYPE_SIZE (elttype)));
|
||
store_constructor_field (target, bitsize, bitpos,
|
||
mode, value, type, cleared);
|
||
}
|
||
}
|
||
}
|
||
/* set constructor assignments */
|
||
else if (TREE_CODE (type) == SET_TYPE)
|
||
{
|
||
tree elt = CONSTRUCTOR_ELTS (exp);
|
||
int nbytes = int_size_in_bytes (type), nbits;
|
||
tree domain = TYPE_DOMAIN (type);
|
||
tree domain_min, domain_max, bitlength;
|
||
|
||
/* The default implementation strategy is to extract the constant
|
||
parts of the constructor, use that to initialize the target,
|
||
and then "or" in whatever non-constant ranges we need in addition.
|
||
|
||
If a large set is all zero or all ones, it is
|
||
probably better to set it using memset (if available) or bzero.
|
||
Also, if a large set has just a single range, it may also be
|
||
better to first clear all the first clear the set (using
|
||
bzero/memset), and set the bits we want. */
|
||
|
||
/* Check for all zeros. */
|
||
if (elt == NULL_TREE)
|
||
{
|
||
if (!cleared)
|
||
clear_storage (target, expr_size (exp),
|
||
TYPE_ALIGN (type) / BITS_PER_UNIT);
|
||
return;
|
||
}
|
||
|
||
domain_min = convert (sizetype, TYPE_MIN_VALUE (domain));
|
||
domain_max = convert (sizetype, TYPE_MAX_VALUE (domain));
|
||
bitlength = size_binop (PLUS_EXPR,
|
||
size_binop (MINUS_EXPR, domain_max, domain_min),
|
||
size_one_node);
|
||
|
||
if (nbytes < 0 || TREE_CODE (bitlength) != INTEGER_CST)
|
||
abort ();
|
||
nbits = TREE_INT_CST_LOW (bitlength);
|
||
|
||
/* For "small" sets, or "medium-sized" (up to 32 bytes) sets that
|
||
are "complicated" (more than one range), initialize (the
|
||
constant parts) by copying from a constant. */
|
||
if (GET_MODE (target) != BLKmode || nbits <= 2 * BITS_PER_WORD
|
||
|| (nbytes <= 32 && TREE_CHAIN (elt) != NULL_TREE))
|
||
{
|
||
int set_word_size = TYPE_ALIGN (TREE_TYPE (exp));
|
||
enum machine_mode mode = mode_for_size (set_word_size, MODE_INT, 1);
|
||
char *bit_buffer = (char *) alloca (nbits);
|
||
HOST_WIDE_INT word = 0;
|
||
int bit_pos = 0;
|
||
int ibit = 0;
|
||
int offset = 0; /* In bytes from beginning of set. */
|
||
elt = get_set_constructor_bits (exp, bit_buffer, nbits);
|
||
for (;;)
|
||
{
|
||
if (bit_buffer[ibit])
|
||
{
|
||
if (BYTES_BIG_ENDIAN)
|
||
word |= (1 << (set_word_size - 1 - bit_pos));
|
||
else
|
||
word |= 1 << bit_pos;
|
||
}
|
||
bit_pos++; ibit++;
|
||
if (bit_pos >= set_word_size || ibit == nbits)
|
||
{
|
||
if (word != 0 || ! cleared)
|
||
{
|
||
rtx datum = GEN_INT (word);
|
||
rtx to_rtx;
|
||
/* The assumption here is that it is safe to use
|
||
XEXP if the set is multi-word, but not if
|
||
it's single-word. */
|
||
if (GET_CODE (target) == MEM)
|
||
{
|
||
to_rtx = plus_constant (XEXP (target, 0), offset);
|
||
to_rtx = change_address (target, mode, to_rtx);
|
||
}
|
||
else if (offset == 0)
|
||
to_rtx = target;
|
||
else
|
||
abort ();
|
||
emit_move_insn (to_rtx, datum);
|
||
}
|
||
if (ibit == nbits)
|
||
break;
|
||
word = 0;
|
||
bit_pos = 0;
|
||
offset += set_word_size / BITS_PER_UNIT;
|
||
}
|
||
}
|
||
}
|
||
else if (!cleared)
|
||
{
|
||
/* Don't bother clearing storage if the set is all ones. */
|
||
if (TREE_CHAIN (elt) != NULL_TREE
|
||
|| (TREE_PURPOSE (elt) == NULL_TREE
|
||
? nbits != 1
|
||
: (TREE_CODE (TREE_VALUE (elt)) != INTEGER_CST
|
||
|| TREE_CODE (TREE_PURPOSE (elt)) != INTEGER_CST
|
||
|| (TREE_INT_CST_LOW (TREE_VALUE (elt))
|
||
- TREE_INT_CST_LOW (TREE_PURPOSE (elt)) + 1
|
||
!= nbits))))
|
||
clear_storage (target, expr_size (exp),
|
||
TYPE_ALIGN (type) / BITS_PER_UNIT);
|
||
}
|
||
|
||
for (; elt != NULL_TREE; elt = TREE_CHAIN (elt))
|
||
{
|
||
/* start of range of element or NULL */
|
||
tree startbit = TREE_PURPOSE (elt);
|
||
/* end of range of element, or element value */
|
||
tree endbit = TREE_VALUE (elt);
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
HOST_WIDE_INT startb, endb;
|
||
#endif
|
||
rtx bitlength_rtx, startbit_rtx, endbit_rtx, targetx;
|
||
|
||
bitlength_rtx = expand_expr (bitlength,
|
||
NULL_RTX, MEM, EXPAND_CONST_ADDRESS);
|
||
|
||
/* handle non-range tuple element like [ expr ] */
|
||
if (startbit == NULL_TREE)
|
||
{
|
||
startbit = save_expr (endbit);
|
||
endbit = startbit;
|
||
}
|
||
startbit = convert (sizetype, startbit);
|
||
endbit = convert (sizetype, endbit);
|
||
if (! integer_zerop (domain_min))
|
||
{
|
||
startbit = size_binop (MINUS_EXPR, startbit, domain_min);
|
||
endbit = size_binop (MINUS_EXPR, endbit, domain_min);
|
||
}
|
||
startbit_rtx = expand_expr (startbit, NULL_RTX, MEM,
|
||
EXPAND_CONST_ADDRESS);
|
||
endbit_rtx = expand_expr (endbit, NULL_RTX, MEM,
|
||
EXPAND_CONST_ADDRESS);
|
||
|
||
if (REG_P (target))
|
||
{
|
||
targetx = assign_stack_temp (GET_MODE (target),
|
||
GET_MODE_SIZE (GET_MODE (target)),
|
||
0);
|
||
emit_move_insn (targetx, target);
|
||
}
|
||
else if (GET_CODE (target) == MEM)
|
||
targetx = target;
|
||
else
|
||
abort ();
|
||
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
/* Optimization: If startbit and endbit are
|
||
constants divisible by BITS_PER_UNIT,
|
||
call memset instead. */
|
||
if (TREE_CODE (startbit) == INTEGER_CST
|
||
&& TREE_CODE (endbit) == INTEGER_CST
|
||
&& (startb = TREE_INT_CST_LOW (startbit)) % BITS_PER_UNIT == 0
|
||
&& (endb = TREE_INT_CST_LOW (endbit) + 1) % BITS_PER_UNIT == 0)
|
||
{
|
||
emit_library_call (memset_libfunc, 0,
|
||
VOIDmode, 3,
|
||
plus_constant (XEXP (targetx, 0),
|
||
startb / BITS_PER_UNIT),
|
||
Pmode,
|
||
constm1_rtx, TYPE_MODE (integer_type_node),
|
||
GEN_INT ((endb - startb) / BITS_PER_UNIT),
|
||
TYPE_MODE (sizetype));
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__setbits"),
|
||
0, VOIDmode, 4, XEXP (targetx, 0), Pmode,
|
||
bitlength_rtx, TYPE_MODE (sizetype),
|
||
startbit_rtx, TYPE_MODE (sizetype),
|
||
endbit_rtx, TYPE_MODE (sizetype));
|
||
}
|
||
if (REG_P (target))
|
||
emit_move_insn (target, targetx);
|
||
}
|
||
}
|
||
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Store the value of EXP (an expression tree)
|
||
into a subfield of TARGET which has mode MODE and occupies
|
||
BITSIZE bits, starting BITPOS bits from the start of TARGET.
|
||
If MODE is VOIDmode, it means that we are storing into a bit-field.
|
||
|
||
If VALUE_MODE is VOIDmode, return nothing in particular.
|
||
UNSIGNEDP is not used in this case.
|
||
|
||
Otherwise, return an rtx for the value stored. This rtx
|
||
has mode VALUE_MODE if that is convenient to do.
|
||
In this case, UNSIGNEDP must be nonzero if the value is an unsigned type.
|
||
|
||
ALIGN is the alignment that TARGET is known to have, measured in bytes.
|
||
TOTAL_SIZE is the size in bytes of the structure, or -1 if varying.
|
||
|
||
ALIAS_SET is the alias set for the destination. This value will
|
||
(in general) be different from that for TARGET, since TARGET is a
|
||
reference to the containing structure. */
|
||
|
||
static rtx
|
||
store_field (target, bitsize, bitpos, mode, exp, value_mode,
|
||
unsignedp, align, total_size, alias_set)
|
||
rtx target;
|
||
int bitsize, bitpos;
|
||
enum machine_mode mode;
|
||
tree exp;
|
||
enum machine_mode value_mode;
|
||
int unsignedp;
|
||
int align;
|
||
int total_size;
|
||
int alias_set;
|
||
{
|
||
HOST_WIDE_INT width_mask = 0;
|
||
|
||
if (TREE_CODE (exp) == ERROR_MARK)
|
||
return const0_rtx;
|
||
|
||
if (bitsize < HOST_BITS_PER_WIDE_INT)
|
||
width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
|
||
|
||
/* If we are storing into an unaligned field of an aligned union that is
|
||
in a register, we may have the mode of TARGET being an integer mode but
|
||
MODE == BLKmode. In that case, get an aligned object whose size and
|
||
alignment are the same as TARGET and store TARGET into it (we can avoid
|
||
the store if the field being stored is the entire width of TARGET). Then
|
||
call ourselves recursively to store the field into a BLKmode version of
|
||
that object. Finally, load from the object into TARGET. This is not
|
||
very efficient in general, but should only be slightly more expensive
|
||
than the otherwise-required unaligned accesses. Perhaps this can be
|
||
cleaned up later. */
|
||
|
||
if (mode == BLKmode
|
||
&& (GET_CODE (target) == REG || GET_CODE (target) == SUBREG))
|
||
{
|
||
rtx object = assign_stack_temp (GET_MODE (target),
|
||
GET_MODE_SIZE (GET_MODE (target)), 0);
|
||
rtx blk_object = copy_rtx (object);
|
||
|
||
MEM_SET_IN_STRUCT_P (object, 1);
|
||
MEM_SET_IN_STRUCT_P (blk_object, 1);
|
||
PUT_MODE (blk_object, BLKmode);
|
||
|
||
if (bitsize != GET_MODE_BITSIZE (GET_MODE (target)))
|
||
emit_move_insn (object, target);
|
||
|
||
store_field (blk_object, bitsize, bitpos, mode, exp, VOIDmode, 0,
|
||
align, total_size, alias_set);
|
||
|
||
/* Even though we aren't returning target, we need to
|
||
give it the updated value. */
|
||
emit_move_insn (target, object);
|
||
|
||
return blk_object;
|
||
}
|
||
|
||
/* If the structure is in a register or if the component
|
||
is a bit field, we cannot use addressing to access it.
|
||
Use bit-field techniques or SUBREG to store in it. */
|
||
|
||
if (mode == VOIDmode
|
||
|| (mode != BLKmode && ! direct_store[(int) mode]
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
|
||
|| GET_CODE (target) == REG
|
||
|| GET_CODE (target) == SUBREG
|
||
/* If the field isn't aligned enough to store as an ordinary memref,
|
||
store it as a bit field. */
|
||
|| (SLOW_UNALIGNED_ACCESS
|
||
&& align * BITS_PER_UNIT < GET_MODE_ALIGNMENT (mode))
|
||
|| (SLOW_UNALIGNED_ACCESS && bitpos % GET_MODE_ALIGNMENT (mode) != 0))
|
||
{
|
||
rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
|
||
|
||
/* If BITSIZE is narrower than the size of the type of EXP
|
||
we will be narrowing TEMP. Normally, what's wanted are the
|
||
low-order bits. However, if EXP's type is a record and this is
|
||
big-endian machine, we want the upper BITSIZE bits. */
|
||
if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
|
||
&& bitsize < GET_MODE_BITSIZE (GET_MODE (temp))
|
||
&& TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
|
||
temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
|
||
size_int (GET_MODE_BITSIZE (GET_MODE (temp))
|
||
- bitsize),
|
||
temp, 1);
|
||
|
||
/* Unless MODE is VOIDmode or BLKmode, convert TEMP to
|
||
MODE. */
|
||
if (mode != VOIDmode && mode != BLKmode
|
||
&& mode != TYPE_MODE (TREE_TYPE (exp)))
|
||
temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
|
||
|
||
/* If the modes of TARGET and TEMP are both BLKmode, both
|
||
must be in memory and BITPOS must be aligned on a byte
|
||
boundary. If so, we simply do a block copy. */
|
||
if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
|
||
{
|
||
if (GET_CODE (target) != MEM || GET_CODE (temp) != MEM
|
||
|| bitpos % BITS_PER_UNIT != 0)
|
||
abort ();
|
||
|
||
target = change_address (target, VOIDmode,
|
||
plus_constant (XEXP (target, 0),
|
||
bitpos / BITS_PER_UNIT));
|
||
|
||
emit_block_move (target, temp,
|
||
GEN_INT ((bitsize + BITS_PER_UNIT - 1)
|
||
/ BITS_PER_UNIT),
|
||
1);
|
||
|
||
return value_mode == VOIDmode ? const0_rtx : target;
|
||
}
|
||
|
||
/* Store the value in the bitfield. */
|
||
store_bit_field (target, bitsize, bitpos, mode, temp, align, total_size);
|
||
if (value_mode != VOIDmode)
|
||
{
|
||
/* The caller wants an rtx for the value. */
|
||
/* If possible, avoid refetching from the bitfield itself. */
|
||
if (width_mask != 0
|
||
&& ! (GET_CODE (target) == MEM && MEM_VOLATILE_P (target)))
|
||
{
|
||
tree count;
|
||
enum machine_mode tmode;
|
||
|
||
if (unsignedp)
|
||
return expand_and (temp, GEN_INT (width_mask), NULL_RTX);
|
||
tmode = GET_MODE (temp);
|
||
if (tmode == VOIDmode)
|
||
tmode = value_mode;
|
||
count = build_int_2 (GET_MODE_BITSIZE (tmode) - bitsize, 0);
|
||
temp = expand_shift (LSHIFT_EXPR, tmode, temp, count, 0, 0);
|
||
return expand_shift (RSHIFT_EXPR, tmode, temp, count, 0, 0);
|
||
}
|
||
return extract_bit_field (target, bitsize, bitpos, unsignedp,
|
||
NULL_RTX, value_mode, 0, align,
|
||
total_size);
|
||
}
|
||
return const0_rtx;
|
||
}
|
||
else
|
||
{
|
||
rtx addr = XEXP (target, 0);
|
||
rtx to_rtx;
|
||
|
||
/* If a value is wanted, it must be the lhs;
|
||
so make the address stable for multiple use. */
|
||
|
||
if (value_mode != VOIDmode && GET_CODE (addr) != REG
|
||
&& ! CONSTANT_ADDRESS_P (addr)
|
||
/* A frame-pointer reference is already stable. */
|
||
&& ! (GET_CODE (addr) == PLUS
|
||
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
|
||
&& (XEXP (addr, 0) == virtual_incoming_args_rtx
|
||
|| XEXP (addr, 0) == virtual_stack_vars_rtx)))
|
||
addr = copy_to_reg (addr);
|
||
|
||
/* Now build a reference to just the desired component. */
|
||
|
||
to_rtx = copy_rtx (change_address (target, mode,
|
||
plus_constant (addr,
|
||
(bitpos
|
||
/ BITS_PER_UNIT))));
|
||
MEM_SET_IN_STRUCT_P (to_rtx, 1);
|
||
MEM_ALIAS_SET (to_rtx) = alias_set;
|
||
|
||
return store_expr (exp, to_rtx, value_mode != VOIDmode);
|
||
}
|
||
}
|
||
|
||
/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
|
||
or an ARRAY_REF, look for nested COMPONENT_REFs, BIT_FIELD_REFs, or
|
||
ARRAY_REFs and find the ultimate containing object, which we return.
|
||
|
||
We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
|
||
bit position, and *PUNSIGNEDP to the signedness of the field.
|
||
If the position of the field is variable, we store a tree
|
||
giving the variable offset (in units) in *POFFSET.
|
||
This offset is in addition to the bit position.
|
||
If the position is not variable, we store 0 in *POFFSET.
|
||
We set *PALIGNMENT to the alignment in bytes of the address that will be
|
||
computed. This is the alignment of the thing we return if *POFFSET
|
||
is zero, but can be more less strictly aligned if *POFFSET is nonzero.
|
||
|
||
If any of the extraction expressions is volatile,
|
||
we store 1 in *PVOLATILEP. Otherwise we don't change that.
|
||
|
||
If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
|
||
is a mode that can be used to access the field. In that case, *PBITSIZE
|
||
is redundant.
|
||
|
||
If the field describes a variable-sized object, *PMODE is set to
|
||
VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
|
||
this case, but the address of the object can be found. */
|
||
|
||
tree
|
||
get_inner_reference (exp, pbitsize, pbitpos, poffset, pmode,
|
||
punsignedp, pvolatilep, palignment)
|
||
tree exp;
|
||
int *pbitsize;
|
||
int *pbitpos;
|
||
tree *poffset;
|
||
enum machine_mode *pmode;
|
||
int *punsignedp;
|
||
int *pvolatilep;
|
||
int *palignment;
|
||
{
|
||
tree orig_exp = exp;
|
||
tree size_tree = 0;
|
||
enum machine_mode mode = VOIDmode;
|
||
tree offset = integer_zero_node;
|
||
unsigned int alignment = BIGGEST_ALIGNMENT;
|
||
|
||
if (TREE_CODE (exp) == COMPONENT_REF)
|
||
{
|
||
size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
|
||
if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
|
||
mode = DECL_MODE (TREE_OPERAND (exp, 1));
|
||
*punsignedp = TREE_UNSIGNED (TREE_OPERAND (exp, 1));
|
||
}
|
||
else if (TREE_CODE (exp) == BIT_FIELD_REF)
|
||
{
|
||
size_tree = TREE_OPERAND (exp, 1);
|
||
*punsignedp = TREE_UNSIGNED (exp);
|
||
}
|
||
else
|
||
{
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
if (mode == BLKmode)
|
||
size_tree = TYPE_SIZE (TREE_TYPE (exp));
|
||
|
||
*pbitsize = GET_MODE_BITSIZE (mode);
|
||
*punsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
|
||
}
|
||
|
||
if (size_tree)
|
||
{
|
||
if (TREE_CODE (size_tree) != INTEGER_CST)
|
||
mode = BLKmode, *pbitsize = -1;
|
||
else
|
||
*pbitsize = TREE_INT_CST_LOW (size_tree);
|
||
}
|
||
|
||
/* Compute cumulative bit-offset for nested component-refs and array-refs,
|
||
and find the ultimate containing object. */
|
||
|
||
*pbitpos = 0;
|
||
|
||
while (1)
|
||
{
|
||
if (TREE_CODE (exp) == COMPONENT_REF || TREE_CODE (exp) == BIT_FIELD_REF)
|
||
{
|
||
tree pos = (TREE_CODE (exp) == COMPONENT_REF
|
||
? DECL_FIELD_BITPOS (TREE_OPERAND (exp, 1))
|
||
: TREE_OPERAND (exp, 2));
|
||
tree constant = integer_zero_node, var = pos;
|
||
|
||
/* If this field hasn't been filled in yet, don't go
|
||
past it. This should only happen when folding expressions
|
||
made during type construction. */
|
||
if (pos == 0)
|
||
break;
|
||
|
||
/* Assume here that the offset is a multiple of a unit.
|
||
If not, there should be an explicitly added constant. */
|
||
if (TREE_CODE (pos) == PLUS_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (pos, 1)) == INTEGER_CST)
|
||
constant = TREE_OPERAND (pos, 1), var = TREE_OPERAND (pos, 0);
|
||
else if (TREE_CODE (pos) == INTEGER_CST)
|
||
constant = pos, var = integer_zero_node;
|
||
|
||
*pbitpos += TREE_INT_CST_LOW (constant);
|
||
offset = size_binop (PLUS_EXPR, offset,
|
||
size_binop (EXACT_DIV_EXPR, var,
|
||
size_int (BITS_PER_UNIT)));
|
||
}
|
||
|
||
else if (TREE_CODE (exp) == ARRAY_REF)
|
||
{
|
||
/* This code is based on the code in case ARRAY_REF in expand_expr
|
||
below. We assume here that the size of an array element is
|
||
always an integral multiple of BITS_PER_UNIT. */
|
||
|
||
tree index = TREE_OPERAND (exp, 1);
|
||
tree domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
tree low_bound
|
||
= domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
|
||
tree index_type = TREE_TYPE (index);
|
||
tree xindex;
|
||
|
||
if (TYPE_PRECISION (index_type) != TYPE_PRECISION (sizetype))
|
||
{
|
||
index = convert (type_for_size (TYPE_PRECISION (sizetype), 0),
|
||
index);
|
||
index_type = TREE_TYPE (index);
|
||
}
|
||
|
||
/* Optimize the special-case of a zero lower bound.
|
||
|
||
We convert the low_bound to sizetype to avoid some problems
|
||
with constant folding. (E.g. suppose the lower bound is 1,
|
||
and its mode is QI. Without the conversion, (ARRAY
|
||
+(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
|
||
+INDEX), which becomes (ARRAY+255+INDEX). Oops!)
|
||
|
||
But sizetype isn't quite right either (especially if
|
||
the lowbound is negative). FIXME */
|
||
|
||
if (! integer_zerop (low_bound))
|
||
index = fold (build (MINUS_EXPR, index_type, index,
|
||
convert (sizetype, low_bound)));
|
||
|
||
if (TREE_CODE (index) == INTEGER_CST)
|
||
{
|
||
index = convert (sbitsizetype, index);
|
||
index_type = TREE_TYPE (index);
|
||
}
|
||
|
||
xindex = fold (build (MULT_EXPR, sbitsizetype, index,
|
||
convert (sbitsizetype,
|
||
TYPE_SIZE (TREE_TYPE (exp)))));
|
||
|
||
if (TREE_CODE (xindex) == INTEGER_CST
|
||
&& TREE_INT_CST_HIGH (xindex) == 0)
|
||
*pbitpos += TREE_INT_CST_LOW (xindex);
|
||
else
|
||
{
|
||
/* Either the bit offset calculated above is not constant, or
|
||
it overflowed. In either case, redo the multiplication
|
||
against the size in units. This is especially important
|
||
in the non-constant case to avoid a division at runtime. */
|
||
xindex = fold (build (MULT_EXPR, ssizetype, index,
|
||
convert (ssizetype,
|
||
TYPE_SIZE_UNIT (TREE_TYPE (exp)))));
|
||
|
||
if (contains_placeholder_p (xindex))
|
||
xindex = build (WITH_RECORD_EXPR, sizetype, xindex, exp);
|
||
|
||
offset = size_binop (PLUS_EXPR, offset, xindex);
|
||
}
|
||
}
|
||
else if (TREE_CODE (exp) != NON_LVALUE_EXPR
|
||
&& ! ((TREE_CODE (exp) == NOP_EXPR
|
||
|| TREE_CODE (exp) == CONVERT_EXPR)
|
||
&& ! (TREE_CODE (TREE_TYPE (exp)) == UNION_TYPE
|
||
&& (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0)))
|
||
!= UNION_TYPE))
|
||
&& (TYPE_MODE (TREE_TYPE (exp))
|
||
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
|
||
break;
|
||
|
||
/* If any reference in the chain is volatile, the effect is volatile. */
|
||
if (TREE_THIS_VOLATILE (exp))
|
||
*pvolatilep = 1;
|
||
|
||
/* If the offset is non-constant already, then we can't assume any
|
||
alignment more than the alignment here. */
|
||
if (! integer_zerop (offset))
|
||
alignment = MIN (alignment, TYPE_ALIGN (TREE_TYPE (exp)));
|
||
|
||
exp = TREE_OPERAND (exp, 0);
|
||
}
|
||
|
||
if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'd')
|
||
alignment = MIN (alignment, DECL_ALIGN (exp));
|
||
else if (TREE_TYPE (exp) != 0)
|
||
alignment = MIN (alignment, TYPE_ALIGN (TREE_TYPE (exp)));
|
||
|
||
if (integer_zerop (offset))
|
||
offset = 0;
|
||
|
||
if (offset != 0 && contains_placeholder_p (offset))
|
||
offset = build (WITH_RECORD_EXPR, sizetype, offset, orig_exp);
|
||
|
||
*pmode = mode;
|
||
*poffset = offset;
|
||
*palignment = alignment / BITS_PER_UNIT;
|
||
return exp;
|
||
}
|
||
|
||
/* Subroutine of expand_exp: compute memory_usage from modifier. */
|
||
static enum memory_use_mode
|
||
get_memory_usage_from_modifier (modifier)
|
||
enum expand_modifier modifier;
|
||
{
|
||
switch (modifier)
|
||
{
|
||
case EXPAND_NORMAL:
|
||
case EXPAND_SUM:
|
||
return MEMORY_USE_RO;
|
||
break;
|
||
case EXPAND_MEMORY_USE_WO:
|
||
return MEMORY_USE_WO;
|
||
break;
|
||
case EXPAND_MEMORY_USE_RW:
|
||
return MEMORY_USE_RW;
|
||
break;
|
||
case EXPAND_MEMORY_USE_DONT:
|
||
/* EXPAND_CONST_ADDRESS and EXPAND_INITIALIZER are converted into
|
||
MEMORY_USE_DONT, because they are modifiers to a call of
|
||
expand_expr in the ADDR_EXPR case of expand_expr. */
|
||
case EXPAND_CONST_ADDRESS:
|
||
case EXPAND_INITIALIZER:
|
||
return MEMORY_USE_DONT;
|
||
case EXPAND_MEMORY_USE_BAD:
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Given an rtx VALUE that may contain additions and multiplications,
|
||
return an equivalent value that just refers to a register or memory.
|
||
This is done by generating instructions to perform the arithmetic
|
||
and returning a pseudo-register containing the value.
|
||
|
||
The returned value may be a REG, SUBREG, MEM or constant. */
|
||
|
||
rtx
|
||
force_operand (value, target)
|
||
rtx value, target;
|
||
{
|
||
register optab binoptab = 0;
|
||
/* Use a temporary to force order of execution of calls to
|
||
`force_operand'. */
|
||
rtx tmp;
|
||
register rtx op2;
|
||
/* Use subtarget as the target for operand 0 of a binary operation. */
|
||
register rtx subtarget = (target != 0 && GET_CODE (target) == REG ? target : 0);
|
||
|
||
/* Check for a PIC address load. */
|
||
if (flag_pic
|
||
&& (GET_CODE (value) == PLUS || GET_CODE (value) == MINUS)
|
||
&& XEXP (value, 0) == pic_offset_table_rtx
|
||
&& (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
|
||
|| GET_CODE (XEXP (value, 1)) == LABEL_REF
|
||
|| GET_CODE (XEXP (value, 1)) == CONST))
|
||
{
|
||
if (!subtarget)
|
||
subtarget = gen_reg_rtx (GET_MODE (value));
|
||
emit_move_insn (subtarget, value);
|
||
return subtarget;
|
||
}
|
||
|
||
if (GET_CODE (value) == PLUS)
|
||
binoptab = add_optab;
|
||
else if (GET_CODE (value) == MINUS)
|
||
binoptab = sub_optab;
|
||
else if (GET_CODE (value) == MULT)
|
||
{
|
||
op2 = XEXP (value, 1);
|
||
if (!CONSTANT_P (op2)
|
||
&& !(GET_CODE (op2) == REG && op2 != subtarget))
|
||
subtarget = 0;
|
||
tmp = force_operand (XEXP (value, 0), subtarget);
|
||
return expand_mult (GET_MODE (value), tmp,
|
||
force_operand (op2, NULL_RTX),
|
||
target, 0);
|
||
}
|
||
|
||
if (binoptab)
|
||
{
|
||
op2 = XEXP (value, 1);
|
||
if (!CONSTANT_P (op2)
|
||
&& !(GET_CODE (op2) == REG && op2 != subtarget))
|
||
subtarget = 0;
|
||
if (binoptab == sub_optab && GET_CODE (op2) == CONST_INT)
|
||
{
|
||
binoptab = add_optab;
|
||
op2 = negate_rtx (GET_MODE (value), op2);
|
||
}
|
||
|
||
/* Check for an addition with OP2 a constant integer and our first
|
||
operand a PLUS of a virtual register and something else. In that
|
||
case, we want to emit the sum of the virtual register and the
|
||
constant first and then add the other value. This allows virtual
|
||
register instantiation to simply modify the constant rather than
|
||
creating another one around this addition. */
|
||
if (binoptab == add_optab && GET_CODE (op2) == CONST_INT
|
||
&& GET_CODE (XEXP (value, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (value, 0), 0)) == REG
|
||
&& REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
|
||
&& REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
|
||
{
|
||
rtx temp = expand_binop (GET_MODE (value), binoptab,
|
||
XEXP (XEXP (value, 0), 0), op2,
|
||
subtarget, 0, OPTAB_LIB_WIDEN);
|
||
return expand_binop (GET_MODE (value), binoptab, temp,
|
||
force_operand (XEXP (XEXP (value, 0), 1), 0),
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
tmp = force_operand (XEXP (value, 0), subtarget);
|
||
return expand_binop (GET_MODE (value), binoptab, tmp,
|
||
force_operand (op2, NULL_RTX),
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
/* We give UNSIGNEDP = 0 to expand_binop
|
||
because the only operations we are expanding here are signed ones. */
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* Subroutine of expand_expr:
|
||
save the non-copied parts (LIST) of an expr (LHS), and return a list
|
||
which can restore these values to their previous values,
|
||
should something modify their storage. */
|
||
|
||
static tree
|
||
save_noncopied_parts (lhs, list)
|
||
tree lhs;
|
||
tree list;
|
||
{
|
||
tree tail;
|
||
tree parts = 0;
|
||
|
||
for (tail = list; tail; tail = TREE_CHAIN (tail))
|
||
if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
|
||
parts = chainon (parts, save_noncopied_parts (lhs, TREE_VALUE (tail)));
|
||
else
|
||
{
|
||
tree part = TREE_VALUE (tail);
|
||
tree part_type = TREE_TYPE (part);
|
||
tree to_be_saved = build (COMPONENT_REF, part_type, lhs, part);
|
||
rtx target = assign_temp (part_type, 0, 1, 1);
|
||
if (! memory_address_p (TYPE_MODE (part_type), XEXP (target, 0)))
|
||
target = change_address (target, TYPE_MODE (part_type), NULL_RTX);
|
||
parts = tree_cons (to_be_saved,
|
||
build (RTL_EXPR, part_type, NULL_TREE,
|
||
(tree) target),
|
||
parts);
|
||
store_expr (TREE_PURPOSE (parts), RTL_EXPR_RTL (TREE_VALUE (parts)), 0);
|
||
}
|
||
return parts;
|
||
}
|
||
|
||
/* Subroutine of expand_expr:
|
||
record the non-copied parts (LIST) of an expr (LHS), and return a list
|
||
which specifies the initial values of these parts. */
|
||
|
||
static tree
|
||
init_noncopied_parts (lhs, list)
|
||
tree lhs;
|
||
tree list;
|
||
{
|
||
tree tail;
|
||
tree parts = 0;
|
||
|
||
for (tail = list; tail; tail = TREE_CHAIN (tail))
|
||
if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
|
||
parts = chainon (parts, init_noncopied_parts (lhs, TREE_VALUE (tail)));
|
||
else if (TREE_PURPOSE (tail))
|
||
{
|
||
tree part = TREE_VALUE (tail);
|
||
tree part_type = TREE_TYPE (part);
|
||
tree to_be_initialized = build (COMPONENT_REF, part_type, lhs, part);
|
||
parts = tree_cons (TREE_PURPOSE (tail), to_be_initialized, parts);
|
||
}
|
||
return parts;
|
||
}
|
||
|
||
/* Subroutine of expand_expr: return nonzero iff there is no way that
|
||
EXP can reference X, which is being modified. TOP_P is nonzero if this
|
||
call is going to be used to determine whether we need a temporary
|
||
for EXP, as opposed to a recursive call to this function.
|
||
|
||
It is always safe for this routine to return zero since it merely
|
||
searches for optimization opportunities. */
|
||
|
||
static int
|
||
safe_from_p (x, exp, top_p)
|
||
rtx x;
|
||
tree exp;
|
||
int top_p;
|
||
{
|
||
rtx exp_rtl = 0;
|
||
int i, nops;
|
||
static int save_expr_count;
|
||
static int save_expr_size = 0;
|
||
static tree *save_expr_rewritten;
|
||
static tree save_expr_trees[256];
|
||
|
||
if (x == 0
|
||
/* If EXP has varying size, we MUST use a target since we currently
|
||
have no way of allocating temporaries of variable size
|
||
(except for arrays that have TYPE_ARRAY_MAX_SIZE set).
|
||
So we assume here that something at a higher level has prevented a
|
||
clash. This is somewhat bogus, but the best we can do. Only
|
||
do this when X is BLKmode and when we are at the top level. */
|
||
|| (top_p && TREE_TYPE (exp) != 0 && TYPE_SIZE (TREE_TYPE (exp)) != 0
|
||
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
|
||
&& (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
|
||
|| TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
|
||
|| TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
|
||
!= INTEGER_CST)
|
||
&& GET_MODE (x) == BLKmode))
|
||
return 1;
|
||
|
||
if (top_p && save_expr_size == 0)
|
||
{
|
||
int rtn;
|
||
|
||
save_expr_count = 0;
|
||
save_expr_size = sizeof (save_expr_trees) / sizeof (save_expr_trees[0]);
|
||
save_expr_rewritten = &save_expr_trees[0];
|
||
|
||
rtn = safe_from_p (x, exp, 1);
|
||
|
||
for (i = 0; i < save_expr_count; ++i)
|
||
{
|
||
if (TREE_CODE (save_expr_trees[i]) != ERROR_MARK)
|
||
abort ();
|
||
TREE_SET_CODE (save_expr_trees[i], SAVE_EXPR);
|
||
}
|
||
|
||
save_expr_size = 0;
|
||
|
||
return rtn;
|
||
}
|
||
|
||
/* If this is a subreg of a hard register, declare it unsafe, otherwise,
|
||
find the underlying pseudo. */
|
||
if (GET_CODE (x) == SUBREG)
|
||
{
|
||
x = SUBREG_REG (x);
|
||
if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
||
return 0;
|
||
}
|
||
|
||
/* If X is a location in the outgoing argument area, it is always safe. */
|
||
if (GET_CODE (x) == MEM
|
||
&& (XEXP (x, 0) == virtual_outgoing_args_rtx
|
||
|| (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx)))
|
||
return 1;
|
||
|
||
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
|
||
{
|
||
case 'd':
|
||
exp_rtl = DECL_RTL (exp);
|
||
break;
|
||
|
||
case 'c':
|
||
return 1;
|
||
|
||
case 'x':
|
||
if (TREE_CODE (exp) == TREE_LIST)
|
||
return ((TREE_VALUE (exp) == 0
|
||
|| safe_from_p (x, TREE_VALUE (exp), 0))
|
||
&& (TREE_CHAIN (exp) == 0
|
||
|| safe_from_p (x, TREE_CHAIN (exp), 0)));
|
||
else if (TREE_CODE (exp) == ERROR_MARK)
|
||
return 1; /* An already-visited SAVE_EXPR? */
|
||
else
|
||
return 0;
|
||
|
||
case '1':
|
||
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
|
||
|
||
case '2':
|
||
case '<':
|
||
return (safe_from_p (x, TREE_OPERAND (exp, 0), 0)
|
||
&& safe_from_p (x, TREE_OPERAND (exp, 1), 0));
|
||
|
||
case 'e':
|
||
case 'r':
|
||
/* Now do code-specific tests. EXP_RTL is set to any rtx we find in
|
||
the expression. If it is set, we conflict iff we are that rtx or
|
||
both are in memory. Otherwise, we check all operands of the
|
||
expression recursively. */
|
||
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case ADDR_EXPR:
|
||
return (staticp (TREE_OPERAND (exp, 0))
|
||
|| safe_from_p (x, TREE_OPERAND (exp, 0), 0)
|
||
|| TREE_STATIC (exp));
|
||
|
||
case INDIRECT_REF:
|
||
if (GET_CODE (x) == MEM)
|
||
return 0;
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
exp_rtl = CALL_EXPR_RTL (exp);
|
||
if (exp_rtl == 0)
|
||
{
|
||
/* Assume that the call will clobber all hard registers and
|
||
all of memory. */
|
||
if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
||
|| GET_CODE (x) == MEM)
|
||
return 0;
|
||
}
|
||
|
||
break;
|
||
|
||
case RTL_EXPR:
|
||
/* If a sequence exists, we would have to scan every instruction
|
||
in the sequence to see if it was safe. This is probably not
|
||
worthwhile. */
|
||
if (RTL_EXPR_SEQUENCE (exp))
|
||
return 0;
|
||
|
||
exp_rtl = RTL_EXPR_RTL (exp);
|
||
break;
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
exp_rtl = RTL_EXPR_RTL (exp);
|
||
break;
|
||
|
||
case CLEANUP_POINT_EXPR:
|
||
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
|
||
|
||
case SAVE_EXPR:
|
||
exp_rtl = SAVE_EXPR_RTL (exp);
|
||
if (exp_rtl)
|
||
break;
|
||
|
||
/* This SAVE_EXPR might appear many times in the top-level
|
||
safe_from_p() expression, and if it has a complex
|
||
subexpression, examining it multiple times could result
|
||
in a combinatorial explosion. E.g. on an Alpha
|
||
running at least 200MHz, a Fortran test case compiled with
|
||
optimization took about 28 minutes to compile -- even though
|
||
it was only a few lines long, and the complicated line causing
|
||
so much time to be spent in the earlier version of safe_from_p()
|
||
had only 293 or so unique nodes.
|
||
|
||
So, turn this SAVE_EXPR into an ERROR_MARK for now, but remember
|
||
where it is so we can turn it back in the top-level safe_from_p()
|
||
when we're done. */
|
||
|
||
/* For now, don't bother re-sizing the array. */
|
||
if (save_expr_count >= save_expr_size)
|
||
return 0;
|
||
save_expr_rewritten[save_expr_count++] = exp;
|
||
|
||
nops = tree_code_length[(int) SAVE_EXPR];
|
||
for (i = 0; i < nops; i++)
|
||
{
|
||
tree operand = TREE_OPERAND (exp, i);
|
||
if (operand == NULL_TREE)
|
||
continue;
|
||
TREE_SET_CODE (exp, ERROR_MARK);
|
||
if (!safe_from_p (x, operand, 0))
|
||
return 0;
|
||
TREE_SET_CODE (exp, SAVE_EXPR);
|
||
}
|
||
TREE_SET_CODE (exp, ERROR_MARK);
|
||
return 1;
|
||
|
||
case BIND_EXPR:
|
||
/* The only operand we look at is operand 1. The rest aren't
|
||
part of the expression. */
|
||
return safe_from_p (x, TREE_OPERAND (exp, 1), 0);
|
||
|
||
case METHOD_CALL_EXPR:
|
||
/* This takes a rtx argument, but shouldn't appear here. */
|
||
abort ();
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If we have an rtx, we do not need to scan our operands. */
|
||
if (exp_rtl)
|
||
break;
|
||
|
||
nops = tree_code_length[(int) TREE_CODE (exp)];
|
||
for (i = 0; i < nops; i++)
|
||
if (TREE_OPERAND (exp, i) != 0
|
||
&& ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
|
||
return 0;
|
||
}
|
||
|
||
/* If we have an rtl, find any enclosed object. Then see if we conflict
|
||
with it. */
|
||
if (exp_rtl)
|
||
{
|
||
if (GET_CODE (exp_rtl) == SUBREG)
|
||
{
|
||
exp_rtl = SUBREG_REG (exp_rtl);
|
||
if (GET_CODE (exp_rtl) == REG
|
||
&& REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
|
||
return 0;
|
||
}
|
||
|
||
/* If the rtl is X, then it is not safe. Otherwise, it is unless both
|
||
are memory and EXP is not readonly. */
|
||
return ! (rtx_equal_p (x, exp_rtl)
|
||
|| (GET_CODE (x) == MEM && GET_CODE (exp_rtl) == MEM
|
||
&& ! TREE_READONLY (exp)));
|
||
}
|
||
|
||
/* If we reach here, it is safe. */
|
||
return 1;
|
||
}
|
||
|
||
/* Subroutine of expand_expr: return nonzero iff EXP is an
|
||
expression whose type is statically determinable. */
|
||
|
||
static int
|
||
fixed_type_p (exp)
|
||
tree exp;
|
||
{
|
||
if (TREE_CODE (exp) == PARM_DECL
|
||
|| TREE_CODE (exp) == VAR_DECL
|
||
|| TREE_CODE (exp) == CALL_EXPR || TREE_CODE (exp) == TARGET_EXPR
|
||
|| TREE_CODE (exp) == COMPONENT_REF
|
||
|| TREE_CODE (exp) == ARRAY_REF)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Subroutine of expand_expr: return rtx if EXP is a
|
||
variable or parameter; else return 0. */
|
||
|
||
static rtx
|
||
var_rtx (exp)
|
||
tree exp;
|
||
{
|
||
STRIP_NOPS (exp);
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case PARM_DECL:
|
||
case VAR_DECL:
|
||
return DECL_RTL (exp);
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
#ifdef MAX_INTEGER_COMPUTATION_MODE
|
||
void
|
||
check_max_integer_computation_mode (exp)
|
||
tree exp;
|
||
{
|
||
enum tree_code code;
|
||
enum machine_mode mode;
|
||
|
||
/* Strip any NOPs that don't change the mode. */
|
||
STRIP_NOPS (exp);
|
||
code = TREE_CODE (exp);
|
||
|
||
/* We must allow conversions of constants to MAX_INTEGER_COMPUTATION_MODE. */
|
||
if (code == NOP_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
|
||
return;
|
||
|
||
/* First check the type of the overall operation. We need only look at
|
||
unary, binary and relational operations. */
|
||
if (TREE_CODE_CLASS (code) == '1'
|
||
|| TREE_CODE_CLASS (code) == '2'
|
||
|| TREE_CODE_CLASS (code) == '<')
|
||
{
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& mode > MAX_INTEGER_COMPUTATION_MODE)
|
||
fatal ("unsupported wide integer operation");
|
||
}
|
||
|
||
/* Check operand of a unary op. */
|
||
if (TREE_CODE_CLASS (code) == '1')
|
||
{
|
||
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& mode > MAX_INTEGER_COMPUTATION_MODE)
|
||
fatal ("unsupported wide integer operation");
|
||
}
|
||
|
||
/* Check operands of a binary/comparison op. */
|
||
if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<')
|
||
{
|
||
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& mode > MAX_INTEGER_COMPUTATION_MODE)
|
||
fatal ("unsupported wide integer operation");
|
||
|
||
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1)));
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& mode > MAX_INTEGER_COMPUTATION_MODE)
|
||
fatal ("unsupported wide integer operation");
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
/* expand_expr: generate code for computing expression EXP.
|
||
An rtx for the computed value is returned. The value is never null.
|
||
In the case of a void EXP, const0_rtx is returned.
|
||
|
||
The value may be stored in TARGET if TARGET is nonzero.
|
||
TARGET is just a suggestion; callers must assume that
|
||
the rtx returned may not be the same as TARGET.
|
||
|
||
If TARGET is CONST0_RTX, it means that the value will be ignored.
|
||
|
||
If TMODE is not VOIDmode, it suggests generating the
|
||
result in mode TMODE. But this is done only when convenient.
|
||
Otherwise, TMODE is ignored and the value generated in its natural mode.
|
||
TMODE is just a suggestion; callers must assume that
|
||
the rtx returned may not have mode TMODE.
|
||
|
||
Note that TARGET may have neither TMODE nor MODE. In that case, it
|
||
probably will not be used.
|
||
|
||
If MODIFIER is EXPAND_SUM then when EXP is an addition
|
||
we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
|
||
or a nest of (PLUS ...) and (MINUS ...) where the terms are
|
||
products as above, or REG or MEM, or constant.
|
||
Ordinarily in such cases we would output mul or add instructions
|
||
and then return a pseudo reg containing the sum.
|
||
|
||
EXPAND_INITIALIZER is much like EXPAND_SUM except that
|
||
it also marks a label as absolutely required (it can't be dead).
|
||
It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
|
||
This is used for outputting expressions used in initializers.
|
||
|
||
EXPAND_CONST_ADDRESS says that it is okay to return a MEM
|
||
with a constant address even if that address is not normally legitimate.
|
||
EXPAND_INITIALIZER and EXPAND_SUM also have this effect. */
|
||
|
||
rtx
|
||
expand_expr (exp, target, tmode, modifier)
|
||
register tree exp;
|
||
rtx target;
|
||
enum machine_mode tmode;
|
||
enum expand_modifier modifier;
|
||
{
|
||
/* Chain of pending expressions for PLACEHOLDER_EXPR to replace.
|
||
This is static so it will be accessible to our recursive callees. */
|
||
static tree placeholder_list = 0;
|
||
register rtx op0, op1, temp;
|
||
tree type = TREE_TYPE (exp);
|
||
int unsignedp = TREE_UNSIGNED (type);
|
||
register enum machine_mode mode;
|
||
register enum tree_code code = TREE_CODE (exp);
|
||
optab this_optab;
|
||
rtx subtarget, original_target;
|
||
int ignore;
|
||
tree context;
|
||
/* Used by check-memory-usage to make modifier read only. */
|
||
enum expand_modifier ro_modifier;
|
||
|
||
/* Handle ERROR_MARK before anybody tries to access its type. */
|
||
if (TREE_CODE (exp) == ERROR_MARK)
|
||
{
|
||
op0 = CONST0_RTX (tmode);
|
||
if (op0 != 0)
|
||
return op0;
|
||
return const0_rtx;
|
||
}
|
||
|
||
mode = TYPE_MODE (type);
|
||
/* Use subtarget as the target for operand 0 of a binary operation. */
|
||
subtarget = (target != 0 && GET_CODE (target) == REG ? target : 0);
|
||
original_target = target;
|
||
ignore = (target == const0_rtx
|
||
|| ((code == NON_LVALUE_EXPR || code == NOP_EXPR
|
||
|| code == CONVERT_EXPR || code == REFERENCE_EXPR
|
||
|| code == COND_EXPR)
|
||
&& TREE_CODE (type) == VOID_TYPE));
|
||
|
||
/* Make a read-only version of the modifier. */
|
||
if (modifier == EXPAND_NORMAL || modifier == EXPAND_SUM
|
||
|| modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_INITIALIZER)
|
||
ro_modifier = modifier;
|
||
else
|
||
ro_modifier = EXPAND_NORMAL;
|
||
|
||
/* Don't use hard regs as subtargets, because the combiner
|
||
can only handle pseudo regs. */
|
||
if (subtarget && REGNO (subtarget) < FIRST_PSEUDO_REGISTER)
|
||
subtarget = 0;
|
||
/* Avoid subtargets inside loops,
|
||
since they hide some invariant expressions. */
|
||
if (preserve_subexpressions_p ())
|
||
subtarget = 0;
|
||
|
||
/* If we are going to ignore this result, we need only do something
|
||
if there is a side-effect somewhere in the expression. If there
|
||
is, short-circuit the most common cases here. Note that we must
|
||
not call expand_expr with anything but const0_rtx in case this
|
||
is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
|
||
|
||
if (ignore)
|
||
{
|
||
if (! TREE_SIDE_EFFECTS (exp))
|
||
return const0_rtx;
|
||
|
||
/* Ensure we reference a volatile object even if value is ignored. */
|
||
if (TREE_THIS_VOLATILE (exp)
|
||
&& TREE_CODE (exp) != FUNCTION_DECL
|
||
&& mode != VOIDmode && mode != BLKmode)
|
||
{
|
||
temp = expand_expr (exp, NULL_RTX, VOIDmode, ro_modifier);
|
||
if (GET_CODE (temp) == MEM)
|
||
temp = copy_to_reg (temp);
|
||
return const0_rtx;
|
||
}
|
||
|
||
if (TREE_CODE_CLASS (code) == '1')
|
||
return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
|
||
VOIDmode, ro_modifier);
|
||
else if (TREE_CODE_CLASS (code) == '2'
|
||
|| TREE_CODE_CLASS (code) == '<')
|
||
{
|
||
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, ro_modifier);
|
||
expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, ro_modifier);
|
||
return const0_rtx;
|
||
}
|
||
else if ((code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
|
||
&& ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1)))
|
||
/* If the second operand has no side effects, just evaluate
|
||
the first. */
|
||
return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
|
||
VOIDmode, ro_modifier);
|
||
|
||
target = 0;
|
||
}
|
||
|
||
#ifdef MAX_INTEGER_COMPUTATION_MODE
|
||
/* Only check stuff here if the mode we want is different from the mode
|
||
of the expression; if it's the same, check_max_integer_computiation_mode
|
||
will handle it. Do we really need to check this stuff at all? */
|
||
|
||
if (target
|
||
&& GET_MODE (target) != mode
|
||
&& TREE_CODE (exp) != INTEGER_CST
|
||
&& TREE_CODE (exp) != PARM_DECL
|
||
&& TREE_CODE (exp) != ARRAY_REF
|
||
&& TREE_CODE (exp) != COMPONENT_REF
|
||
&& TREE_CODE (exp) != BIT_FIELD_REF
|
||
&& TREE_CODE (exp) != INDIRECT_REF
|
||
&& TREE_CODE (exp) != CALL_EXPR
|
||
&& TREE_CODE (exp) != VAR_DECL
|
||
&& TREE_CODE (exp) != RTL_EXPR)
|
||
{
|
||
enum machine_mode mode = GET_MODE (target);
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& mode > MAX_INTEGER_COMPUTATION_MODE)
|
||
fatal ("unsupported wide integer operation");
|
||
}
|
||
|
||
if (tmode != mode
|
||
&& TREE_CODE (exp) != INTEGER_CST
|
||
&& TREE_CODE (exp) != PARM_DECL
|
||
&& TREE_CODE (exp) != ARRAY_REF
|
||
&& TREE_CODE (exp) != COMPONENT_REF
|
||
&& TREE_CODE (exp) != BIT_FIELD_REF
|
||
&& TREE_CODE (exp) != INDIRECT_REF
|
||
&& TREE_CODE (exp) != VAR_DECL
|
||
&& TREE_CODE (exp) != CALL_EXPR
|
||
&& TREE_CODE (exp) != RTL_EXPR
|
||
&& GET_MODE_CLASS (tmode) == MODE_INT
|
||
&& tmode > MAX_INTEGER_COMPUTATION_MODE)
|
||
fatal ("unsupported wide integer operation");
|
||
|
||
check_max_integer_computation_mode (exp);
|
||
#endif
|
||
|
||
/* If will do cse, generate all results into pseudo registers
|
||
since 1) that allows cse to find more things
|
||
and 2) otherwise cse could produce an insn the machine
|
||
cannot support. */
|
||
|
||
if (! cse_not_expected && mode != BLKmode && target
|
||
&& (GET_CODE (target) != REG || REGNO (target) < FIRST_PSEUDO_REGISTER))
|
||
target = subtarget;
|
||
|
||
switch (code)
|
||
{
|
||
case LABEL_DECL:
|
||
{
|
||
tree function = decl_function_context (exp);
|
||
/* Handle using a label in a containing function. */
|
||
if (function != current_function_decl
|
||
&& function != inline_function_decl && function != 0)
|
||
{
|
||
struct function *p = find_function_data (function);
|
||
/* Allocate in the memory associated with the function
|
||
that the label is in. */
|
||
push_obstacks (p->function_obstack,
|
||
p->function_maybepermanent_obstack);
|
||
|
||
p->expr->x_forced_labels
|
||
= gen_rtx_EXPR_LIST (VOIDmode, label_rtx (exp),
|
||
p->expr->x_forced_labels);
|
||
pop_obstacks ();
|
||
}
|
||
else
|
||
{
|
||
if (modifier == EXPAND_INITIALIZER)
|
||
forced_labels = gen_rtx_EXPR_LIST (VOIDmode,
|
||
label_rtx (exp),
|
||
forced_labels);
|
||
}
|
||
temp = gen_rtx_MEM (FUNCTION_MODE,
|
||
gen_rtx_LABEL_REF (Pmode, label_rtx (exp)));
|
||
if (function != current_function_decl
|
||
&& function != inline_function_decl && function != 0)
|
||
LABEL_REF_NONLOCAL_P (XEXP (temp, 0)) = 1;
|
||
return temp;
|
||
}
|
||
|
||
case PARM_DECL:
|
||
if (DECL_RTL (exp) == 0)
|
||
{
|
||
error_with_decl (exp, "prior parameter's size depends on `%s'");
|
||
return CONST0_RTX (mode);
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case VAR_DECL:
|
||
/* If a static var's type was incomplete when the decl was written,
|
||
but the type is complete now, lay out the decl now. */
|
||
if (DECL_SIZE (exp) == 0 && TYPE_SIZE (TREE_TYPE (exp)) != 0
|
||
&& (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
|
||
{
|
||
push_obstacks_nochange ();
|
||
end_temporary_allocation ();
|
||
layout_decl (exp, 0);
|
||
PUT_MODE (DECL_RTL (exp), DECL_MODE (exp));
|
||
pop_obstacks ();
|
||
}
|
||
|
||
/* Although static-storage variables start off initialized, according to
|
||
ANSI C, a memcpy could overwrite them with uninitialized values. So
|
||
we check them too. This also lets us check for read-only variables
|
||
accessed via a non-const declaration, in case it won't be detected
|
||
any other way (e.g., in an embedded system or OS kernel without
|
||
memory protection).
|
||
|
||
Aggregates are not checked here; they're handled elsewhere. */
|
||
if (current_function && current_function_check_memory_usage
|
||
&& code == VAR_DECL
|
||
&& GET_CODE (DECL_RTL (exp)) == MEM
|
||
&& ! AGGREGATE_TYPE_P (TREE_TYPE (exp)))
|
||
{
|
||
enum memory_use_mode memory_usage;
|
||
memory_usage = get_memory_usage_from_modifier (modifier);
|
||
|
||
if (memory_usage != MEMORY_USE_DONT)
|
||
emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
|
||
XEXP (DECL_RTL (exp), 0), Pmode,
|
||
GEN_INT (int_size_in_bytes (type)),
|
||
TYPE_MODE (sizetype),
|
||
GEN_INT (memory_usage),
|
||
TYPE_MODE (integer_type_node));
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case FUNCTION_DECL:
|
||
case RESULT_DECL:
|
||
if (DECL_RTL (exp) == 0)
|
||
abort ();
|
||
|
||
/* Ensure variable marked as used even if it doesn't go through
|
||
a parser. If it hasn't be used yet, write out an external
|
||
definition. */
|
||
if (! TREE_USED (exp))
|
||
{
|
||
assemble_external (exp);
|
||
TREE_USED (exp) = 1;
|
||
}
|
||
|
||
/* Show we haven't gotten RTL for this yet. */
|
||
temp = 0;
|
||
|
||
/* Handle variables inherited from containing functions. */
|
||
context = decl_function_context (exp);
|
||
|
||
/* We treat inline_function_decl as an alias for the current function
|
||
because that is the inline function whose vars, types, etc.
|
||
are being merged into the current function.
|
||
See expand_inline_function. */
|
||
|
||
if (context != 0 && context != current_function_decl
|
||
&& context != inline_function_decl
|
||
/* If var is static, we don't need a static chain to access it. */
|
||
&& ! (GET_CODE (DECL_RTL (exp)) == MEM
|
||
&& CONSTANT_P (XEXP (DECL_RTL (exp), 0))))
|
||
{
|
||
rtx addr;
|
||
|
||
/* Mark as non-local and addressable. */
|
||
DECL_NONLOCAL (exp) = 1;
|
||
if (DECL_NO_STATIC_CHAIN (current_function_decl))
|
||
abort ();
|
||
mark_addressable (exp);
|
||
if (GET_CODE (DECL_RTL (exp)) != MEM)
|
||
abort ();
|
||
addr = XEXP (DECL_RTL (exp), 0);
|
||
if (GET_CODE (addr) == MEM)
|
||
addr = gen_rtx_MEM (Pmode,
|
||
fix_lexical_addr (XEXP (addr, 0), exp));
|
||
else
|
||
addr = fix_lexical_addr (addr, exp);
|
||
temp = change_address (DECL_RTL (exp), mode, addr);
|
||
}
|
||
|
||
/* This is the case of an array whose size is to be determined
|
||
from its initializer, while the initializer is still being parsed.
|
||
See expand_decl. */
|
||
|
||
else if (GET_CODE (DECL_RTL (exp)) == MEM
|
||
&& GET_CODE (XEXP (DECL_RTL (exp), 0)) == REG)
|
||
temp = change_address (DECL_RTL (exp), GET_MODE (DECL_RTL (exp)),
|
||
XEXP (DECL_RTL (exp), 0));
|
||
|
||
/* If DECL_RTL is memory, we are in the normal case and either
|
||
the address is not valid or it is not a register and -fforce-addr
|
||
is specified, get the address into a register. */
|
||
|
||
else if (GET_CODE (DECL_RTL (exp)) == MEM
|
||
&& modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_SUM
|
||
&& modifier != EXPAND_INITIALIZER
|
||
&& (! memory_address_p (DECL_MODE (exp),
|
||
XEXP (DECL_RTL (exp), 0))
|
||
|| (flag_force_addr
|
||
&& GET_CODE (XEXP (DECL_RTL (exp), 0)) != REG)))
|
||
temp = change_address (DECL_RTL (exp), VOIDmode,
|
||
copy_rtx (XEXP (DECL_RTL (exp), 0)));
|
||
|
||
/* If we got something, return it. But first, set the alignment
|
||
the address is a register. */
|
||
if (temp != 0)
|
||
{
|
||
if (GET_CODE (temp) == MEM && GET_CODE (XEXP (temp, 0)) == REG)
|
||
mark_reg_pointer (XEXP (temp, 0),
|
||
DECL_ALIGN (exp) / BITS_PER_UNIT);
|
||
|
||
return temp;
|
||
}
|
||
|
||
/* If the mode of DECL_RTL does not match that of the decl, it
|
||
must be a promoted value. We return a SUBREG of the wanted mode,
|
||
but mark it so that we know that it was already extended. */
|
||
|
||
if (GET_CODE (DECL_RTL (exp)) == REG
|
||
&& GET_MODE (DECL_RTL (exp)) != mode)
|
||
{
|
||
/* Get the signedness used for this variable. Ensure we get the
|
||
same mode we got when the variable was declared. */
|
||
if (GET_MODE (DECL_RTL (exp))
|
||
!= promote_mode (type, DECL_MODE (exp), &unsignedp, 0))
|
||
abort ();
|
||
|
||
temp = gen_rtx_SUBREG (mode, DECL_RTL (exp), 0);
|
||
SUBREG_PROMOTED_VAR_P (temp) = 1;
|
||
SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
|
||
return temp;
|
||
}
|
||
|
||
return DECL_RTL (exp);
|
||
|
||
case INTEGER_CST:
|
||
return immed_double_const (TREE_INT_CST_LOW (exp),
|
||
TREE_INT_CST_HIGH (exp),
|
||
mode);
|
||
|
||
case CONST_DECL:
|
||
return expand_expr (DECL_INITIAL (exp), target, VOIDmode,
|
||
EXPAND_MEMORY_USE_BAD);
|
||
|
||
case REAL_CST:
|
||
/* If optimized, generate immediate CONST_DOUBLE
|
||
which will be turned into memory by reload if necessary.
|
||
|
||
We used to force a register so that loop.c could see it. But
|
||
this does not allow gen_* patterns to perform optimizations with
|
||
the constants. It also produces two insns in cases like "x = 1.0;".
|
||
On most machines, floating-point constants are not permitted in
|
||
many insns, so we'd end up copying it to a register in any case.
|
||
|
||
Now, we do the copying in expand_binop, if appropriate. */
|
||
return immed_real_const (exp);
|
||
|
||
case COMPLEX_CST:
|
||
case STRING_CST:
|
||
if (! TREE_CST_RTL (exp))
|
||
output_constant_def (exp);
|
||
|
||
/* TREE_CST_RTL probably contains a constant address.
|
||
On RISC machines where a constant address isn't valid,
|
||
make some insns to get that address into a register. */
|
||
if (GET_CODE (TREE_CST_RTL (exp)) == MEM
|
||
&& modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_INITIALIZER
|
||
&& modifier != EXPAND_SUM
|
||
&& (! memory_address_p (mode, XEXP (TREE_CST_RTL (exp), 0))
|
||
|| (flag_force_addr
|
||
&& GET_CODE (XEXP (TREE_CST_RTL (exp), 0)) != REG)))
|
||
return change_address (TREE_CST_RTL (exp), VOIDmode,
|
||
copy_rtx (XEXP (TREE_CST_RTL (exp), 0)));
|
||
return TREE_CST_RTL (exp);
|
||
|
||
case EXPR_WITH_FILE_LOCATION:
|
||
{
|
||
rtx to_return;
|
||
char *saved_input_filename = input_filename;
|
||
int saved_lineno = lineno;
|
||
input_filename = EXPR_WFL_FILENAME (exp);
|
||
lineno = EXPR_WFL_LINENO (exp);
|
||
if (EXPR_WFL_EMIT_LINE_NOTE (exp))
|
||
emit_line_note (input_filename, lineno);
|
||
/* Possibly avoid switching back and force here */
|
||
to_return = expand_expr (EXPR_WFL_NODE (exp), target, tmode, modifier);
|
||
input_filename = saved_input_filename;
|
||
lineno = saved_lineno;
|
||
return to_return;
|
||
}
|
||
|
||
case SAVE_EXPR:
|
||
context = decl_function_context (exp);
|
||
|
||
/* If this SAVE_EXPR was at global context, assume we are an
|
||
initialization function and move it into our context. */
|
||
if (context == 0)
|
||
SAVE_EXPR_CONTEXT (exp) = current_function_decl;
|
||
|
||
/* We treat inline_function_decl as an alias for the current function
|
||
because that is the inline function whose vars, types, etc.
|
||
are being merged into the current function.
|
||
See expand_inline_function. */
|
||
if (context == current_function_decl || context == inline_function_decl)
|
||
context = 0;
|
||
|
||
/* If this is non-local, handle it. */
|
||
if (context)
|
||
{
|
||
/* The following call just exists to abort if the context is
|
||
not of a containing function. */
|
||
find_function_data (context);
|
||
|
||
temp = SAVE_EXPR_RTL (exp);
|
||
if (temp && GET_CODE (temp) == REG)
|
||
{
|
||
put_var_into_stack (exp);
|
||
temp = SAVE_EXPR_RTL (exp);
|
||
}
|
||
if (temp == 0 || GET_CODE (temp) != MEM)
|
||
abort ();
|
||
return change_address (temp, mode,
|
||
fix_lexical_addr (XEXP (temp, 0), exp));
|
||
}
|
||
if (SAVE_EXPR_RTL (exp) == 0)
|
||
{
|
||
if (mode == VOIDmode)
|
||
temp = const0_rtx;
|
||
else
|
||
temp = assign_temp (type, 3, 0, 0);
|
||
|
||
SAVE_EXPR_RTL (exp) = temp;
|
||
if (!optimize && GET_CODE (temp) == REG)
|
||
save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, temp,
|
||
save_expr_regs);
|
||
|
||
/* If the mode of TEMP does not match that of the expression, it
|
||
must be a promoted value. We pass store_expr a SUBREG of the
|
||
wanted mode but mark it so that we know that it was already
|
||
extended. Note that `unsignedp' was modified above in
|
||
this case. */
|
||
|
||
if (GET_CODE (temp) == REG && GET_MODE (temp) != mode)
|
||
{
|
||
temp = gen_rtx_SUBREG (mode, SAVE_EXPR_RTL (exp), 0);
|
||
SUBREG_PROMOTED_VAR_P (temp) = 1;
|
||
SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
|
||
}
|
||
|
||
if (temp == const0_rtx)
|
||
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
|
||
EXPAND_MEMORY_USE_BAD);
|
||
else
|
||
store_expr (TREE_OPERAND (exp, 0), temp, 0);
|
||
|
||
TREE_USED (exp) = 1;
|
||
}
|
||
|
||
/* If the mode of SAVE_EXPR_RTL does not match that of the expression, it
|
||
must be a promoted value. We return a SUBREG of the wanted mode,
|
||
but mark it so that we know that it was already extended. */
|
||
|
||
if (GET_CODE (SAVE_EXPR_RTL (exp)) == REG
|
||
&& GET_MODE (SAVE_EXPR_RTL (exp)) != mode)
|
||
{
|
||
/* Compute the signedness and make the proper SUBREG. */
|
||
promote_mode (type, mode, &unsignedp, 0);
|
||
temp = gen_rtx_SUBREG (mode, SAVE_EXPR_RTL (exp), 0);
|
||
SUBREG_PROMOTED_VAR_P (temp) = 1;
|
||
SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
|
||
return temp;
|
||
}
|
||
|
||
return SAVE_EXPR_RTL (exp);
|
||
|
||
case UNSAVE_EXPR:
|
||
{
|
||
rtx temp;
|
||
temp = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
|
||
TREE_OPERAND (exp, 0) = unsave_expr_now (TREE_OPERAND (exp, 0));
|
||
return temp;
|
||
}
|
||
|
||
case PLACEHOLDER_EXPR:
|
||
{
|
||
tree placeholder_expr;
|
||
|
||
/* If there is an object on the head of the placeholder list,
|
||
see if some object in it of type TYPE or a pointer to it. For
|
||
further information, see tree.def. */
|
||
for (placeholder_expr = placeholder_list;
|
||
placeholder_expr != 0;
|
||
placeholder_expr = TREE_CHAIN (placeholder_expr))
|
||
{
|
||
tree need_type = TYPE_MAIN_VARIANT (type);
|
||
tree object = 0;
|
||
tree old_list = placeholder_list;
|
||
tree elt;
|
||
|
||
/* Find the outermost reference that is of the type we want.
|
||
If none, see if any object has a type that is a pointer to
|
||
the type we want. */
|
||
for (elt = TREE_PURPOSE (placeholder_expr);
|
||
elt != 0 && object == 0;
|
||
elt
|
||
= ((TREE_CODE (elt) == COMPOUND_EXPR
|
||
|| TREE_CODE (elt) == COND_EXPR)
|
||
? TREE_OPERAND (elt, 1)
|
||
: (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
|
||
|| TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
|
||
|| TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
|
||
|| TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
|
||
? TREE_OPERAND (elt, 0) : 0))
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
|
||
object = elt;
|
||
|
||
for (elt = TREE_PURPOSE (placeholder_expr);
|
||
elt != 0 && object == 0;
|
||
elt
|
||
= ((TREE_CODE (elt) == COMPOUND_EXPR
|
||
|| TREE_CODE (elt) == COND_EXPR)
|
||
? TREE_OPERAND (elt, 1)
|
||
: (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
|
||
|| TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
|
||
|| TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
|
||
|| TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
|
||
? TREE_OPERAND (elt, 0) : 0))
|
||
if (POINTER_TYPE_P (TREE_TYPE (elt))
|
||
&& (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
|
||
== need_type))
|
||
object = build1 (INDIRECT_REF, need_type, elt);
|
||
|
||
if (object != 0)
|
||
{
|
||
/* Expand this object skipping the list entries before
|
||
it was found in case it is also a PLACEHOLDER_EXPR.
|
||
In that case, we want to translate it using subsequent
|
||
entries. */
|
||
placeholder_list = TREE_CHAIN (placeholder_expr);
|
||
temp = expand_expr (object, original_target, tmode,
|
||
ro_modifier);
|
||
placeholder_list = old_list;
|
||
return temp;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We can't find the object or there was a missing WITH_RECORD_EXPR. */
|
||
abort ();
|
||
|
||
case WITH_RECORD_EXPR:
|
||
/* Put the object on the placeholder list, expand our first operand,
|
||
and pop the list. */
|
||
placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
|
||
placeholder_list);
|
||
target = expand_expr (TREE_OPERAND (exp, 0), original_target,
|
||
tmode, ro_modifier);
|
||
placeholder_list = TREE_CHAIN (placeholder_list);
|
||
return target;
|
||
|
||
case GOTO_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
|
||
expand_goto (TREE_OPERAND (exp, 0));
|
||
else
|
||
expand_computed_goto (TREE_OPERAND (exp, 0));
|
||
return const0_rtx;
|
||
|
||
case EXIT_EXPR:
|
||
expand_exit_loop_if_false (NULL_PTR,
|
||
invert_truthvalue (TREE_OPERAND (exp, 0)));
|
||
return const0_rtx;
|
||
|
||
case LABELED_BLOCK_EXPR:
|
||
if (LABELED_BLOCK_BODY (exp))
|
||
expand_expr_stmt (LABELED_BLOCK_BODY (exp));
|
||
emit_label (label_rtx (LABELED_BLOCK_LABEL (exp)));
|
||
return const0_rtx;
|
||
|
||
case EXIT_BLOCK_EXPR:
|
||
if (EXIT_BLOCK_RETURN (exp))
|
||
sorry ("returned value in block_exit_expr");
|
||
expand_goto (LABELED_BLOCK_LABEL (EXIT_BLOCK_LABELED_BLOCK (exp)));
|
||
return const0_rtx;
|
||
|
||
case LOOP_EXPR:
|
||
push_temp_slots ();
|
||
expand_start_loop (1);
|
||
expand_expr_stmt (TREE_OPERAND (exp, 0));
|
||
expand_end_loop ();
|
||
pop_temp_slots ();
|
||
|
||
return const0_rtx;
|
||
|
||
case BIND_EXPR:
|
||
{
|
||
tree vars = TREE_OPERAND (exp, 0);
|
||
int vars_need_expansion = 0;
|
||
|
||
/* Need to open a binding contour here because
|
||
if there are any cleanups they must be contained here. */
|
||
expand_start_bindings (0);
|
||
|
||
/* Mark the corresponding BLOCK for output in its proper place. */
|
||
if (TREE_OPERAND (exp, 2) != 0
|
||
&& ! TREE_USED (TREE_OPERAND (exp, 2)))
|
||
insert_block (TREE_OPERAND (exp, 2));
|
||
|
||
/* If VARS have not yet been expanded, expand them now. */
|
||
while (vars)
|
||
{
|
||
if (DECL_RTL (vars) == 0)
|
||
{
|
||
vars_need_expansion = 1;
|
||
expand_decl (vars);
|
||
}
|
||
expand_decl_init (vars);
|
||
vars = TREE_CHAIN (vars);
|
||
}
|
||
|
||
temp = expand_expr (TREE_OPERAND (exp, 1), target, tmode, ro_modifier);
|
||
|
||
expand_end_bindings (TREE_OPERAND (exp, 0), 0, 0);
|
||
|
||
return temp;
|
||
}
|
||
|
||
case RTL_EXPR:
|
||
if (RTL_EXPR_SEQUENCE (exp))
|
||
{
|
||
if (RTL_EXPR_SEQUENCE (exp) == const0_rtx)
|
||
abort ();
|
||
emit_insns (RTL_EXPR_SEQUENCE (exp));
|
||
RTL_EXPR_SEQUENCE (exp) = const0_rtx;
|
||
}
|
||
preserve_rtl_expr_result (RTL_EXPR_RTL (exp));
|
||
free_temps_for_rtl_expr (exp);
|
||
return RTL_EXPR_RTL (exp);
|
||
|
||
case CONSTRUCTOR:
|
||
/* If we don't need the result, just ensure we evaluate any
|
||
subexpressions. */
|
||
if (ignore)
|
||
{
|
||
tree elt;
|
||
for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
|
||
expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode,
|
||
EXPAND_MEMORY_USE_BAD);
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* All elts simple constants => refer to a constant in memory. But
|
||
if this is a non-BLKmode mode, let it store a field at a time
|
||
since that should make a CONST_INT or CONST_DOUBLE when we
|
||
fold. Likewise, if we have a target we can use, it is best to
|
||
store directly into the target unless the type is large enough
|
||
that memcpy will be used. If we are making an initializer and
|
||
all operands are constant, put it in memory as well. */
|
||
else if ((TREE_STATIC (exp)
|
||
&& ((mode == BLKmode
|
||
&& ! (target != 0 && safe_from_p (target, exp, 1)))
|
||
|| TREE_ADDRESSABLE (exp)
|
||
|| (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
|
||
&& (!MOVE_BY_PIECES_P
|
||
(TREE_INT_CST_LOW (TYPE_SIZE (type))/BITS_PER_UNIT,
|
||
TYPE_ALIGN (type) / BITS_PER_UNIT))
|
||
&& ! mostly_zeros_p (exp))))
|
||
|| (modifier == EXPAND_INITIALIZER && TREE_CONSTANT (exp)))
|
||
{
|
||
rtx constructor = output_constant_def (exp);
|
||
if (modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_INITIALIZER
|
||
&& modifier != EXPAND_SUM
|
||
&& (! memory_address_p (GET_MODE (constructor),
|
||
XEXP (constructor, 0))
|
||
|| (flag_force_addr
|
||
&& GET_CODE (XEXP (constructor, 0)) != REG)))
|
||
constructor = change_address (constructor, VOIDmode,
|
||
XEXP (constructor, 0));
|
||
return constructor;
|
||
}
|
||
|
||
else
|
||
{
|
||
/* Handle calls that pass values in multiple non-contiguous
|
||
locations. The Irix 6 ABI has examples of this. */
|
||
if (target == 0 || ! safe_from_p (target, exp, 1)
|
||
|| GET_CODE (target) == PARALLEL)
|
||
{
|
||
if (mode != BLKmode && ! TREE_ADDRESSABLE (exp))
|
||
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
|
||
else
|
||
target = assign_temp (type, 0, 1, 1);
|
||
}
|
||
|
||
if (TREE_READONLY (exp))
|
||
{
|
||
if (GET_CODE (target) == MEM)
|
||
target = copy_rtx (target);
|
||
|
||
RTX_UNCHANGING_P (target) = 1;
|
||
}
|
||
|
||
store_constructor (exp, target, 0);
|
||
return target;
|
||
}
|
||
|
||
case INDIRECT_REF:
|
||
{
|
||
tree exp1 = TREE_OPERAND (exp, 0);
|
||
tree exp2;
|
||
tree index;
|
||
tree string = string_constant (exp1, &index);
|
||
int i;
|
||
|
||
/* Try to optimize reads from const strings. */
|
||
if (string
|
||
&& TREE_CODE (string) == STRING_CST
|
||
&& TREE_CODE (index) == INTEGER_CST
|
||
&& !TREE_INT_CST_HIGH (index)
|
||
&& (i = TREE_INT_CST_LOW (index)) < TREE_STRING_LENGTH (string)
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_SIZE (mode) == 1
|
||
&& modifier != EXPAND_MEMORY_USE_WO)
|
||
return GEN_INT (TREE_STRING_POINTER (string)[i]);
|
||
|
||
op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
|
||
op0 = memory_address (mode, op0);
|
||
|
||
if (current_function && current_function_check_memory_usage
|
||
&& ! AGGREGATE_TYPE_P (TREE_TYPE (exp)))
|
||
{
|
||
enum memory_use_mode memory_usage;
|
||
memory_usage = get_memory_usage_from_modifier (modifier);
|
||
|
||
if (memory_usage != MEMORY_USE_DONT)
|
||
{
|
||
in_check_memory_usage = 1;
|
||
emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
|
||
op0, Pmode,
|
||
GEN_INT (int_size_in_bytes (type)),
|
||
TYPE_MODE (sizetype),
|
||
GEN_INT (memory_usage),
|
||
TYPE_MODE (integer_type_node));
|
||
in_check_memory_usage = 0;
|
||
}
|
||
}
|
||
|
||
temp = gen_rtx_MEM (mode, op0);
|
||
/* If address was computed by addition,
|
||
mark this as an element of an aggregate. */
|
||
if (TREE_CODE (exp1) == PLUS_EXPR
|
||
|| (TREE_CODE (exp1) == SAVE_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (exp1, 0)) == PLUS_EXPR)
|
||
|| AGGREGATE_TYPE_P (TREE_TYPE (exp))
|
||
|| (TREE_CODE (exp1) == ADDR_EXPR
|
||
&& (exp2 = TREE_OPERAND (exp1, 0))
|
||
&& AGGREGATE_TYPE_P (TREE_TYPE (exp2))))
|
||
MEM_SET_IN_STRUCT_P (temp, 1);
|
||
|
||
MEM_VOLATILE_P (temp) = TREE_THIS_VOLATILE (exp) | flag_volatile;
|
||
MEM_ALIAS_SET (temp) = get_alias_set (exp);
|
||
|
||
/* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY
|
||
here, because, in C and C++, the fact that a location is accessed
|
||
through a pointer to const does not mean that the value there can
|
||
never change. Languages where it can never change should
|
||
also set TREE_STATIC. */
|
||
RTX_UNCHANGING_P (temp) = TREE_READONLY (exp) & TREE_STATIC (exp);
|
||
return temp;
|
||
}
|
||
|
||
case ARRAY_REF:
|
||
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE)
|
||
abort ();
|
||
|
||
{
|
||
tree array = TREE_OPERAND (exp, 0);
|
||
tree domain = TYPE_DOMAIN (TREE_TYPE (array));
|
||
tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
|
||
tree index = TREE_OPERAND (exp, 1);
|
||
tree index_type = TREE_TYPE (index);
|
||
HOST_WIDE_INT i;
|
||
|
||
/* Optimize the special-case of a zero lower bound.
|
||
|
||
We convert the low_bound to sizetype to avoid some problems
|
||
with constant folding. (E.g. suppose the lower bound is 1,
|
||
and its mode is QI. Without the conversion, (ARRAY
|
||
+(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
|
||
+INDEX), which becomes (ARRAY+255+INDEX). Oops!)
|
||
|
||
But sizetype isn't quite right either (especially if
|
||
the lowbound is negative). FIXME */
|
||
|
||
if (! integer_zerop (low_bound))
|
||
index = fold (build (MINUS_EXPR, index_type, index,
|
||
convert (sizetype, low_bound)));
|
||
|
||
/* Fold an expression like: "foo"[2].
|
||
This is not done in fold so it won't happen inside &.
|
||
Don't fold if this is for wide characters since it's too
|
||
difficult to do correctly and this is a very rare case. */
|
||
|
||
if (TREE_CODE (array) == STRING_CST
|
||
&& TREE_CODE (index) == INTEGER_CST
|
||
&& !TREE_INT_CST_HIGH (index)
|
||
&& (i = TREE_INT_CST_LOW (index)) < TREE_STRING_LENGTH (array)
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_SIZE (mode) == 1)
|
||
return GEN_INT (TREE_STRING_POINTER (array)[i]);
|
||
|
||
/* If this is a constant index into a constant array,
|
||
just get the value from the array. Handle both the cases when
|
||
we have an explicit constructor and when our operand is a variable
|
||
that was declared const. */
|
||
|
||
if (TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array))
|
||
{
|
||
if (TREE_CODE (index) == INTEGER_CST
|
||
&& TREE_INT_CST_HIGH (index) == 0)
|
||
{
|
||
tree elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0));
|
||
|
||
i = TREE_INT_CST_LOW (index);
|
||
while (elem && i--)
|
||
elem = TREE_CHAIN (elem);
|
||
if (elem)
|
||
return expand_expr (fold (TREE_VALUE (elem)), target,
|
||
tmode, ro_modifier);
|
||
}
|
||
}
|
||
|
||
else if (optimize >= 1
|
||
&& TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
|
||
&& TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
|
||
&& TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK)
|
||
{
|
||
if (TREE_CODE (index) == INTEGER_CST)
|
||
{
|
||
tree init = DECL_INITIAL (array);
|
||
|
||
i = TREE_INT_CST_LOW (index);
|
||
if (TREE_CODE (init) == CONSTRUCTOR)
|
||
{
|
||
tree elem = CONSTRUCTOR_ELTS (init);
|
||
|
||
while (elem
|
||
&& !tree_int_cst_equal (TREE_PURPOSE (elem), index))
|
||
elem = TREE_CHAIN (elem);
|
||
if (elem)
|
||
return expand_expr (fold (TREE_VALUE (elem)), target,
|
||
tmode, ro_modifier);
|
||
}
|
||
else if (TREE_CODE (init) == STRING_CST
|
||
&& TREE_INT_CST_HIGH (index) == 0
|
||
&& (TREE_INT_CST_LOW (index)
|
||
< TREE_STRING_LENGTH (init)))
|
||
return (GEN_INT
|
||
(TREE_STRING_POINTER
|
||
(init)[TREE_INT_CST_LOW (index)]));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case COMPONENT_REF:
|
||
case BIT_FIELD_REF:
|
||
/* If the operand is a CONSTRUCTOR, we can just extract the
|
||
appropriate field if it is present. Don't do this if we have
|
||
already written the data since we want to refer to that copy
|
||
and varasm.c assumes that's what we'll do. */
|
||
if (code != ARRAY_REF
|
||
&& TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
|
||
&& TREE_CST_RTL (TREE_OPERAND (exp, 0)) == 0)
|
||
{
|
||
tree elt;
|
||
|
||
for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
|
||
elt = TREE_CHAIN (elt))
|
||
if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1)
|
||
/* We can normally use the value of the field in the
|
||
CONSTRUCTOR. However, if this is a bitfield in
|
||
an integral mode that we can fit in a HOST_WIDE_INT,
|
||
we must mask only the number of bits in the bitfield,
|
||
since this is done implicitly by the constructor. If
|
||
the bitfield does not meet either of those conditions,
|
||
we can't do this optimization. */
|
||
&& (! DECL_BIT_FIELD (TREE_PURPOSE (elt))
|
||
|| ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt)))
|
||
== MODE_INT)
|
||
&& (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt)))
|
||
<= HOST_BITS_PER_WIDE_INT))))
|
||
{
|
||
op0 = expand_expr (TREE_VALUE (elt), target, tmode, modifier);
|
||
if (DECL_BIT_FIELD (TREE_PURPOSE (elt)))
|
||
{
|
||
int bitsize = DECL_FIELD_SIZE (TREE_PURPOSE (elt));
|
||
|
||
if (TREE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt))))
|
||
{
|
||
op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
|
||
op0 = expand_and (op0, op1, target);
|
||
}
|
||
else
|
||
{
|
||
enum machine_mode imode
|
||
= TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt)));
|
||
tree count
|
||
= build_int_2 (GET_MODE_BITSIZE (imode) - bitsize,
|
||
0);
|
||
|
||
op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
|
||
target, 0);
|
||
op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
|
||
target, 0);
|
||
}
|
||
}
|
||
|
||
return op0;
|
||
}
|
||
}
|
||
|
||
{
|
||
enum machine_mode mode1;
|
||
int bitsize;
|
||
int bitpos;
|
||
tree offset;
|
||
int volatilep = 0;
|
||
int alignment;
|
||
tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
|
||
&mode1, &unsignedp, &volatilep,
|
||
&alignment);
|
||
|
||
/* If we got back the original object, something is wrong. Perhaps
|
||
we are evaluating an expression too early. In any event, don't
|
||
infinitely recurse. */
|
||
if (tem == exp)
|
||
abort ();
|
||
|
||
/* If TEM's type is a union of variable size, pass TARGET to the inner
|
||
computation, since it will need a temporary and TARGET is known
|
||
to have to do. This occurs in unchecked conversion in Ada. */
|
||
|
||
op0 = expand_expr (tem,
|
||
(TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
|
||
&& (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
|
||
!= INTEGER_CST)
|
||
? target : NULL_RTX),
|
||
VOIDmode,
|
||
modifier == EXPAND_INITIALIZER
|
||
? modifier : EXPAND_NORMAL);
|
||
|
||
/* If this is a constant, put it into a register if it is a
|
||
legitimate constant and memory if it isn't. */
|
||
if (CONSTANT_P (op0))
|
||
{
|
||
enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
|
||
if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0))
|
||
op0 = force_reg (mode, op0);
|
||
else
|
||
op0 = validize_mem (force_const_mem (mode, op0));
|
||
}
|
||
|
||
if (offset != 0)
|
||
{
|
||
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
|
||
|
||
if (GET_CODE (op0) != MEM)
|
||
abort ();
|
||
|
||
if (GET_MODE (offset_rtx) != ptr_mode)
|
||
{
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
|
||
#else
|
||
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
|
||
#endif
|
||
}
|
||
|
||
/* A constant address in TO_RTX can have VOIDmode, we must not try
|
||
to call force_reg for that case. Avoid that case. */
|
||
if (GET_CODE (op0) == MEM
|
||
&& GET_MODE (op0) == BLKmode
|
||
&& GET_MODE (XEXP (op0, 0)) != VOIDmode
|
||
&& bitsize
|
||
&& (bitpos % bitsize) == 0
|
||
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
|
||
&& (alignment * BITS_PER_UNIT) == GET_MODE_ALIGNMENT (mode1))
|
||
{
|
||
rtx temp = change_address (op0, mode1,
|
||
plus_constant (XEXP (op0, 0),
|
||
(bitpos /
|
||
BITS_PER_UNIT)));
|
||
if (GET_CODE (XEXP (temp, 0)) == REG)
|
||
op0 = temp;
|
||
else
|
||
op0 = change_address (op0, mode1,
|
||
force_reg (GET_MODE (XEXP (temp, 0)),
|
||
XEXP (temp, 0)));
|
||
bitpos = 0;
|
||
}
|
||
|
||
|
||
op0 = change_address (op0, VOIDmode,
|
||
gen_rtx_PLUS (ptr_mode, XEXP (op0, 0),
|
||
force_reg (ptr_mode, offset_rtx)));
|
||
}
|
||
|
||
/* Don't forget about volatility even if this is a bitfield. */
|
||
if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0))
|
||
{
|
||
op0 = copy_rtx (op0);
|
||
MEM_VOLATILE_P (op0) = 1;
|
||
}
|
||
|
||
/* Check the access. */
|
||
if (current_function && current_function_check_memory_usage
|
||
&& GET_CODE (op0) == MEM)
|
||
{
|
||
enum memory_use_mode memory_usage;
|
||
memory_usage = get_memory_usage_from_modifier (modifier);
|
||
|
||
if (memory_usage != MEMORY_USE_DONT)
|
||
{
|
||
rtx to;
|
||
int size;
|
||
|
||
to = plus_constant (XEXP (op0, 0), (bitpos / BITS_PER_UNIT));
|
||
size = (bitpos % BITS_PER_UNIT) + bitsize + BITS_PER_UNIT - 1;
|
||
|
||
/* Check the access right of the pointer. */
|
||
if (size > BITS_PER_UNIT)
|
||
emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
|
||
to, Pmode,
|
||
GEN_INT (size / BITS_PER_UNIT),
|
||
TYPE_MODE (sizetype),
|
||
GEN_INT (memory_usage),
|
||
TYPE_MODE (integer_type_node));
|
||
}
|
||
}
|
||
|
||
/* In cases where an aligned union has an unaligned object
|
||
as a field, we might be extracting a BLKmode value from
|
||
an integer-mode (e.g., SImode) object. Handle this case
|
||
by doing the extract into an object as wide as the field
|
||
(which we know to be the width of a basic mode), then
|
||
storing into memory, and changing the mode to BLKmode.
|
||
If we ultimately want the address (EXPAND_CONST_ADDRESS or
|
||
EXPAND_INITIALIZER), then we must not copy to a temporary. */
|
||
if (mode1 == VOIDmode
|
||
|| GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
|
||
|| (modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_INITIALIZER
|
||
&& ((mode1 != BLKmode && ! direct_load[(int) mode1]
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
|
||
/* If the field isn't aligned enough to fetch as a memref,
|
||
fetch it as a bit field. */
|
||
|| (SLOW_UNALIGNED_ACCESS
|
||
&& ((TYPE_ALIGN (TREE_TYPE (tem)) < (unsigned int) GET_MODE_ALIGNMENT (mode))
|
||
|| (bitpos % GET_MODE_ALIGNMENT (mode) != 0))))))
|
||
{
|
||
enum machine_mode ext_mode = mode;
|
||
|
||
if (ext_mode == BLKmode)
|
||
ext_mode = mode_for_size (bitsize, MODE_INT, 1);
|
||
|
||
if (ext_mode == BLKmode)
|
||
{
|
||
/* In this case, BITPOS must start at a byte boundary and
|
||
TARGET, if specified, must be a MEM. */
|
||
if (GET_CODE (op0) != MEM
|
||
|| (target != 0 && GET_CODE (target) != MEM)
|
||
|| bitpos % BITS_PER_UNIT != 0)
|
||
abort ();
|
||
|
||
op0 = change_address (op0, VOIDmode,
|
||
plus_constant (XEXP (op0, 0),
|
||
bitpos / BITS_PER_UNIT));
|
||
if (target == 0)
|
||
target = assign_temp (type, 0, 1, 1);
|
||
|
||
emit_block_move (target, op0,
|
||
GEN_INT ((bitsize + BITS_PER_UNIT - 1)
|
||
/ BITS_PER_UNIT),
|
||
1);
|
||
|
||
return target;
|
||
}
|
||
|
||
op0 = validize_mem (op0);
|
||
|
||
if (GET_CODE (op0) == MEM && GET_CODE (XEXP (op0, 0)) == REG)
|
||
mark_reg_pointer (XEXP (op0, 0), alignment);
|
||
|
||
op0 = extract_bit_field (op0, bitsize, bitpos,
|
||
unsignedp, target, ext_mode, ext_mode,
|
||
alignment,
|
||
int_size_in_bytes (TREE_TYPE (tem)));
|
||
|
||
/* If the result is a record type and BITSIZE is narrower than
|
||
the mode of OP0, an integral mode, and this is a big endian
|
||
machine, we must put the field into the high-order bits. */
|
||
if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
|
||
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
|
||
&& bitsize < GET_MODE_BITSIZE (GET_MODE (op0)))
|
||
op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
|
||
size_int (GET_MODE_BITSIZE (GET_MODE (op0))
|
||
- bitsize),
|
||
op0, 1);
|
||
|
||
if (mode == BLKmode)
|
||
{
|
||
rtx new = assign_stack_temp (ext_mode,
|
||
bitsize / BITS_PER_UNIT, 0);
|
||
|
||
emit_move_insn (new, op0);
|
||
op0 = copy_rtx (new);
|
||
PUT_MODE (op0, BLKmode);
|
||
MEM_SET_IN_STRUCT_P (op0, 1);
|
||
}
|
||
|
||
return op0;
|
||
}
|
||
|
||
/* If the result is BLKmode, use that to access the object
|
||
now as well. */
|
||
if (mode == BLKmode)
|
||
mode1 = BLKmode;
|
||
|
||
/* Get a reference to just this component. */
|
||
if (modifier == EXPAND_CONST_ADDRESS
|
||
|| modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
|
||
op0 = gen_rtx_MEM (mode1, plus_constant (XEXP (op0, 0),
|
||
(bitpos / BITS_PER_UNIT)));
|
||
else
|
||
op0 = change_address (op0, mode1,
|
||
plus_constant (XEXP (op0, 0),
|
||
(bitpos / BITS_PER_UNIT)));
|
||
|
||
if (GET_CODE (op0) == MEM)
|
||
MEM_ALIAS_SET (op0) = get_alias_set (exp);
|
||
|
||
if (GET_CODE (XEXP (op0, 0)) == REG)
|
||
mark_reg_pointer (XEXP (op0, 0), alignment);
|
||
|
||
MEM_SET_IN_STRUCT_P (op0, 1);
|
||
MEM_VOLATILE_P (op0) |= volatilep;
|
||
if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
|
||
|| modifier == EXPAND_CONST_ADDRESS
|
||
|| modifier == EXPAND_INITIALIZER)
|
||
return op0;
|
||
else if (target == 0)
|
||
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
|
||
|
||
convert_move (target, op0, unsignedp);
|
||
return target;
|
||
}
|
||
|
||
/* Intended for a reference to a buffer of a file-object in Pascal.
|
||
But it's not certain that a special tree code will really be
|
||
necessary for these. INDIRECT_REF might work for them. */
|
||
case BUFFER_REF:
|
||
abort ();
|
||
|
||
case IN_EXPR:
|
||
{
|
||
/* Pascal set IN expression.
|
||
|
||
Algorithm:
|
||
rlo = set_low - (set_low%bits_per_word);
|
||
the_word = set [ (index - rlo)/bits_per_word ];
|
||
bit_index = index % bits_per_word;
|
||
bitmask = 1 << bit_index;
|
||
return !!(the_word & bitmask); */
|
||
|
||
tree set = TREE_OPERAND (exp, 0);
|
||
tree index = TREE_OPERAND (exp, 1);
|
||
int iunsignedp = TREE_UNSIGNED (TREE_TYPE (index));
|
||
tree set_type = TREE_TYPE (set);
|
||
tree set_low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (set_type));
|
||
tree set_high_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (set_type));
|
||
rtx index_val = expand_expr (index, 0, VOIDmode, 0);
|
||
rtx lo_r = expand_expr (set_low_bound, 0, VOIDmode, 0);
|
||
rtx hi_r = expand_expr (set_high_bound, 0, VOIDmode, 0);
|
||
rtx setval = expand_expr (set, 0, VOIDmode, 0);
|
||
rtx setaddr = XEXP (setval, 0);
|
||
enum machine_mode index_mode = TYPE_MODE (TREE_TYPE (index));
|
||
rtx rlow;
|
||
rtx diff, quo, rem, addr, bit, result;
|
||
|
||
preexpand_calls (exp);
|
||
|
||
/* If domain is empty, answer is no. Likewise if index is constant
|
||
and out of bounds. */
|
||
if (((TREE_CODE (set_high_bound) == INTEGER_CST
|
||
&& TREE_CODE (set_low_bound) == INTEGER_CST
|
||
&& tree_int_cst_lt (set_high_bound, set_low_bound))
|
||
|| (TREE_CODE (index) == INTEGER_CST
|
||
&& TREE_CODE (set_low_bound) == INTEGER_CST
|
||
&& tree_int_cst_lt (index, set_low_bound))
|
||
|| (TREE_CODE (set_high_bound) == INTEGER_CST
|
||
&& TREE_CODE (index) == INTEGER_CST
|
||
&& tree_int_cst_lt (set_high_bound, index))))
|
||
return const0_rtx;
|
||
|
||
if (target == 0)
|
||
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
|
||
|
||
/* If we get here, we have to generate the code for both cases
|
||
(in range and out of range). */
|
||
|
||
op0 = gen_label_rtx ();
|
||
op1 = gen_label_rtx ();
|
||
|
||
if (! (GET_CODE (index_val) == CONST_INT
|
||
&& GET_CODE (lo_r) == CONST_INT))
|
||
{
|
||
emit_cmp_and_jump_insns (index_val, lo_r, LT, NULL_RTX,
|
||
GET_MODE (index_val), iunsignedp, 0, op1);
|
||
}
|
||
|
||
if (! (GET_CODE (index_val) == CONST_INT
|
||
&& GET_CODE (hi_r) == CONST_INT))
|
||
{
|
||
emit_cmp_and_jump_insns (index_val, hi_r, GT, NULL_RTX,
|
||
GET_MODE (index_val), iunsignedp, 0, op1);
|
||
}
|
||
|
||
/* Calculate the element number of bit zero in the first word
|
||
of the set. */
|
||
if (GET_CODE (lo_r) == CONST_INT)
|
||
rlow = GEN_INT (INTVAL (lo_r)
|
||
& ~ ((HOST_WIDE_INT) 1 << BITS_PER_UNIT));
|
||
else
|
||
rlow = expand_binop (index_mode, and_optab, lo_r,
|
||
GEN_INT (~((HOST_WIDE_INT) 1 << BITS_PER_UNIT)),
|
||
NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
|
||
|
||
diff = expand_binop (index_mode, sub_optab, index_val, rlow,
|
||
NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
|
||
|
||
quo = expand_divmod (0, TRUNC_DIV_EXPR, index_mode, diff,
|
||
GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
|
||
rem = expand_divmod (1, TRUNC_MOD_EXPR, index_mode, index_val,
|
||
GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
|
||
|
||
addr = memory_address (byte_mode,
|
||
expand_binop (index_mode, add_optab, diff,
|
||
setaddr, NULL_RTX, iunsignedp,
|
||
OPTAB_LIB_WIDEN));
|
||
|
||
/* Extract the bit we want to examine */
|
||
bit = expand_shift (RSHIFT_EXPR, byte_mode,
|
||
gen_rtx_MEM (byte_mode, addr),
|
||
make_tree (TREE_TYPE (index), rem),
|
||
NULL_RTX, 1);
|
||
result = expand_binop (byte_mode, and_optab, bit, const1_rtx,
|
||
GET_MODE (target) == byte_mode ? target : 0,
|
||
1, OPTAB_LIB_WIDEN);
|
||
|
||
if (result != target)
|
||
convert_move (target, result, 1);
|
||
|
||
/* Output the code to handle the out-of-range case. */
|
||
emit_jump (op0);
|
||
emit_label (op1);
|
||
emit_move_insn (target, const0_rtx);
|
||
emit_label (op0);
|
||
return target;
|
||
}
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
if (RTL_EXPR_RTL (exp) == 0)
|
||
{
|
||
RTL_EXPR_RTL (exp)
|
||
= expand_expr (TREE_OPERAND (exp, 0), target, tmode, ro_modifier);
|
||
expand_decl_cleanup (NULL_TREE, TREE_OPERAND (exp, 2));
|
||
|
||
/* That's it for this cleanup. */
|
||
TREE_OPERAND (exp, 2) = 0;
|
||
}
|
||
return RTL_EXPR_RTL (exp);
|
||
|
||
case CLEANUP_POINT_EXPR:
|
||
{
|
||
/* Start a new binding layer that will keep track of all cleanup
|
||
actions to be performed. */
|
||
expand_start_bindings (0);
|
||
|
||
target_temp_slot_level = temp_slot_level;
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), target, tmode, ro_modifier);
|
||
/* If we're going to use this value, load it up now. */
|
||
if (! ignore)
|
||
op0 = force_not_mem (op0);
|
||
preserve_temp_slots (op0);
|
||
expand_end_bindings (NULL_TREE, 0, 0);
|
||
}
|
||
return op0;
|
||
|
||
case CALL_EXPR:
|
||
/* Check for a built-in function. */
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== FUNCTION_DECL)
|
||
&& DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
||
return expand_builtin (exp, target, subtarget, tmode, ignore);
|
||
|
||
/* If this call was expanded already by preexpand_calls,
|
||
just return the result we got. */
|
||
if (CALL_EXPR_RTL (exp) != 0)
|
||
return CALL_EXPR_RTL (exp);
|
||
|
||
return expand_call (exp, target, ignore);
|
||
|
||
case NON_LVALUE_EXPR:
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
case REFERENCE_EXPR:
|
||
if (TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
if (target == 0)
|
||
{
|
||
if (mode != BLKmode)
|
||
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
|
||
else
|
||
target = assign_temp (type, 0, 1, 1);
|
||
}
|
||
|
||
if (GET_CODE (target) == MEM)
|
||
/* Store data into beginning of memory target. */
|
||
store_expr (TREE_OPERAND (exp, 0),
|
||
change_address (target, TYPE_MODE (valtype), 0), 0);
|
||
|
||
else if (GET_CODE (target) == REG)
|
||
/* Store this field into a union of the proper type. */
|
||
store_field (target, GET_MODE_BITSIZE (TYPE_MODE (valtype)), 0,
|
||
TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
|
||
VOIDmode, 0, 1,
|
||
int_size_in_bytes (TREE_TYPE (TREE_OPERAND (exp, 0))),
|
||
0);
|
||
else
|
||
abort ();
|
||
|
||
/* Return the entire union. */
|
||
return target;
|
||
}
|
||
|
||
if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
{
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
|
||
ro_modifier);
|
||
|
||
/* If the signedness of the conversion differs and OP0 is
|
||
a promoted SUBREG, clear that indication since we now
|
||
have to do the proper extension. */
|
||
if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
|
||
&& GET_CODE (op0) == SUBREG)
|
||
SUBREG_PROMOTED_VAR_P (op0) = 0;
|
||
|
||
return op0;
|
||
}
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, 0);
|
||
if (GET_MODE (op0) == mode)
|
||
return op0;
|
||
|
||
/* If OP0 is a constant, just convert it into the proper mode. */
|
||
if (CONSTANT_P (op0))
|
||
return
|
||
convert_modes (mode, TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
|
||
op0, TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
||
|
||
if (modifier == EXPAND_INITIALIZER)
|
||
return gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
|
||
|
||
if (target == 0)
|
||
return
|
||
convert_to_mode (mode, op0,
|
||
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
||
else
|
||
convert_move (target, op0,
|
||
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
||
return target;
|
||
|
||
case PLUS_EXPR:
|
||
/* We come here from MINUS_EXPR when the second operand is a
|
||
constant. */
|
||
plus_expr:
|
||
this_optab = add_optab;
|
||
|
||
/* If we are adding a constant, an RTL_EXPR that is sp, fp, or ap, and
|
||
something else, make sure we add the register to the constant and
|
||
then to the other thing. This case can occur during strength
|
||
reduction and doing it this way will produce better code if the
|
||
frame pointer or argument pointer is eliminated.
|
||
|
||
fold-const.c will ensure that the constant is always in the inner
|
||
PLUS_EXPR, so the only case we need to do anything about is if
|
||
sp, ap, or fp is our second argument, in which case we must swap
|
||
the innermost first argument and our second argument. */
|
||
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
|
||
&& TREE_CODE (TREE_OPERAND (exp, 1)) == RTL_EXPR
|
||
&& (RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
|
||
|| RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
|
||
|| RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
|
||
{
|
||
tree t = TREE_OPERAND (exp, 1);
|
||
|
||
TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
||
TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
|
||
}
|
||
|
||
/* If the result is to be ptr_mode and we are adding an integer to
|
||
something, we might be forming a constant. So try to use
|
||
plus_constant. If it produces a sum and we can't accept it,
|
||
use force_operand. This allows P = &ARR[const] to generate
|
||
efficient code on machines where a SYMBOL_REF is not a valid
|
||
address.
|
||
|
||
If this is an EXPAND_SUM call, always return the sum. */
|
||
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
|
||
|| mode == ptr_mode)
|
||
{
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& TREE_CONSTANT (TREE_OPERAND (exp, 1)))
|
||
{
|
||
rtx constant_part;
|
||
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
|
||
EXPAND_SUM);
|
||
/* Use immed_double_const to ensure that the constant is
|
||
truncated according to the mode of OP1, then sign extended
|
||
to a HOST_WIDE_INT. Using the constant directly can result
|
||
in non-canonical RTL in a 64x32 cross compile. */
|
||
constant_part
|
||
= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
|
||
(HOST_WIDE_INT) 0,
|
||
TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
|
||
op1 = plus_constant (op1, INTVAL (constant_part));
|
||
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
||
op1 = force_operand (op1, target);
|
||
return op1;
|
||
}
|
||
|
||
else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
|
||
&& TREE_CONSTANT (TREE_OPERAND (exp, 0)))
|
||
{
|
||
rtx constant_part;
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
|
||
EXPAND_SUM);
|
||
if (! CONSTANT_P (op0))
|
||
{
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
|
||
VOIDmode, modifier);
|
||
/* Don't go to both_summands if modifier
|
||
says it's not right to return a PLUS. */
|
||
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
||
goto binop2;
|
||
goto both_summands;
|
||
}
|
||
/* Use immed_double_const to ensure that the constant is
|
||
truncated according to the mode of OP1, then sign extended
|
||
to a HOST_WIDE_INT. Using the constant directly can result
|
||
in non-canonical RTL in a 64x32 cross compile. */
|
||
constant_part
|
||
= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
|
||
(HOST_WIDE_INT) 0,
|
||
TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
||
op0 = plus_constant (op0, INTVAL (constant_part));
|
||
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
||
op0 = force_operand (op0, target);
|
||
return op0;
|
||
}
|
||
}
|
||
|
||
/* No sense saving up arithmetic to be done
|
||
if it's all in the wrong mode to form part of an address.
|
||
And force_operand won't know whether to sign-extend or
|
||
zero-extend. */
|
||
if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
||
|| mode != ptr_mode)
|
||
goto binop;
|
||
|
||
preexpand_calls (exp);
|
||
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
|
||
subtarget = 0;
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, ro_modifier);
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, ro_modifier);
|
||
|
||
both_summands:
|
||
/* Make sure any term that's a sum with a constant comes last. */
|
||
if (GET_CODE (op0) == PLUS
|
||
&& CONSTANT_P (XEXP (op0, 1)))
|
||
{
|
||
temp = op0;
|
||
op0 = op1;
|
||
op1 = temp;
|
||
}
|
||
/* If adding to a sum including a constant,
|
||
associate it to put the constant outside. */
|
||
if (GET_CODE (op1) == PLUS
|
||
&& CONSTANT_P (XEXP (op1, 1)))
|
||
{
|
||
rtx constant_term = const0_rtx;
|
||
|
||
temp = simplify_binary_operation (PLUS, mode, XEXP (op1, 0), op0);
|
||
if (temp != 0)
|
||
op0 = temp;
|
||
/* Ensure that MULT comes first if there is one. */
|
||
else if (GET_CODE (op0) == MULT)
|
||
op0 = gen_rtx_PLUS (mode, op0, XEXP (op1, 0));
|
||
else
|
||
op0 = gen_rtx_PLUS (mode, XEXP (op1, 0), op0);
|
||
|
||
/* Let's also eliminate constants from op0 if possible. */
|
||
op0 = eliminate_constant_term (op0, &constant_term);
|
||
|
||
/* CONSTANT_TERM and XEXP (op1, 1) are known to be constant, so
|
||
their sum should be a constant. Form it into OP1, since the
|
||
result we want will then be OP0 + OP1. */
|
||
|
||
temp = simplify_binary_operation (PLUS, mode, constant_term,
|
||
XEXP (op1, 1));
|
||
if (temp != 0)
|
||
op1 = temp;
|
||
else
|
||
op1 = gen_rtx_PLUS (mode, constant_term, XEXP (op1, 1));
|
||
}
|
||
|
||
/* Put a constant term last and put a multiplication first. */
|
||
if (CONSTANT_P (op0) || GET_CODE (op1) == MULT)
|
||
temp = op1, op1 = op0, op0 = temp;
|
||
|
||
temp = simplify_binary_operation (PLUS, mode, op0, op1);
|
||
return temp ? temp : gen_rtx_PLUS (mode, op0, op1);
|
||
|
||
case MINUS_EXPR:
|
||
/* For initializers, we are allowed to return a MINUS of two
|
||
symbolic constants. Here we handle all cases when both operands
|
||
are constant. */
|
||
/* Handle difference of two symbolic constants,
|
||
for the sake of an initializer. */
|
||
if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
|
||
&& really_constant_p (TREE_OPERAND (exp, 0))
|
||
&& really_constant_p (TREE_OPERAND (exp, 1)))
|
||
{
|
||
rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX,
|
||
VOIDmode, ro_modifier);
|
||
rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
|
||
VOIDmode, ro_modifier);
|
||
|
||
/* If the last operand is a CONST_INT, use plus_constant of
|
||
the negated constant. Else make the MINUS. */
|
||
if (GET_CODE (op1) == CONST_INT)
|
||
return plus_constant (op0, - INTVAL (op1));
|
||
else
|
||
return gen_rtx_MINUS (mode, op0, op1);
|
||
}
|
||
/* Convert A - const to A + (-const). */
|
||
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
|
||
{
|
||
tree negated = fold (build1 (NEGATE_EXPR, type,
|
||
TREE_OPERAND (exp, 1)));
|
||
|
||
/* Deal with the case where we can't negate the constant
|
||
in TYPE. */
|
||
if (TREE_UNSIGNED (type) || TREE_OVERFLOW (negated))
|
||
{
|
||
tree newtype = signed_type (type);
|
||
tree newop0 = convert (newtype, TREE_OPERAND (exp, 0));
|
||
tree newop1 = convert (newtype, TREE_OPERAND (exp, 1));
|
||
tree newneg = fold (build1 (NEGATE_EXPR, newtype, newop1));
|
||
|
||
if (! TREE_OVERFLOW (newneg))
|
||
return expand_expr (convert (type,
|
||
build (PLUS_EXPR, newtype,
|
||
newop0, newneg)),
|
||
target, tmode, ro_modifier);
|
||
}
|
||
else
|
||
{
|
||
exp = build (PLUS_EXPR, type, TREE_OPERAND (exp, 0), negated);
|
||
goto plus_expr;
|
||
}
|
||
}
|
||
this_optab = sub_optab;
|
||
goto binop;
|
||
|
||
case MULT_EXPR:
|
||
preexpand_calls (exp);
|
||
/* If first operand is constant, swap them.
|
||
Thus the following special case checks need only
|
||
check the second operand. */
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
|
||
{
|
||
register tree t1 = TREE_OPERAND (exp, 0);
|
||
TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
|
||
TREE_OPERAND (exp, 1) = t1;
|
||
}
|
||
|
||
/* Attempt to return something suitable for generating an
|
||
indexed address, for machines that support that. */
|
||
|
||
if (modifier == EXPAND_SUM && mode == ptr_mode
|
||
&& TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
|
||
EXPAND_SUM);
|
||
|
||
/* Apply distributive law if OP0 is x+c. */
|
||
if (GET_CODE (op0) == PLUS
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT)
|
||
return gen_rtx_PLUS (mode,
|
||
gen_rtx_MULT (mode, XEXP (op0, 0),
|
||
GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)))),
|
||
GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))
|
||
* INTVAL (XEXP (op0, 1))));
|
||
|
||
if (GET_CODE (op0) != REG)
|
||
op0 = force_operand (op0, NULL_RTX);
|
||
if (GET_CODE (op0) != REG)
|
||
op0 = copy_to_mode_reg (mode, op0);
|
||
|
||
return gen_rtx_MULT (mode, op0,
|
||
GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))));
|
||
}
|
||
|
||
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
|
||
subtarget = 0;
|
||
|
||
/* Check for multiplying things that have been extended
|
||
from a narrower type. If this machine supports multiplying
|
||
in that narrower type with a result in the desired type,
|
||
do it that way, and avoid the explicit type-conversion. */
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
||
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
&& ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
|
||
&& int_fits_type_p (TREE_OPERAND (exp, 1),
|
||
TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
||
/* Don't use a widening multiply if a shift will do. */
|
||
&& ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
|
||
> HOST_BITS_PER_WIDE_INT)
|
||
|| exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
|
||
||
|
||
(TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
|
||
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
|
||
==
|
||
TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))
|
||
/* If both operands are extended, they must either both
|
||
be zero-extended or both be sign-extended. */
|
||
&& (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
|
||
==
|
||
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))))))
|
||
{
|
||
enum machine_mode innermode
|
||
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)));
|
||
optab other_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
||
? smul_widen_optab : umul_widen_optab);
|
||
this_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
||
? umul_widen_optab : smul_widen_optab);
|
||
if (mode == GET_MODE_WIDER_MODE (innermode))
|
||
{
|
||
if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
||
NULL_RTX, VOIDmode, 0);
|
||
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
|
||
VOIDmode, 0);
|
||
else
|
||
op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
|
||
NULL_RTX, VOIDmode, 0);
|
||
goto binop2;
|
||
}
|
||
else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
|
||
&& innermode == word_mode)
|
||
{
|
||
rtx htem;
|
||
op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
||
NULL_RTX, VOIDmode, 0);
|
||
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
|
||
VOIDmode, 0);
|
||
else
|
||
op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
|
||
NULL_RTX, VOIDmode, 0);
|
||
temp = expand_binop (mode, other_optab, op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
htem = expand_mult_highpart_adjust (innermode,
|
||
gen_highpart (innermode, temp),
|
||
op0, op1,
|
||
gen_highpart (innermode, temp),
|
||
unsignedp);
|
||
emit_move_insn (gen_highpart (innermode, temp), htem);
|
||
return temp;
|
||
}
|
||
}
|
||
}
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
|
||
return expand_mult (mode, op0, op1, target, unsignedp);
|
||
|
||
case TRUNC_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
preexpand_calls (exp);
|
||
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
|
||
subtarget = 0;
|
||
/* Possible optimization: compute the dividend with EXPAND_SUM
|
||
then if the divisor is constant can optimize the case
|
||
where some terms of the dividend have coeffs divisible by it. */
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
|
||
return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
|
||
|
||
case RDIV_EXPR:
|
||
this_optab = flodiv_optab;
|
||
goto binop;
|
||
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
preexpand_calls (exp);
|
||
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
|
||
subtarget = 0;
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
|
||
return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
|
||
|
||
case FIX_ROUND_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
abort (); /* Not used for C. */
|
||
|
||
case FIX_TRUNC_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
expand_fix (target, op0, unsignedp);
|
||
return target;
|
||
|
||
case FLOAT_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
/* expand_float can't figure out what to do if FROM has VOIDmode.
|
||
So give it the correct mode. With -O, cse will optimize this. */
|
||
if (GET_MODE (op0) == VOIDmode)
|
||
op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
|
||
op0);
|
||
expand_float (target, op0,
|
||
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
||
return target;
|
||
|
||
case NEGATE_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
temp = expand_unop (mode, neg_optab, op0, target, 0);
|
||
if (temp == 0)
|
||
abort ();
|
||
return temp;
|
||
|
||
case ABS_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
|
||
/* Handle complex values specially. */
|
||
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
|
||
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
return expand_complex_abs (mode, op0, target, unsignedp);
|
||
|
||
/* Unsigned abs is simply the operand. Testing here means we don't
|
||
risk generating incorrect code below. */
|
||
if (TREE_UNSIGNED (type))
|
||
return op0;
|
||
|
||
return expand_abs (mode, op0, target,
|
||
safe_from_p (target, TREE_OPERAND (exp, 0), 1));
|
||
|
||
case MAX_EXPR:
|
||
case MIN_EXPR:
|
||
target = original_target;
|
||
if (target == 0 || ! safe_from_p (target, TREE_OPERAND (exp, 1), 1)
|
||
|| (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
|
||
|| GET_MODE (target) != mode
|
||
|| (GET_CODE (target) == REG
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
|
||
target = gen_reg_rtx (mode);
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
|
||
|
||
/* First try to do it with a special MIN or MAX instruction.
|
||
If that does not win, use a conditional jump to select the proper
|
||
value. */
|
||
this_optab = (TREE_UNSIGNED (type)
|
||
? (code == MIN_EXPR ? umin_optab : umax_optab)
|
||
: (code == MIN_EXPR ? smin_optab : smax_optab));
|
||
|
||
temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
|
||
OPTAB_WIDEN);
|
||
if (temp != 0)
|
||
return temp;
|
||
|
||
/* At this point, a MEM target is no longer useful; we will get better
|
||
code without it. */
|
||
|
||
if (GET_CODE (target) == MEM)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
if (target != op0)
|
||
emit_move_insn (target, op0);
|
||
|
||
op0 = gen_label_rtx ();
|
||
|
||
/* If this mode is an integer too wide to compare properly,
|
||
compare word by word. Rely on cse to optimize constant cases. */
|
||
if (GET_MODE_CLASS (mode) == MODE_INT && ! can_compare_p (mode))
|
||
{
|
||
if (code == MAX_EXPR)
|
||
do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
|
||
target, op1, NULL_RTX, op0);
|
||
else
|
||
do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
|
||
op1, target, NULL_RTX, op0);
|
||
}
|
||
else
|
||
{
|
||
int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1)));
|
||
do_compare_rtx_and_jump (target, op1, code == MAX_EXPR ? GE : LE,
|
||
unsignedp, mode, NULL_RTX, 0, NULL_RTX,
|
||
op0);
|
||
}
|
||
emit_move_insn (target, op1);
|
||
emit_label (op0);
|
||
return target;
|
||
|
||
case BIT_NOT_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
|
||
if (temp == 0)
|
||
abort ();
|
||
return temp;
|
||
|
||
case FFS_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
temp = expand_unop (mode, ffs_optab, op0, target, 1);
|
||
if (temp == 0)
|
||
abort ();
|
||
return temp;
|
||
|
||
/* ??? Can optimize bitwise operations with one arg constant.
|
||
Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
|
||
and (a bitwise1 b) bitwise2 b (etc)
|
||
but that is probably not worth while. */
|
||
|
||
/* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
|
||
boolean values when we want in all cases to compute both of them. In
|
||
general it is fastest to do TRUTH_AND_EXPR by computing both operands
|
||
as actual zero-or-1 values and then bitwise anding. In cases where
|
||
there cannot be any side effects, better code would be made by
|
||
treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
|
||
how to recognize those cases. */
|
||
|
||
case TRUTH_AND_EXPR:
|
||
case BIT_AND_EXPR:
|
||
this_optab = and_optab;
|
||
goto binop;
|
||
|
||
case TRUTH_OR_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
this_optab = ior_optab;
|
||
goto binop;
|
||
|
||
case TRUTH_XOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
this_optab = xor_optab;
|
||
goto binop;
|
||
|
||
case LSHIFT_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
preexpand_calls (exp);
|
||
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
|
||
subtarget = 0;
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
|
||
unsignedp);
|
||
|
||
/* Could determine the answer when only additive constants differ. Also,
|
||
the addition of one can be handled by changing the condition. */
|
||
case LT_EXPR:
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
case GE_EXPR:
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
preexpand_calls (exp);
|
||
temp = do_store_flag (exp, target, tmode != VOIDmode ? tmode : mode, 0);
|
||
if (temp != 0)
|
||
return temp;
|
||
|
||
/* For foo != 0, load foo, and if it is nonzero load 1 instead. */
|
||
if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
|
||
&& original_target
|
||
&& GET_CODE (original_target) == REG
|
||
&& (GET_MODE (original_target)
|
||
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
||
{
|
||
temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
|
||
VOIDmode, 0);
|
||
|
||
if (temp != original_target)
|
||
temp = copy_to_reg (temp);
|
||
|
||
op1 = gen_label_rtx ();
|
||
emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
|
||
GET_MODE (temp), unsignedp, 0, op1);
|
||
emit_move_insn (temp, const1_rtx);
|
||
emit_label (op1);
|
||
return temp;
|
||
}
|
||
|
||
/* If no set-flag instruction, must generate a conditional
|
||
store into a temporary variable. Drop through
|
||
and handle this like && and ||. */
|
||
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
if (! ignore
|
||
&& (target == 0 || ! safe_from_p (target, exp, 1)
|
||
/* Make sure we don't have a hard reg (such as function's return
|
||
value) live across basic blocks, if not optimizing. */
|
||
|| (!optimize && GET_CODE (target) == REG
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER)))
|
||
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
|
||
|
||
if (target)
|
||
emit_clr_insn (target);
|
||
|
||
op1 = gen_label_rtx ();
|
||
jumpifnot (exp, op1);
|
||
|
||
if (target)
|
||
emit_0_to_1_insn (target);
|
||
|
||
emit_label (op1);
|
||
return ignore ? const0_rtx : target;
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
|
||
/* The parser is careful to generate TRUTH_NOT_EXPR
|
||
only with operands that are always zero or one. */
|
||
temp = expand_binop (mode, xor_optab, op0, const1_rtx,
|
||
target, 1, OPTAB_LIB_WIDEN);
|
||
if (temp == 0)
|
||
abort ();
|
||
return temp;
|
||
|
||
case COMPOUND_EXPR:
|
||
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
|
||
emit_queue ();
|
||
return expand_expr (TREE_OPERAND (exp, 1),
|
||
(ignore ? const0_rtx : target),
|
||
VOIDmode, 0);
|
||
|
||
case COND_EXPR:
|
||
/* If we would have a "singleton" (see below) were it not for a
|
||
conversion in each arm, bring that conversion back out. */
|
||
if (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (exp, 2)) == NOP_EXPR
|
||
&& (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0))
|
||
== TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 2), 0))))
|
||
{
|
||
tree true = TREE_OPERAND (TREE_OPERAND (exp, 1), 0);
|
||
tree false = TREE_OPERAND (TREE_OPERAND (exp, 2), 0);
|
||
|
||
if ((TREE_CODE_CLASS (TREE_CODE (true)) == '2'
|
||
&& operand_equal_p (false, TREE_OPERAND (true, 0), 0))
|
||
|| (TREE_CODE_CLASS (TREE_CODE (false)) == '2'
|
||
&& operand_equal_p (true, TREE_OPERAND (false, 0), 0))
|
||
|| (TREE_CODE_CLASS (TREE_CODE (true)) == '1'
|
||
&& operand_equal_p (false, TREE_OPERAND (true, 0), 0))
|
||
|| (TREE_CODE_CLASS (TREE_CODE (false)) == '1'
|
||
&& operand_equal_p (true, TREE_OPERAND (false, 0), 0)))
|
||
return expand_expr (build1 (NOP_EXPR, type,
|
||
build (COND_EXPR, TREE_TYPE (true),
|
||
TREE_OPERAND (exp, 0),
|
||
true, false)),
|
||
target, tmode, modifier);
|
||
}
|
||
|
||
{
|
||
/* Note that COND_EXPRs whose type is a structure or union
|
||
are required to be constructed to contain assignments of
|
||
a temporary variable, so that we can evaluate them here
|
||
for side effect only. If type is void, we must do likewise. */
|
||
|
||
/* If an arm of the branch requires a cleanup,
|
||
only that cleanup is performed. */
|
||
|
||
tree singleton = 0;
|
||
tree binary_op = 0, unary_op = 0;
|
||
|
||
/* If this is (A ? 1 : 0) and A is a condition, just evaluate it and
|
||
convert it to our mode, if necessary. */
|
||
if (integer_onep (TREE_OPERAND (exp, 1))
|
||
&& integer_zerop (TREE_OPERAND (exp, 2))
|
||
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
|
||
{
|
||
if (ignore)
|
||
{
|
||
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
|
||
ro_modifier);
|
||
return const0_rtx;
|
||
}
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), target, mode, ro_modifier);
|
||
if (GET_MODE (op0) == mode)
|
||
return op0;
|
||
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, op0, unsignedp);
|
||
return target;
|
||
}
|
||
|
||
/* Check for X ? A + B : A. If we have this, we can copy A to the
|
||
output and conditionally add B. Similarly for unary operations.
|
||
Don't do this if X has side-effects because those side effects
|
||
might affect A or B and the "?" operation is a sequence point in
|
||
ANSI. (operand_equal_p tests for side effects.) */
|
||
|
||
if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '2'
|
||
&& operand_equal_p (TREE_OPERAND (exp, 2),
|
||
TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
|
||
singleton = TREE_OPERAND (exp, 2), binary_op = TREE_OPERAND (exp, 1);
|
||
else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '2'
|
||
&& operand_equal_p (TREE_OPERAND (exp, 1),
|
||
TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
|
||
singleton = TREE_OPERAND (exp, 1), binary_op = TREE_OPERAND (exp, 2);
|
||
else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '1'
|
||
&& operand_equal_p (TREE_OPERAND (exp, 2),
|
||
TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
|
||
singleton = TREE_OPERAND (exp, 2), unary_op = TREE_OPERAND (exp, 1);
|
||
else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '1'
|
||
&& operand_equal_p (TREE_OPERAND (exp, 1),
|
||
TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
|
||
singleton = TREE_OPERAND (exp, 1), unary_op = TREE_OPERAND (exp, 2);
|
||
|
||
/* If we are not to produce a result, we have no target. Otherwise,
|
||
if a target was specified use it; it will not be used as an
|
||
intermediate target unless it is safe. If no target, use a
|
||
temporary. */
|
||
|
||
if (ignore)
|
||
temp = 0;
|
||
else if (original_target
|
||
&& (safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
|
||
|| (singleton && GET_CODE (original_target) == REG
|
||
&& REGNO (original_target) >= FIRST_PSEUDO_REGISTER
|
||
&& original_target == var_rtx (singleton)))
|
||
&& GET_MODE (original_target) == mode
|
||
#ifdef HAVE_conditional_move
|
||
&& (! can_conditionally_move_p (mode)
|
||
|| GET_CODE (original_target) == REG
|
||
|| TREE_ADDRESSABLE (type))
|
||
#endif
|
||
&& ! (GET_CODE (original_target) == MEM
|
||
&& MEM_VOLATILE_P (original_target)))
|
||
temp = original_target;
|
||
else if (TREE_ADDRESSABLE (type))
|
||
abort ();
|
||
else
|
||
temp = assign_temp (type, 0, 0, 1);
|
||
|
||
/* If we had X ? A + C : A, with C a constant power of 2, and we can
|
||
do the test of X as a store-flag operation, do this as
|
||
A + ((X != 0) << log C). Similarly for other simple binary
|
||
operators. Only do for C == 1 if BRANCH_COST is low. */
|
||
if (temp && singleton && binary_op
|
||
&& (TREE_CODE (binary_op) == PLUS_EXPR
|
||
|| TREE_CODE (binary_op) == MINUS_EXPR
|
||
|| TREE_CODE (binary_op) == BIT_IOR_EXPR
|
||
|| TREE_CODE (binary_op) == BIT_XOR_EXPR)
|
||
&& (BRANCH_COST >= 3 ? integer_pow2p (TREE_OPERAND (binary_op, 1))
|
||
: integer_onep (TREE_OPERAND (binary_op, 1)))
|
||
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
|
||
{
|
||
rtx result;
|
||
optab boptab = (TREE_CODE (binary_op) == PLUS_EXPR ? add_optab
|
||
: TREE_CODE (binary_op) == MINUS_EXPR ? sub_optab
|
||
: TREE_CODE (binary_op) == BIT_IOR_EXPR ? ior_optab
|
||
: xor_optab);
|
||
|
||
/* If we had X ? A : A + 1, do this as A + (X == 0).
|
||
|
||
We have to invert the truth value here and then put it
|
||
back later if do_store_flag fails. We cannot simply copy
|
||
TREE_OPERAND (exp, 0) to another variable and modify that
|
||
because invert_truthvalue can modify the tree pointed to
|
||
by its argument. */
|
||
if (singleton == TREE_OPERAND (exp, 1))
|
||
TREE_OPERAND (exp, 0)
|
||
= invert_truthvalue (TREE_OPERAND (exp, 0));
|
||
|
||
result = do_store_flag (TREE_OPERAND (exp, 0),
|
||
(safe_from_p (temp, singleton, 1)
|
||
? temp : NULL_RTX),
|
||
mode, BRANCH_COST <= 1);
|
||
|
||
if (result != 0 && ! integer_onep (TREE_OPERAND (binary_op, 1)))
|
||
result = expand_shift (LSHIFT_EXPR, mode, result,
|
||
build_int_2 (tree_log2
|
||
(TREE_OPERAND
|
||
(binary_op, 1)),
|
||
0),
|
||
(safe_from_p (temp, singleton, 1)
|
||
? temp : NULL_RTX), 0);
|
||
|
||
if (result)
|
||
{
|
||
op1 = expand_expr (singleton, NULL_RTX, VOIDmode, 0);
|
||
return expand_binop (mode, boptab, op1, result, temp,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
}
|
||
else if (singleton == TREE_OPERAND (exp, 1))
|
||
TREE_OPERAND (exp, 0)
|
||
= invert_truthvalue (TREE_OPERAND (exp, 0));
|
||
}
|
||
|
||
do_pending_stack_adjust ();
|
||
NO_DEFER_POP;
|
||
op0 = gen_label_rtx ();
|
||
|
||
if (singleton && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0)))
|
||
{
|
||
if (temp != 0)
|
||
{
|
||
/* If the target conflicts with the other operand of the
|
||
binary op, we can't use it. Also, we can't use the target
|
||
if it is a hard register, because evaluating the condition
|
||
might clobber it. */
|
||
if ((binary_op
|
||
&& ! safe_from_p (temp, TREE_OPERAND (binary_op, 1), 1))
|
||
|| (GET_CODE (temp) == REG
|
||
&& REGNO (temp) < FIRST_PSEUDO_REGISTER))
|
||
temp = gen_reg_rtx (mode);
|
||
store_expr (singleton, temp, 0);
|
||
}
|
||
else
|
||
expand_expr (singleton,
|
||
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
|
||
if (singleton == TREE_OPERAND (exp, 1))
|
||
jumpif (TREE_OPERAND (exp, 0), op0);
|
||
else
|
||
jumpifnot (TREE_OPERAND (exp, 0), op0);
|
||
|
||
start_cleanup_deferral ();
|
||
if (binary_op && temp == 0)
|
||
/* Just touch the other operand. */
|
||
expand_expr (TREE_OPERAND (binary_op, 1),
|
||
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
|
||
else if (binary_op)
|
||
store_expr (build (TREE_CODE (binary_op), type,
|
||
make_tree (type, temp),
|
||
TREE_OPERAND (binary_op, 1)),
|
||
temp, 0);
|
||
else
|
||
store_expr (build1 (TREE_CODE (unary_op), type,
|
||
make_tree (type, temp)),
|
||
temp, 0);
|
||
op1 = op0;
|
||
}
|
||
/* Check for A op 0 ? A : FOO and A op 0 ? FOO : A where OP is any
|
||
comparison operator. If we have one of these cases, set the
|
||
output to A, branch on A (cse will merge these two references),
|
||
then set the output to FOO. */
|
||
else if (temp
|
||
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
|
||
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
|
||
&& operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
||
TREE_OPERAND (exp, 1), 0)
|
||
&& (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
|
||
|| TREE_CODE (TREE_OPERAND (exp, 1)) == SAVE_EXPR)
|
||
&& safe_from_p (temp, TREE_OPERAND (exp, 2), 1))
|
||
{
|
||
if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
|
||
temp = gen_reg_rtx (mode);
|
||
store_expr (TREE_OPERAND (exp, 1), temp, 0);
|
||
jumpif (TREE_OPERAND (exp, 0), op0);
|
||
|
||
start_cleanup_deferral ();
|
||
store_expr (TREE_OPERAND (exp, 2), temp, 0);
|
||
op1 = op0;
|
||
}
|
||
else if (temp
|
||
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
|
||
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
|
||
&& operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
||
TREE_OPERAND (exp, 2), 0)
|
||
&& (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
|
||
|| TREE_CODE (TREE_OPERAND (exp, 2)) == SAVE_EXPR)
|
||
&& safe_from_p (temp, TREE_OPERAND (exp, 1), 1))
|
||
{
|
||
if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
|
||
temp = gen_reg_rtx (mode);
|
||
store_expr (TREE_OPERAND (exp, 2), temp, 0);
|
||
jumpifnot (TREE_OPERAND (exp, 0), op0);
|
||
|
||
start_cleanup_deferral ();
|
||
store_expr (TREE_OPERAND (exp, 1), temp, 0);
|
||
op1 = op0;
|
||
}
|
||
else
|
||
{
|
||
op1 = gen_label_rtx ();
|
||
jumpifnot (TREE_OPERAND (exp, 0), op0);
|
||
|
||
start_cleanup_deferral ();
|
||
|
||
/* One branch of the cond can be void, if it never returns. For
|
||
example A ? throw : E */
|
||
if (temp != 0
|
||
&& TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node)
|
||
store_expr (TREE_OPERAND (exp, 1), temp, 0);
|
||
else
|
||
expand_expr (TREE_OPERAND (exp, 1),
|
||
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
|
||
end_cleanup_deferral ();
|
||
emit_queue ();
|
||
emit_jump_insn (gen_jump (op1));
|
||
emit_barrier ();
|
||
emit_label (op0);
|
||
start_cleanup_deferral ();
|
||
if (temp != 0
|
||
&& TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node)
|
||
store_expr (TREE_OPERAND (exp, 2), temp, 0);
|
||
else
|
||
expand_expr (TREE_OPERAND (exp, 2),
|
||
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
|
||
}
|
||
|
||
end_cleanup_deferral ();
|
||
|
||
emit_queue ();
|
||
emit_label (op1);
|
||
OK_DEFER_POP;
|
||
|
||
return temp;
|
||
}
|
||
|
||
case TARGET_EXPR:
|
||
{
|
||
/* Something needs to be initialized, but we didn't know
|
||
where that thing was when building the tree. For example,
|
||
it could be the return value of a function, or a parameter
|
||
to a function which lays down in the stack, or a temporary
|
||
variable which must be passed by reference.
|
||
|
||
We guarantee that the expression will either be constructed
|
||
or copied into our original target. */
|
||
|
||
tree slot = TREE_OPERAND (exp, 0);
|
||
tree cleanups = NULL_TREE;
|
||
tree exp1;
|
||
|
||
if (TREE_CODE (slot) != VAR_DECL)
|
||
abort ();
|
||
|
||
if (! ignore)
|
||
target = original_target;
|
||
|
||
if (target == 0)
|
||
{
|
||
if (DECL_RTL (slot) != 0)
|
||
{
|
||
target = DECL_RTL (slot);
|
||
/* If we have already expanded the slot, so don't do
|
||
it again. (mrs) */
|
||
if (TREE_OPERAND (exp, 1) == NULL_TREE)
|
||
return target;
|
||
}
|
||
else
|
||
{
|
||
target = assign_temp (type, 2, 0, 1);
|
||
/* All temp slots at this level must not conflict. */
|
||
preserve_temp_slots (target);
|
||
DECL_RTL (slot) = target;
|
||
if (TREE_ADDRESSABLE (slot))
|
||
{
|
||
TREE_ADDRESSABLE (slot) = 0;
|
||
mark_addressable (slot);
|
||
}
|
||
|
||
/* Since SLOT is not known to the called function
|
||
to belong to its stack frame, we must build an explicit
|
||
cleanup. This case occurs when we must build up a reference
|
||
to pass the reference as an argument. In this case,
|
||
it is very likely that such a reference need not be
|
||
built here. */
|
||
|
||
if (TREE_OPERAND (exp, 2) == 0)
|
||
TREE_OPERAND (exp, 2) = maybe_build_cleanup (slot);
|
||
cleanups = TREE_OPERAND (exp, 2);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This case does occur, when expanding a parameter which
|
||
needs to be constructed on the stack. The target
|
||
is the actual stack address that we want to initialize.
|
||
The function we call will perform the cleanup in this case. */
|
||
|
||
/* If we have already assigned it space, use that space,
|
||
not target that we were passed in, as our target
|
||
parameter is only a hint. */
|
||
if (DECL_RTL (slot) != 0)
|
||
{
|
||
target = DECL_RTL (slot);
|
||
/* If we have already expanded the slot, so don't do
|
||
it again. (mrs) */
|
||
if (TREE_OPERAND (exp, 1) == NULL_TREE)
|
||
return target;
|
||
}
|
||
else
|
||
{
|
||
DECL_RTL (slot) = target;
|
||
/* If we must have an addressable slot, then make sure that
|
||
the RTL that we just stored in slot is OK. */
|
||
if (TREE_ADDRESSABLE (slot))
|
||
{
|
||
TREE_ADDRESSABLE (slot) = 0;
|
||
mark_addressable (slot);
|
||
}
|
||
}
|
||
}
|
||
|
||
exp1 = TREE_OPERAND (exp, 3) = TREE_OPERAND (exp, 1);
|
||
/* Mark it as expanded. */
|
||
TREE_OPERAND (exp, 1) = NULL_TREE;
|
||
|
||
TREE_USED (slot) = 1;
|
||
store_expr (exp1, target, 0);
|
||
|
||
expand_decl_cleanup (NULL_TREE, cleanups);
|
||
|
||
return target;
|
||
}
|
||
|
||
case INIT_EXPR:
|
||
{
|
||
tree lhs = TREE_OPERAND (exp, 0);
|
||
tree rhs = TREE_OPERAND (exp, 1);
|
||
tree noncopied_parts = 0;
|
||
tree lhs_type = TREE_TYPE (lhs);
|
||
|
||
temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
|
||
if (TYPE_NONCOPIED_PARTS (lhs_type) != 0 && !fixed_type_p (rhs))
|
||
noncopied_parts = init_noncopied_parts (stabilize_reference (lhs),
|
||
TYPE_NONCOPIED_PARTS (lhs_type));
|
||
while (noncopied_parts != 0)
|
||
{
|
||
expand_assignment (TREE_VALUE (noncopied_parts),
|
||
TREE_PURPOSE (noncopied_parts), 0, 0);
|
||
noncopied_parts = TREE_CHAIN (noncopied_parts);
|
||
}
|
||
return temp;
|
||
}
|
||
|
||
case MODIFY_EXPR:
|
||
{
|
||
/* If lhs is complex, expand calls in rhs before computing it.
|
||
That's so we don't compute a pointer and save it over a call.
|
||
If lhs is simple, compute it first so we can give it as a
|
||
target if the rhs is just a call. This avoids an extra temp and copy
|
||
and that prevents a partial-subsumption which makes bad code.
|
||
Actually we could treat component_ref's of vars like vars. */
|
||
|
||
tree lhs = TREE_OPERAND (exp, 0);
|
||
tree rhs = TREE_OPERAND (exp, 1);
|
||
tree noncopied_parts = 0;
|
||
tree lhs_type = TREE_TYPE (lhs);
|
||
|
||
temp = 0;
|
||
|
||
if (TREE_CODE (lhs) != VAR_DECL
|
||
&& TREE_CODE (lhs) != RESULT_DECL
|
||
&& TREE_CODE (lhs) != PARM_DECL
|
||
&& ! (TREE_CODE (lhs) == INDIRECT_REF
|
||
&& TYPE_READONLY (TREE_TYPE (TREE_OPERAND (lhs, 0)))))
|
||
preexpand_calls (exp);
|
||
|
||
/* Check for |= or &= of a bitfield of size one into another bitfield
|
||
of size 1. In this case, (unless we need the result of the
|
||
assignment) we can do this more efficiently with a
|
||
test followed by an assignment, if necessary.
|
||
|
||
??? At this point, we can't get a BIT_FIELD_REF here. But if
|
||
things change so we do, this code should be enhanced to
|
||
support it. */
|
||
if (ignore
|
||
&& TREE_CODE (lhs) == COMPONENT_REF
|
||
&& (TREE_CODE (rhs) == BIT_IOR_EXPR
|
||
|| TREE_CODE (rhs) == BIT_AND_EXPR)
|
||
&& TREE_OPERAND (rhs, 0) == lhs
|
||
&& TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
|
||
&& TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (lhs, 1))) == 1
|
||
&& TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))) == 1)
|
||
{
|
||
rtx label = gen_label_rtx ();
|
||
|
||
do_jump (TREE_OPERAND (rhs, 1),
|
||
TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
|
||
TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
|
||
expand_assignment (lhs, convert (TREE_TYPE (rhs),
|
||
(TREE_CODE (rhs) == BIT_IOR_EXPR
|
||
? integer_one_node
|
||
: integer_zero_node)),
|
||
0, 0);
|
||
do_pending_stack_adjust ();
|
||
emit_label (label);
|
||
return const0_rtx;
|
||
}
|
||
|
||
if (TYPE_NONCOPIED_PARTS (lhs_type) != 0
|
||
&& ! (fixed_type_p (lhs) && fixed_type_p (rhs)))
|
||
noncopied_parts = save_noncopied_parts (stabilize_reference (lhs),
|
||
TYPE_NONCOPIED_PARTS (lhs_type));
|
||
|
||
temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
|
||
while (noncopied_parts != 0)
|
||
{
|
||
expand_assignment (TREE_PURPOSE (noncopied_parts),
|
||
TREE_VALUE (noncopied_parts), 0, 0);
|
||
noncopied_parts = TREE_CHAIN (noncopied_parts);
|
||
}
|
||
return temp;
|
||
}
|
||
|
||
case RETURN_EXPR:
|
||
if (!TREE_OPERAND (exp, 0))
|
||
expand_null_return ();
|
||
else
|
||
expand_return (TREE_OPERAND (exp, 0));
|
||
return const0_rtx;
|
||
|
||
case PREINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
return expand_increment (exp, 0, ignore);
|
||
|
||
case POSTINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
/* Faster to treat as pre-increment if result is not used. */
|
||
return expand_increment (exp, ! ignore, ignore);
|
||
|
||
case ADDR_EXPR:
|
||
/* If nonzero, TEMP will be set to the address of something that might
|
||
be a MEM corresponding to a stack slot. */
|
||
temp = 0;
|
||
|
||
/* Are we taking the address of a nested function? */
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == FUNCTION_DECL
|
||
&& decl_function_context (TREE_OPERAND (exp, 0)) != 0
|
||
&& ! DECL_NO_STATIC_CHAIN (TREE_OPERAND (exp, 0))
|
||
&& ! TREE_STATIC (exp))
|
||
{
|
||
op0 = trampoline_address (TREE_OPERAND (exp, 0));
|
||
op0 = force_operand (op0, target);
|
||
}
|
||
/* If we are taking the address of something erroneous, just
|
||
return a zero. */
|
||
else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
|
||
return const0_rtx;
|
||
else
|
||
{
|
||
/* We make sure to pass const0_rtx down if we came in with
|
||
ignore set, to avoid doing the cleanups twice for something. */
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0),
|
||
ignore ? const0_rtx : NULL_RTX, VOIDmode,
|
||
(modifier == EXPAND_INITIALIZER
|
||
? modifier : EXPAND_CONST_ADDRESS));
|
||
|
||
/* If we are going to ignore the result, OP0 will have been set
|
||
to const0_rtx, so just return it. Don't get confused and
|
||
think we are taking the address of the constant. */
|
||
if (ignore)
|
||
return op0;
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
|
||
/* We would like the object in memory. If it is a constant,
|
||
we can have it be statically allocated into memory. For
|
||
a non-constant (REG, SUBREG or CONCAT), we need to allocate some
|
||
memory and store the value into it. */
|
||
|
||
if (CONSTANT_P (op0))
|
||
op0 = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
|
||
op0);
|
||
else if (GET_CODE (op0) == MEM)
|
||
{
|
||
mark_temp_addr_taken (op0);
|
||
temp = XEXP (op0, 0);
|
||
}
|
||
|
||
else if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
|
||
|| GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
|
||
{
|
||
/* If this object is in a register, it must be not
|
||
be BLKmode. */
|
||
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
rtx memloc = assign_temp (inner_type, 1, 1, 1);
|
||
|
||
mark_temp_addr_taken (memloc);
|
||
emit_move_insn (memloc, op0);
|
||
op0 = memloc;
|
||
}
|
||
|
||
if (GET_CODE (op0) != MEM)
|
||
abort ();
|
||
|
||
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
|
||
{
|
||
temp = XEXP (op0, 0);
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (GET_MODE (temp) == Pmode && GET_MODE (temp) != mode
|
||
&& mode == ptr_mode)
|
||
temp = convert_memory_address (ptr_mode, temp);
|
||
#endif
|
||
return temp;
|
||
}
|
||
|
||
op0 = force_operand (XEXP (op0, 0), target);
|
||
}
|
||
|
||
if (flag_force_addr && GET_CODE (op0) != REG)
|
||
op0 = force_reg (Pmode, op0);
|
||
|
||
if (GET_CODE (op0) == REG
|
||
&& ! REG_USERVAR_P (op0))
|
||
mark_reg_pointer (op0, TYPE_ALIGN (TREE_TYPE (type)) / BITS_PER_UNIT);
|
||
|
||
/* If we might have had a temp slot, add an equivalent address
|
||
for it. */
|
||
if (temp != 0)
|
||
update_temp_slot_address (temp, op0);
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (GET_MODE (op0) == Pmode && GET_MODE (op0) != mode
|
||
&& mode == ptr_mode)
|
||
op0 = convert_memory_address (ptr_mode, op0);
|
||
#endif
|
||
|
||
return op0;
|
||
|
||
case ENTRY_VALUE_EXPR:
|
||
abort ();
|
||
|
||
/* COMPLEX type for Extended Pascal & Fortran */
|
||
case COMPLEX_EXPR:
|
||
{
|
||
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
|
||
rtx insns;
|
||
|
||
/* Get the rtx code of the operands. */
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
|
||
|
||
if (! target)
|
||
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
|
||
|
||
start_sequence ();
|
||
|
||
/* Move the real (op0) and imaginary (op1) parts to their location. */
|
||
emit_move_insn (gen_realpart (mode, target), op0);
|
||
emit_move_insn (gen_imagpart (mode, target), op1);
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Complex construction should appear as a single unit. */
|
||
/* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS,
|
||
each with a separate pseudo as destination.
|
||
It's not correct for flow to treat them as a unit. */
|
||
if (GET_CODE (target) != CONCAT)
|
||
emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
|
||
else
|
||
emit_insns (insns);
|
||
|
||
return target;
|
||
}
|
||
|
||
case REALPART_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
|
||
return gen_realpart (mode, op0);
|
||
|
||
case IMAGPART_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
|
||
return gen_imagpart (mode, op0);
|
||
|
||
case CONJ_EXPR:
|
||
{
|
||
enum machine_mode partmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
|
||
rtx imag_t;
|
||
rtx insns;
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
|
||
|
||
if (! target)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
/* Store the realpart and the negated imagpart to target. */
|
||
emit_move_insn (gen_realpart (partmode, target),
|
||
gen_realpart (partmode, op0));
|
||
|
||
imag_t = gen_imagpart (partmode, target);
|
||
temp = expand_unop (partmode, neg_optab,
|
||
gen_imagpart (partmode, op0), imag_t, 0);
|
||
if (temp != imag_t)
|
||
emit_move_insn (imag_t, temp);
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Conjugate should appear as a single unit
|
||
If TARGET is a CONCAT, we got insns like RD = RS, ID = - IS,
|
||
each with a separate pseudo as destination.
|
||
It's not correct for flow to treat them as a unit. */
|
||
if (GET_CODE (target) != CONCAT)
|
||
emit_no_conflict_block (insns, target, op0, NULL_RTX, NULL_RTX);
|
||
else
|
||
emit_insns (insns);
|
||
|
||
return target;
|
||
}
|
||
|
||
case TRY_CATCH_EXPR:
|
||
{
|
||
tree handler = TREE_OPERAND (exp, 1);
|
||
|
||
expand_eh_region_start ();
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
|
||
|
||
expand_eh_region_end (handler);
|
||
|
||
return op0;
|
||
}
|
||
|
||
case TRY_FINALLY_EXPR:
|
||
{
|
||
tree try_block = TREE_OPERAND (exp, 0);
|
||
tree finally_block = TREE_OPERAND (exp, 1);
|
||
rtx finally_label = gen_label_rtx ();
|
||
rtx done_label = gen_label_rtx ();
|
||
rtx return_link = gen_reg_rtx (Pmode);
|
||
tree cleanup = build (GOTO_SUBROUTINE_EXPR, void_type_node,
|
||
(tree) finally_label, (tree) return_link);
|
||
TREE_SIDE_EFFECTS (cleanup) = 1;
|
||
|
||
/* Start a new binding layer that will keep track of all cleanup
|
||
actions to be performed. */
|
||
expand_start_bindings (0);
|
||
|
||
target_temp_slot_level = temp_slot_level;
|
||
|
||
expand_decl_cleanup (NULL_TREE, cleanup);
|
||
op0 = expand_expr (try_block, target, tmode, modifier);
|
||
|
||
preserve_temp_slots (op0);
|
||
expand_end_bindings (NULL_TREE, 0, 0);
|
||
emit_jump (done_label);
|
||
emit_label (finally_label);
|
||
expand_expr (finally_block, const0_rtx, VOIDmode, 0);
|
||
emit_indirect_jump (return_link);
|
||
emit_label (done_label);
|
||
return op0;
|
||
}
|
||
|
||
case GOTO_SUBROUTINE_EXPR:
|
||
{
|
||
rtx subr = (rtx) TREE_OPERAND (exp, 0);
|
||
rtx return_link = *(rtx *) &TREE_OPERAND (exp, 1);
|
||
rtx return_address = gen_label_rtx ();
|
||
emit_move_insn (return_link, gen_rtx_LABEL_REF (Pmode, return_address));
|
||
emit_jump (subr);
|
||
emit_label (return_address);
|
||
return const0_rtx;
|
||
}
|
||
|
||
case POPDCC_EXPR:
|
||
{
|
||
rtx dcc = get_dynamic_cleanup_chain ();
|
||
emit_move_insn (dcc, validize_mem (gen_rtx_MEM (Pmode, dcc)));
|
||
return const0_rtx;
|
||
}
|
||
|
||
case POPDHC_EXPR:
|
||
{
|
||
rtx dhc = get_dynamic_handler_chain ();
|
||
emit_move_insn (dhc, validize_mem (gen_rtx_MEM (Pmode, dhc)));
|
||
return const0_rtx;
|
||
}
|
||
|
||
case VA_ARG_EXPR:
|
||
return expand_builtin_va_arg (TREE_OPERAND (exp, 0), type);
|
||
|
||
default:
|
||
return (*lang_expand_expr) (exp, original_target, tmode, modifier);
|
||
}
|
||
|
||
/* Here to do an ordinary binary operator, generating an instruction
|
||
from the optab already placed in `this_optab'. */
|
||
binop:
|
||
preexpand_calls (exp);
|
||
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
|
||
subtarget = 0;
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
|
||
binop2:
|
||
temp = expand_binop (mode, this_optab, op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
if (temp == 0)
|
||
abort ();
|
||
return temp;
|
||
}
|
||
|
||
/* Return the tree node and offset if a given argument corresponds to
|
||
a string constant. */
|
||
|
||
tree
|
||
string_constant (arg, ptr_offset)
|
||
tree arg;
|
||
tree *ptr_offset;
|
||
{
|
||
STRIP_NOPS (arg);
|
||
|
||
if (TREE_CODE (arg) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
|
||
{
|
||
*ptr_offset = integer_zero_node;
|
||
return TREE_OPERAND (arg, 0);
|
||
}
|
||
else if (TREE_CODE (arg) == PLUS_EXPR)
|
||
{
|
||
tree arg0 = TREE_OPERAND (arg, 0);
|
||
tree arg1 = TREE_OPERAND (arg, 1);
|
||
|
||
STRIP_NOPS (arg0);
|
||
STRIP_NOPS (arg1);
|
||
|
||
if (TREE_CODE (arg0) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST)
|
||
{
|
||
*ptr_offset = arg1;
|
||
return TREE_OPERAND (arg0, 0);
|
||
}
|
||
else if (TREE_CODE (arg1) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST)
|
||
{
|
||
*ptr_offset = arg0;
|
||
return TREE_OPERAND (arg1, 0);
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Expand code for a post- or pre- increment or decrement
|
||
and return the RTX for the result.
|
||
POST is 1 for postinc/decrements and 0 for preinc/decrements. */
|
||
|
||
static rtx
|
||
expand_increment (exp, post, ignore)
|
||
register tree exp;
|
||
int post, ignore;
|
||
{
|
||
register rtx op0, op1;
|
||
register rtx temp, value;
|
||
register tree incremented = TREE_OPERAND (exp, 0);
|
||
optab this_optab = add_optab;
|
||
int icode;
|
||
enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
|
||
int op0_is_copy = 0;
|
||
int single_insn = 0;
|
||
/* 1 means we can't store into OP0 directly,
|
||
because it is a subreg narrower than a word,
|
||
and we don't dare clobber the rest of the word. */
|
||
int bad_subreg = 0;
|
||
|
||
/* Stabilize any component ref that might need to be
|
||
evaluated more than once below. */
|
||
if (!post
|
||
|| TREE_CODE (incremented) == BIT_FIELD_REF
|
||
|| (TREE_CODE (incremented) == COMPONENT_REF
|
||
&& (TREE_CODE (TREE_OPERAND (incremented, 0)) != INDIRECT_REF
|
||
|| DECL_BIT_FIELD (TREE_OPERAND (incremented, 1)))))
|
||
incremented = stabilize_reference (incremented);
|
||
/* Nested *INCREMENT_EXPRs can happen in C++. We must force innermost
|
||
ones into save exprs so that they don't accidentally get evaluated
|
||
more than once by the code below. */
|
||
if (TREE_CODE (incremented) == PREINCREMENT_EXPR
|
||
|| TREE_CODE (incremented) == PREDECREMENT_EXPR)
|
||
incremented = save_expr (incremented);
|
||
|
||
/* Compute the operands as RTX.
|
||
Note whether OP0 is the actual lvalue or a copy of it:
|
||
I believe it is a copy iff it is a register or subreg
|
||
and insns were generated in computing it. */
|
||
|
||
temp = get_last_insn ();
|
||
op0 = expand_expr (incremented, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_RW);
|
||
|
||
/* If OP0 is a SUBREG made for a promoted variable, we cannot increment
|
||
in place but instead must do sign- or zero-extension during assignment,
|
||
so we copy it into a new register and let the code below use it as
|
||
a copy.
|
||
|
||
Note that we can safely modify this SUBREG since it is know not to be
|
||
shared (it was made by the expand_expr call above). */
|
||
|
||
if (GET_CODE (op0) == SUBREG && SUBREG_PROMOTED_VAR_P (op0))
|
||
{
|
||
if (post)
|
||
SUBREG_REG (op0) = copy_to_reg (SUBREG_REG (op0));
|
||
else
|
||
bad_subreg = 1;
|
||
}
|
||
else if (GET_CODE (op0) == SUBREG
|
||
&& GET_MODE_BITSIZE (GET_MODE (op0)) < BITS_PER_WORD)
|
||
{
|
||
/* We cannot increment this SUBREG in place. If we are
|
||
post-incrementing, get a copy of the old value. Otherwise,
|
||
just mark that we cannot increment in place. */
|
||
if (post)
|
||
op0 = copy_to_reg (op0);
|
||
else
|
||
bad_subreg = 1;
|
||
}
|
||
|
||
op0_is_copy = ((GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
|
||
&& temp != get_last_insn ());
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode,
|
||
EXPAND_MEMORY_USE_BAD);
|
||
|
||
/* Decide whether incrementing or decrementing. */
|
||
if (TREE_CODE (exp) == POSTDECREMENT_EXPR
|
||
|| TREE_CODE (exp) == PREDECREMENT_EXPR)
|
||
this_optab = sub_optab;
|
||
|
||
/* Convert decrement by a constant into a negative increment. */
|
||
if (this_optab == sub_optab
|
||
&& GET_CODE (op1) == CONST_INT)
|
||
{
|
||
op1 = GEN_INT (- INTVAL (op1));
|
||
this_optab = add_optab;
|
||
}
|
||
|
||
/* For a preincrement, see if we can do this with a single instruction. */
|
||
if (!post)
|
||
{
|
||
icode = (int) this_optab->handlers[(int) mode].insn_code;
|
||
if (icode != (int) CODE_FOR_nothing
|
||
/* Make sure that OP0 is valid for operands 0 and 1
|
||
of the insn we want to queue. */
|
||
&& (*insn_operand_predicate[icode][0]) (op0, mode)
|
||
&& (*insn_operand_predicate[icode][1]) (op0, mode)
|
||
&& (*insn_operand_predicate[icode][2]) (op1, mode))
|
||
single_insn = 1;
|
||
}
|
||
|
||
/* If OP0 is not the actual lvalue, but rather a copy in a register,
|
||
then we cannot just increment OP0. We must therefore contrive to
|
||
increment the original value. Then, for postincrement, we can return
|
||
OP0 since it is a copy of the old value. For preincrement, expand here
|
||
unless we can do it with a single insn.
|
||
|
||
Likewise if storing directly into OP0 would clobber high bits
|
||
we need to preserve (bad_subreg). */
|
||
if (op0_is_copy || (!post && !single_insn) || bad_subreg)
|
||
{
|
||
/* This is the easiest way to increment the value wherever it is.
|
||
Problems with multiple evaluation of INCREMENTED are prevented
|
||
because either (1) it is a component_ref or preincrement,
|
||
in which case it was stabilized above, or (2) it is an array_ref
|
||
with constant index in an array in a register, which is
|
||
safe to reevaluate. */
|
||
tree newexp = build (((TREE_CODE (exp) == POSTDECREMENT_EXPR
|
||
|| TREE_CODE (exp) == PREDECREMENT_EXPR)
|
||
? MINUS_EXPR : PLUS_EXPR),
|
||
TREE_TYPE (exp),
|
||
incremented,
|
||
TREE_OPERAND (exp, 1));
|
||
|
||
while (TREE_CODE (incremented) == NOP_EXPR
|
||
|| TREE_CODE (incremented) == CONVERT_EXPR)
|
||
{
|
||
newexp = convert (TREE_TYPE (incremented), newexp);
|
||
incremented = TREE_OPERAND (incremented, 0);
|
||
}
|
||
|
||
temp = expand_assignment (incremented, newexp, ! post && ! ignore , 0);
|
||
return post ? op0 : temp;
|
||
}
|
||
|
||
if (post)
|
||
{
|
||
/* We have a true reference to the value in OP0.
|
||
If there is an insn to add or subtract in this mode, queue it.
|
||
Queueing the increment insn avoids the register shuffling
|
||
that often results if we must increment now and first save
|
||
the old value for subsequent use. */
|
||
|
||
#if 0 /* Turned off to avoid making extra insn for indexed memref. */
|
||
op0 = stabilize (op0);
|
||
#endif
|
||
|
||
icode = (int) this_optab->handlers[(int) mode].insn_code;
|
||
if (icode != (int) CODE_FOR_nothing
|
||
/* Make sure that OP0 is valid for operands 0 and 1
|
||
of the insn we want to queue. */
|
||
&& (*insn_operand_predicate[icode][0]) (op0, mode)
|
||
&& (*insn_operand_predicate[icode][1]) (op0, mode))
|
||
{
|
||
if (! (*insn_operand_predicate[icode][2]) (op1, mode))
|
||
op1 = force_reg (mode, op1);
|
||
|
||
return enqueue_insn (op0, GEN_FCN (icode) (op0, op0, op1));
|
||
}
|
||
if (icode != (int) CODE_FOR_nothing && GET_CODE (op0) == MEM)
|
||
{
|
||
rtx addr = (general_operand (XEXP (op0, 0), mode)
|
||
? force_reg (Pmode, XEXP (op0, 0))
|
||
: copy_to_reg (XEXP (op0, 0)));
|
||
rtx temp, result;
|
||
|
||
op0 = change_address (op0, VOIDmode, addr);
|
||
temp = force_reg (GET_MODE (op0), op0);
|
||
if (! (*insn_operand_predicate[icode][2]) (op1, mode))
|
||
op1 = force_reg (mode, op1);
|
||
|
||
/* The increment queue is LIFO, thus we have to `queue'
|
||
the instructions in reverse order. */
|
||
enqueue_insn (op0, gen_move_insn (op0, temp));
|
||
result = enqueue_insn (temp, GEN_FCN (icode) (temp, temp, op1));
|
||
return result;
|
||
}
|
||
}
|
||
|
||
/* Preincrement, or we can't increment with one simple insn. */
|
||
if (post)
|
||
/* Save a copy of the value before inc or dec, to return it later. */
|
||
temp = value = copy_to_reg (op0);
|
||
else
|
||
/* Arrange to return the incremented value. */
|
||
/* Copy the rtx because expand_binop will protect from the queue,
|
||
and the results of that would be invalid for us to return
|
||
if our caller does emit_queue before using our result. */
|
||
temp = copy_rtx (value = op0);
|
||
|
||
/* Increment however we can. */
|
||
op1 = expand_binop (mode, this_optab, value, op1,
|
||
current_function_check_memory_usage ? NULL_RTX : op0,
|
||
TREE_UNSIGNED (TREE_TYPE (exp)), OPTAB_LIB_WIDEN);
|
||
/* Make sure the value is stored into OP0. */
|
||
if (op1 != op0)
|
||
emit_move_insn (op0, op1);
|
||
|
||
return temp;
|
||
}
|
||
|
||
/* Expand all function calls contained within EXP, innermost ones first.
|
||
But don't look within expressions that have sequence points.
|
||
For each CALL_EXPR, record the rtx for its value
|
||
in the CALL_EXPR_RTL field. */
|
||
|
||
static void
|
||
preexpand_calls (exp)
|
||
tree exp;
|
||
{
|
||
register int nops, i;
|
||
int type = TREE_CODE_CLASS (TREE_CODE (exp));
|
||
|
||
if (! do_preexpand_calls)
|
||
return;
|
||
|
||
/* Only expressions and references can contain calls. */
|
||
|
||
if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r')
|
||
return;
|
||
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case CALL_EXPR:
|
||
/* Do nothing if already expanded. */
|
||
if (CALL_EXPR_RTL (exp) != 0
|
||
/* Do nothing if the call returns a variable-sized object. */
|
||
|| TREE_CODE (TYPE_SIZE (TREE_TYPE(exp))) != INTEGER_CST
|
||
/* Do nothing to built-in functions. */
|
||
|| (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== FUNCTION_DECL)
|
||
&& DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))
|
||
return;
|
||
|
||
CALL_EXPR_RTL (exp) = expand_call (exp, NULL_RTX, 0);
|
||
return;
|
||
|
||
case COMPOUND_EXPR:
|
||
case COND_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
/* If we find one of these, then we can be sure
|
||
the adjust will be done for it (since it makes jumps).
|
||
Do it now, so that if this is inside an argument
|
||
of a function, we don't get the stack adjustment
|
||
after some other args have already been pushed. */
|
||
do_pending_stack_adjust ();
|
||
return;
|
||
|
||
case BLOCK:
|
||
case RTL_EXPR:
|
||
case WITH_CLEANUP_EXPR:
|
||
case CLEANUP_POINT_EXPR:
|
||
case TRY_CATCH_EXPR:
|
||
return;
|
||
|
||
case SAVE_EXPR:
|
||
if (SAVE_EXPR_RTL (exp) != 0)
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
nops = tree_code_length[(int) TREE_CODE (exp)];
|
||
for (i = 0; i < nops; i++)
|
||
if (TREE_OPERAND (exp, i) != 0)
|
||
{
|
||
type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
|
||
if (type == 'e' || type == '<' || type == '1' || type == '2'
|
||
|| type == 'r')
|
||
preexpand_calls (TREE_OPERAND (exp, i));
|
||
}
|
||
}
|
||
|
||
/* At the start of a function, record that we have no previously-pushed
|
||
arguments waiting to be popped. */
|
||
|
||
void
|
||
init_pending_stack_adjust ()
|
||
{
|
||
pending_stack_adjust = 0;
|
||
}
|
||
|
||
/* When exiting from function, if safe, clear out any pending stack adjust
|
||
so the adjustment won't get done.
|
||
|
||
Note, if the current function calls alloca, then it must have a
|
||
frame pointer regardless of the value of flag_omit_frame_pointer. */
|
||
|
||
void
|
||
clear_pending_stack_adjust ()
|
||
{
|
||
#ifdef EXIT_IGNORE_STACK
|
||
if (optimize > 0
|
||
&& (! flag_omit_frame_pointer || current_function_calls_alloca)
|
||
&& EXIT_IGNORE_STACK
|
||
&& ! (DECL_INLINE (current_function_decl) && ! flag_no_inline)
|
||
&& ! flag_inline_functions)
|
||
pending_stack_adjust = 0;
|
||
#endif
|
||
}
|
||
|
||
/* Pop any previously-pushed arguments that have not been popped yet. */
|
||
|
||
void
|
||
do_pending_stack_adjust ()
|
||
{
|
||
if (inhibit_defer_pop == 0)
|
||
{
|
||
if (pending_stack_adjust != 0)
|
||
adjust_stack (GEN_INT (pending_stack_adjust));
|
||
pending_stack_adjust = 0;
|
||
}
|
||
}
|
||
|
||
/* Expand conditional expressions. */
|
||
|
||
/* Generate code to evaluate EXP and jump to LABEL if the value is zero.
|
||
LABEL is an rtx of code CODE_LABEL, in this function and all the
|
||
functions here. */
|
||
|
||
void
|
||
jumpifnot (exp, label)
|
||
tree exp;
|
||
rtx label;
|
||
{
|
||
do_jump (exp, label, NULL_RTX);
|
||
}
|
||
|
||
/* Generate code to evaluate EXP and jump to LABEL if the value is nonzero. */
|
||
|
||
void
|
||
jumpif (exp, label)
|
||
tree exp;
|
||
rtx label;
|
||
{
|
||
do_jump (exp, NULL_RTX, label);
|
||
}
|
||
|
||
/* Generate code to evaluate EXP and jump to IF_FALSE_LABEL if
|
||
the result is zero, or IF_TRUE_LABEL if the result is one.
|
||
Either of IF_FALSE_LABEL and IF_TRUE_LABEL may be zero,
|
||
meaning fall through in that case.
|
||
|
||
do_jump always does any pending stack adjust except when it does not
|
||
actually perform a jump. An example where there is no jump
|
||
is when EXP is `(foo (), 0)' and IF_FALSE_LABEL is null.
|
||
|
||
This function is responsible for optimizing cases such as
|
||
&&, || and comparison operators in EXP. */
|
||
|
||
void
|
||
do_jump (exp, if_false_label, if_true_label)
|
||
tree exp;
|
||
rtx if_false_label, if_true_label;
|
||
{
|
||
register enum tree_code code = TREE_CODE (exp);
|
||
/* Some cases need to create a label to jump to
|
||
in order to properly fall through.
|
||
These cases set DROP_THROUGH_LABEL nonzero. */
|
||
rtx drop_through_label = 0;
|
||
rtx temp;
|
||
int i;
|
||
tree type;
|
||
enum machine_mode mode;
|
||
|
||
#ifdef MAX_INTEGER_COMPUTATION_MODE
|
||
check_max_integer_computation_mode (exp);
|
||
#endif
|
||
|
||
emit_queue ();
|
||
|
||
switch (code)
|
||
{
|
||
case ERROR_MARK:
|
||
break;
|
||
|
||
case INTEGER_CST:
|
||
temp = integer_zerop (exp) ? if_false_label : if_true_label;
|
||
if (temp)
|
||
emit_jump (temp);
|
||
break;
|
||
|
||
#if 0
|
||
/* This is not true with #pragma weak */
|
||
case ADDR_EXPR:
|
||
/* The address of something can never be zero. */
|
||
if (if_true_label)
|
||
emit_jump (if_true_label);
|
||
break;
|
||
#endif
|
||
|
||
case NOP_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == COMPONENT_REF
|
||
|| TREE_CODE (TREE_OPERAND (exp, 0)) == BIT_FIELD_REF
|
||
|| TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_REF)
|
||
goto normal;
|
||
case CONVERT_EXPR:
|
||
/* If we are narrowing the operand, we have to do the compare in the
|
||
narrower mode. */
|
||
if ((TYPE_PRECISION (TREE_TYPE (exp))
|
||
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
||
goto normal;
|
||
case NON_LVALUE_EXPR:
|
||
case REFERENCE_EXPR:
|
||
case ABS_EXPR:
|
||
case NEGATE_EXPR:
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
/* These cannot change zero->non-zero or vice versa. */
|
||
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
|
||
break;
|
||
|
||
#if 0
|
||
/* This is never less insns than evaluating the PLUS_EXPR followed by
|
||
a test and can be longer if the test is eliminated. */
|
||
case PLUS_EXPR:
|
||
/* Reduce to minus. */
|
||
exp = build (MINUS_EXPR, TREE_TYPE (exp),
|
||
TREE_OPERAND (exp, 0),
|
||
fold (build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
|
||
TREE_OPERAND (exp, 1))));
|
||
/* Process as MINUS. */
|
||
#endif
|
||
|
||
case MINUS_EXPR:
|
||
/* Non-zero iff operands of minus differ. */
|
||
do_compare_and_jump (build (NE_EXPR, TREE_TYPE (exp),
|
||
TREE_OPERAND (exp, 0),
|
||
TREE_OPERAND (exp, 1)),
|
||
NE, NE, if_false_label, if_true_label);
|
||
break;
|
||
|
||
case BIT_AND_EXPR:
|
||
/* If we are AND'ing with a small constant, do this comparison in the
|
||
smallest type that fits. If the machine doesn't have comparisons
|
||
that small, it will be converted back to the wider comparison.
|
||
This helps if we are testing the sign bit of a narrower object.
|
||
combine can't do this for us because it can't know whether a
|
||
ZERO_EXTRACT or a compare in a smaller mode exists, but we do. */
|
||
|
||
if (! SLOW_BYTE_ACCESS
|
||
&& TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
|
||
&& TYPE_PRECISION (TREE_TYPE (exp)) <= HOST_BITS_PER_WIDE_INT
|
||
&& (i = floor_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)))) >= 0
|
||
&& (mode = mode_for_size (i + 1, MODE_INT, 0)) != BLKmode
|
||
&& (type = type_for_mode (mode, 1)) != 0
|
||
&& TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
|
||
&& (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
|
||
!= CODE_FOR_nothing))
|
||
{
|
||
do_jump (convert (type, exp), if_false_label, if_true_label);
|
||
break;
|
||
}
|
||
goto normal;
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
|
||
break;
|
||
|
||
case TRUTH_ANDIF_EXPR:
|
||
if (if_false_label == 0)
|
||
if_false_label = drop_through_label = gen_label_rtx ();
|
||
do_jump (TREE_OPERAND (exp, 0), if_false_label, NULL_RTX);
|
||
start_cleanup_deferral ();
|
||
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
|
||
end_cleanup_deferral ();
|
||
break;
|
||
|
||
case TRUTH_ORIF_EXPR:
|
||
if (if_true_label == 0)
|
||
if_true_label = drop_through_label = gen_label_rtx ();
|
||
do_jump (TREE_OPERAND (exp, 0), NULL_RTX, if_true_label);
|
||
start_cleanup_deferral ();
|
||
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
|
||
end_cleanup_deferral ();
|
||
break;
|
||
|
||
case COMPOUND_EXPR:
|
||
push_temp_slots ();
|
||
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
|
||
preserve_temp_slots (NULL_RTX);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
emit_queue ();
|
||
do_pending_stack_adjust ();
|
||
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
|
||
break;
|
||
|
||
case COMPONENT_REF:
|
||
case BIT_FIELD_REF:
|
||
case ARRAY_REF:
|
||
{
|
||
int bitsize, bitpos, unsignedp;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
tree offset;
|
||
int volatilep = 0;
|
||
int alignment;
|
||
|
||
/* Get description of this reference. We don't actually care
|
||
about the underlying object here. */
|
||
get_inner_reference (exp, &bitsize, &bitpos, &offset,
|
||
&mode, &unsignedp, &volatilep,
|
||
&alignment);
|
||
|
||
type = type_for_size (bitsize, unsignedp);
|
||
if (! SLOW_BYTE_ACCESS
|
||
&& type != 0 && bitsize >= 0
|
||
&& TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
|
||
&& (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
|
||
!= CODE_FOR_nothing))
|
||
{
|
||
do_jump (convert (type, exp), if_false_label, if_true_label);
|
||
break;
|
||
}
|
||
goto normal;
|
||
}
|
||
|
||
case COND_EXPR:
|
||
/* Do (a ? 1 : 0) and (a ? 0 : 1) as special cases. */
|
||
if (integer_onep (TREE_OPERAND (exp, 1))
|
||
&& integer_zerop (TREE_OPERAND (exp, 2)))
|
||
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
|
||
|
||
else if (integer_zerop (TREE_OPERAND (exp, 1))
|
||
&& integer_onep (TREE_OPERAND (exp, 2)))
|
||
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
|
||
|
||
else
|
||
{
|
||
register rtx label1 = gen_label_rtx ();
|
||
drop_through_label = gen_label_rtx ();
|
||
|
||
do_jump (TREE_OPERAND (exp, 0), label1, NULL_RTX);
|
||
|
||
start_cleanup_deferral ();
|
||
/* Now the THEN-expression. */
|
||
do_jump (TREE_OPERAND (exp, 1),
|
||
if_false_label ? if_false_label : drop_through_label,
|
||
if_true_label ? if_true_label : drop_through_label);
|
||
/* In case the do_jump just above never jumps. */
|
||
do_pending_stack_adjust ();
|
||
emit_label (label1);
|
||
|
||
/* Now the ELSE-expression. */
|
||
do_jump (TREE_OPERAND (exp, 2),
|
||
if_false_label ? if_false_label : drop_through_label,
|
||
if_true_label ? if_true_label : drop_through_label);
|
||
end_cleanup_deferral ();
|
||
}
|
||
break;
|
||
|
||
case EQ_EXPR:
|
||
{
|
||
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
|
||
if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
|
||
|| GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
|
||
{
|
||
tree exp0 = save_expr (TREE_OPERAND (exp, 0));
|
||
tree exp1 = save_expr (TREE_OPERAND (exp, 1));
|
||
do_jump
|
||
(fold
|
||
(build (TRUTH_ANDIF_EXPR, TREE_TYPE (exp),
|
||
fold (build (EQ_EXPR, TREE_TYPE (exp),
|
||
fold (build1 (REALPART_EXPR,
|
||
TREE_TYPE (inner_type),
|
||
exp0)),
|
||
fold (build1 (REALPART_EXPR,
|
||
TREE_TYPE (inner_type),
|
||
exp1)))),
|
||
fold (build (EQ_EXPR, TREE_TYPE (exp),
|
||
fold (build1 (IMAGPART_EXPR,
|
||
TREE_TYPE (inner_type),
|
||
exp0)),
|
||
fold (build1 (IMAGPART_EXPR,
|
||
TREE_TYPE (inner_type),
|
||
exp1)))))),
|
||
if_false_label, if_true_label);
|
||
}
|
||
|
||
else if (integer_zerop (TREE_OPERAND (exp, 1)))
|
||
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
|
||
|
||
else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
|
||
&& !can_compare_p (TYPE_MODE (inner_type)))
|
||
do_jump_by_parts_equality (exp, if_false_label, if_true_label);
|
||
else
|
||
do_compare_and_jump (exp, EQ, EQ, if_false_label, if_true_label);
|
||
break;
|
||
}
|
||
|
||
case NE_EXPR:
|
||
{
|
||
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
|
||
if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
|
||
|| GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
|
||
{
|
||
tree exp0 = save_expr (TREE_OPERAND (exp, 0));
|
||
tree exp1 = save_expr (TREE_OPERAND (exp, 1));
|
||
do_jump
|
||
(fold
|
||
(build (TRUTH_ORIF_EXPR, TREE_TYPE (exp),
|
||
fold (build (NE_EXPR, TREE_TYPE (exp),
|
||
fold (build1 (REALPART_EXPR,
|
||
TREE_TYPE (inner_type),
|
||
exp0)),
|
||
fold (build1 (REALPART_EXPR,
|
||
TREE_TYPE (inner_type),
|
||
exp1)))),
|
||
fold (build (NE_EXPR, TREE_TYPE (exp),
|
||
fold (build1 (IMAGPART_EXPR,
|
||
TREE_TYPE (inner_type),
|
||
exp0)),
|
||
fold (build1 (IMAGPART_EXPR,
|
||
TREE_TYPE (inner_type),
|
||
exp1)))))),
|
||
if_false_label, if_true_label);
|
||
}
|
||
|
||
else if (integer_zerop (TREE_OPERAND (exp, 1)))
|
||
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
|
||
|
||
else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
|
||
&& !can_compare_p (TYPE_MODE (inner_type)))
|
||
do_jump_by_parts_equality (exp, if_true_label, if_false_label);
|
||
else
|
||
do_compare_and_jump (exp, NE, NE, if_false_label, if_true_label);
|
||
break;
|
||
}
|
||
|
||
case LT_EXPR:
|
||
if ((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
== MODE_INT)
|
||
&& !can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
||
do_jump_by_parts_greater (exp, 1, if_false_label, if_true_label);
|
||
else
|
||
do_compare_and_jump (exp, LT, LTU, if_false_label, if_true_label);
|
||
break;
|
||
|
||
case LE_EXPR:
|
||
if ((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
== MODE_INT)
|
||
&& !can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
||
do_jump_by_parts_greater (exp, 0, if_true_label, if_false_label);
|
||
else
|
||
do_compare_and_jump (exp, LE, LEU, if_false_label, if_true_label);
|
||
break;
|
||
|
||
case GT_EXPR:
|
||
if ((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
== MODE_INT)
|
||
&& !can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
||
do_jump_by_parts_greater (exp, 0, if_false_label, if_true_label);
|
||
else
|
||
do_compare_and_jump (exp, GT, GTU, if_false_label, if_true_label);
|
||
break;
|
||
|
||
case GE_EXPR:
|
||
if ((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
== MODE_INT)
|
||
&& !can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
||
do_jump_by_parts_greater (exp, 1, if_true_label, if_false_label);
|
||
else
|
||
do_compare_and_jump (exp, GE, GEU, if_false_label, if_true_label);
|
||
break;
|
||
|
||
default:
|
||
normal:
|
||
temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
|
||
#if 0
|
||
/* This is not needed any more and causes poor code since it causes
|
||
comparisons and tests from non-SI objects to have different code
|
||
sequences. */
|
||
/* Copy to register to avoid generating bad insns by cse
|
||
from (set (mem ...) (arithop)) (set (cc0) (mem ...)). */
|
||
if (!cse_not_expected && GET_CODE (temp) == MEM)
|
||
temp = copy_to_reg (temp);
|
||
#endif
|
||
do_pending_stack_adjust ();
|
||
/* Do any postincrements in the expression that was tested. */
|
||
emit_queue ();
|
||
|
||
if (GET_CODE (temp) == CONST_INT || GET_CODE (temp) == LABEL_REF)
|
||
{
|
||
rtx target = temp == const0_rtx ? if_false_label : if_true_label;
|
||
if (target)
|
||
emit_jump (target);
|
||
}
|
||
else if (GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
|
||
&& ! can_compare_p (GET_MODE (temp)))
|
||
/* Note swapping the labels gives us not-equal. */
|
||
do_jump_by_parts_equality_rtx (temp, if_true_label, if_false_label);
|
||
else if (GET_MODE (temp) != VOIDmode)
|
||
do_compare_rtx_and_jump (temp, CONST0_RTX (GET_MODE (temp)),
|
||
NE, TREE_UNSIGNED (TREE_TYPE (exp)),
|
||
GET_MODE (temp), NULL_RTX, 0,
|
||
if_false_label, if_true_label);
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
if (drop_through_label)
|
||
{
|
||
/* If do_jump produces code that might be jumped around,
|
||
do any stack adjusts from that code, before the place
|
||
where control merges in. */
|
||
do_pending_stack_adjust ();
|
||
emit_label (drop_through_label);
|
||
}
|
||
}
|
||
|
||
/* Given a comparison expression EXP for values too wide to be compared
|
||
with one insn, test the comparison and jump to the appropriate label.
|
||
The code of EXP is ignored; we always test GT if SWAP is 0,
|
||
and LT if SWAP is 1. */
|
||
|
||
static void
|
||
do_jump_by_parts_greater (exp, swap, if_false_label, if_true_label)
|
||
tree exp;
|
||
int swap;
|
||
rtx if_false_label, if_true_label;
|
||
{
|
||
rtx op0 = expand_expr (TREE_OPERAND (exp, swap), NULL_RTX, VOIDmode, 0);
|
||
rtx op1 = expand_expr (TREE_OPERAND (exp, !swap), NULL_RTX, VOIDmode, 0);
|
||
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
|
||
do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label);
|
||
}
|
||
|
||
/* Compare OP0 with OP1, word at a time, in mode MODE.
|
||
UNSIGNEDP says to do unsigned comparison.
|
||
Jump to IF_TRUE_LABEL if OP0 is greater, IF_FALSE_LABEL otherwise. */
|
||
|
||
void
|
||
do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label)
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
rtx op0, op1;
|
||
rtx if_false_label, if_true_label;
|
||
{
|
||
int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
|
||
rtx drop_through_label = 0;
|
||
int i;
|
||
|
||
if (! if_true_label || ! if_false_label)
|
||
drop_through_label = gen_label_rtx ();
|
||
if (! if_true_label)
|
||
if_true_label = drop_through_label;
|
||
if (! if_false_label)
|
||
if_false_label = drop_through_label;
|
||
|
||
/* Compare a word at a time, high order first. */
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
rtx comp;
|
||
rtx op0_word, op1_word;
|
||
|
||
if (WORDS_BIG_ENDIAN)
|
||
{
|
||
op0_word = operand_subword_force (op0, i, mode);
|
||
op1_word = operand_subword_force (op1, i, mode);
|
||
}
|
||
else
|
||
{
|
||
op0_word = operand_subword_force (op0, nwords - 1 - i, mode);
|
||
op1_word = operand_subword_force (op1, nwords - 1 - i, mode);
|
||
}
|
||
|
||
/* All but high-order word must be compared as unsigned. */
|
||
do_compare_rtx_and_jump (op0_word, op1_word, GT,
|
||
(unsignedp || i > 0), word_mode, NULL_RTX, 0,
|
||
NULL_RTX, if_true_label);
|
||
|
||
/* Consider lower words only if these are equal. */
|
||
do_compare_rtx_and_jump (op0_word, op1_word, NE, unsignedp, word_mode,
|
||
NULL_RTX, 0, NULL_RTX, if_false_label);
|
||
}
|
||
|
||
if (if_false_label)
|
||
emit_jump (if_false_label);
|
||
if (drop_through_label)
|
||
emit_label (drop_through_label);
|
||
}
|
||
|
||
/* Given an EQ_EXPR expression EXP for values too wide to be compared
|
||
with one insn, test the comparison and jump to the appropriate label. */
|
||
|
||
static void
|
||
do_jump_by_parts_equality (exp, if_false_label, if_true_label)
|
||
tree exp;
|
||
rtx if_false_label, if_true_label;
|
||
{
|
||
rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
|
||
rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
|
||
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
|
||
int i;
|
||
rtx drop_through_label = 0;
|
||
|
||
if (! if_false_label)
|
||
drop_through_label = if_false_label = gen_label_rtx ();
|
||
|
||
for (i = 0; i < nwords; i++)
|
||
do_compare_rtx_and_jump (operand_subword_force (op0, i, mode),
|
||
operand_subword_force (op1, i, mode),
|
||
EQ, TREE_UNSIGNED (TREE_TYPE (exp)),
|
||
word_mode, NULL_RTX, 0, if_false_label,
|
||
NULL_RTX);
|
||
|
||
if (if_true_label)
|
||
emit_jump (if_true_label);
|
||
if (drop_through_label)
|
||
emit_label (drop_through_label);
|
||
}
|
||
|
||
/* Jump according to whether OP0 is 0.
|
||
We assume that OP0 has an integer mode that is too wide
|
||
for the available compare insns. */
|
||
|
||
void
|
||
do_jump_by_parts_equality_rtx (op0, if_false_label, if_true_label)
|
||
rtx op0;
|
||
rtx if_false_label, if_true_label;
|
||
{
|
||
int nwords = GET_MODE_SIZE (GET_MODE (op0)) / UNITS_PER_WORD;
|
||
rtx part;
|
||
int i;
|
||
rtx drop_through_label = 0;
|
||
|
||
/* The fastest way of doing this comparison on almost any machine is to
|
||
"or" all the words and compare the result. If all have to be loaded
|
||
from memory and this is a very wide item, it's possible this may
|
||
be slower, but that's highly unlikely. */
|
||
|
||
part = gen_reg_rtx (word_mode);
|
||
emit_move_insn (part, operand_subword_force (op0, 0, GET_MODE (op0)));
|
||
for (i = 1; i < nwords && part != 0; i++)
|
||
part = expand_binop (word_mode, ior_optab, part,
|
||
operand_subword_force (op0, i, GET_MODE (op0)),
|
||
part, 1, OPTAB_WIDEN);
|
||
|
||
if (part != 0)
|
||
{
|
||
do_compare_rtx_and_jump (part, const0_rtx, EQ, 1, word_mode,
|
||
NULL_RTX, 0, if_false_label, if_true_label);
|
||
|
||
return;
|
||
}
|
||
|
||
/* If we couldn't do the "or" simply, do this with a series of compares. */
|
||
if (! if_false_label)
|
||
drop_through_label = if_false_label = gen_label_rtx ();
|
||
|
||
for (i = 0; i < nwords; i++)
|
||
do_compare_rtx_and_jump (operand_subword_force (op0, i, GET_MODE (op0)),
|
||
const0_rtx, EQ, 1, word_mode, NULL_RTX, 0,
|
||
if_false_label, NULL_RTX);
|
||
|
||
if (if_true_label)
|
||
emit_jump (if_true_label);
|
||
|
||
if (drop_through_label)
|
||
emit_label (drop_through_label);
|
||
}
|
||
|
||
/* Generate code for a comparison of OP0 and OP1 with rtx code CODE.
|
||
(including code to compute the values to be compared)
|
||
and set (CC0) according to the result.
|
||
The decision as to signed or unsigned comparison must be made by the caller.
|
||
|
||
We force a stack adjustment unless there are currently
|
||
things pushed on the stack that aren't yet used.
|
||
|
||
If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
|
||
compared.
|
||
|
||
If ALIGN is non-zero, it is the alignment of this type; if zero, the
|
||
size of MODE should be used. */
|
||
|
||
rtx
|
||
compare_from_rtx (op0, op1, code, unsignedp, mode, size, align)
|
||
register rtx op0, op1;
|
||
enum rtx_code code;
|
||
int unsignedp;
|
||
enum machine_mode mode;
|
||
rtx size;
|
||
int align;
|
||
{
|
||
rtx tem;
|
||
|
||
/* If one operand is constant, make it the second one. Only do this
|
||
if the other operand is not constant as well. */
|
||
|
||
if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
|
||
|| (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
|
||
{
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
op1 = force_not_mem (op1);
|
||
}
|
||
|
||
do_pending_stack_adjust ();
|
||
|
||
if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
|
||
&& (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
|
||
return tem;
|
||
|
||
#if 0
|
||
/* There's no need to do this now that combine.c can eliminate lots of
|
||
sign extensions. This can be less efficient in certain cases on other
|
||
machines. */
|
||
|
||
/* If this is a signed equality comparison, we can do it as an
|
||
unsigned comparison since zero-extension is cheaper than sign
|
||
extension and comparisons with zero are done as unsigned. This is
|
||
the case even on machines that can do fast sign extension, since
|
||
zero-extension is easier to combine with other operations than
|
||
sign-extension is. If we are comparing against a constant, we must
|
||
convert it to what it would look like unsigned. */
|
||
if ((code == EQ || code == NE) && ! unsignedp
|
||
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
if (GET_CODE (op1) == CONST_INT
|
||
&& (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
|
||
op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
|
||
unsignedp = 1;
|
||
}
|
||
#endif
|
||
|
||
emit_cmp_insn (op0, op1, code, size, mode, unsignedp, align);
|
||
|
||
return gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
|
||
}
|
||
|
||
/* Like do_compare_and_jump but expects the values to compare as two rtx's.
|
||
The decision as to signed or unsigned comparison must be made by the caller.
|
||
|
||
If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
|
||
compared.
|
||
|
||
If ALIGN is non-zero, it is the alignment of this type; if zero, the
|
||
size of MODE should be used. */
|
||
|
||
void
|
||
do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, size, align,
|
||
if_false_label, if_true_label)
|
||
register rtx op0, op1;
|
||
enum rtx_code code;
|
||
int unsignedp;
|
||
enum machine_mode mode;
|
||
rtx size;
|
||
int align;
|
||
rtx if_false_label, if_true_label;
|
||
{
|
||
rtx tem;
|
||
int dummy_true_label = 0;
|
||
|
||
/* Reverse the comparison if that is safe and we want to jump if it is
|
||
false. */
|
||
if (! if_true_label && ! FLOAT_MODE_P (mode))
|
||
{
|
||
if_true_label = if_false_label;
|
||
if_false_label = 0;
|
||
code = reverse_condition (code);
|
||
}
|
||
|
||
/* If one operand is constant, make it the second one. Only do this
|
||
if the other operand is not constant as well. */
|
||
|
||
if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
|
||
|| (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
|
||
{
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
op1 = force_not_mem (op1);
|
||
}
|
||
|
||
do_pending_stack_adjust ();
|
||
|
||
if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
|
||
&& (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
|
||
{
|
||
if (tem == const_true_rtx)
|
||
{
|
||
if (if_true_label)
|
||
emit_jump (if_true_label);
|
||
}
|
||
else
|
||
{
|
||
if (if_false_label)
|
||
emit_jump (if_false_label);
|
||
}
|
||
return;
|
||
}
|
||
|
||
#if 0
|
||
/* There's no need to do this now that combine.c can eliminate lots of
|
||
sign extensions. This can be less efficient in certain cases on other
|
||
machines. */
|
||
|
||
/* If this is a signed equality comparison, we can do it as an
|
||
unsigned comparison since zero-extension is cheaper than sign
|
||
extension and comparisons with zero are done as unsigned. This is
|
||
the case even on machines that can do fast sign extension, since
|
||
zero-extension is easier to combine with other operations than
|
||
sign-extension is. If we are comparing against a constant, we must
|
||
convert it to what it would look like unsigned. */
|
||
if ((code == EQ || code == NE) && ! unsignedp
|
||
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
if (GET_CODE (op1) == CONST_INT
|
||
&& (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
|
||
op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
|
||
unsignedp = 1;
|
||
}
|
||
#endif
|
||
|
||
if (! if_true_label)
|
||
{
|
||
dummy_true_label = 1;
|
||
if_true_label = gen_label_rtx ();
|
||
}
|
||
|
||
emit_cmp_and_jump_insns (op0, op1, code, size, mode, unsignedp, align,
|
||
if_true_label);
|
||
|
||
if (if_false_label)
|
||
emit_jump (if_false_label);
|
||
if (dummy_true_label)
|
||
emit_label (if_true_label);
|
||
}
|
||
|
||
/* Generate code for a comparison expression EXP (including code to compute
|
||
the values to be compared) and a conditional jump to IF_FALSE_LABEL and/or
|
||
IF_TRUE_LABEL. One of the labels can be NULL_RTX, in which case the
|
||
generated code will drop through.
|
||
SIGNED_CODE should be the rtx operation for this comparison for
|
||
signed data; UNSIGNED_CODE, likewise for use if data is unsigned.
|
||
|
||
We force a stack adjustment unless there are currently
|
||
things pushed on the stack that aren't yet used. */
|
||
|
||
static void
|
||
do_compare_and_jump (exp, signed_code, unsigned_code, if_false_label,
|
||
if_true_label)
|
||
register tree exp;
|
||
enum rtx_code signed_code, unsigned_code;
|
||
rtx if_false_label, if_true_label;
|
||
{
|
||
register rtx op0, op1;
|
||
register tree type;
|
||
register enum machine_mode mode;
|
||
int unsignedp;
|
||
enum rtx_code code;
|
||
|
||
/* Don't crash if the comparison was erroneous. */
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
|
||
return;
|
||
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
|
||
type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
mode = TYPE_MODE (type);
|
||
unsignedp = TREE_UNSIGNED (type);
|
||
code = unsignedp ? unsigned_code : signed_code;
|
||
|
||
#ifdef HAVE_canonicalize_funcptr_for_compare
|
||
/* If function pointers need to be "canonicalized" before they can
|
||
be reliably compared, then canonicalize them. */
|
||
if (HAVE_canonicalize_funcptr_for_compare
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
|
||
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
== FUNCTION_TYPE))
|
||
{
|
||
rtx new_op0 = gen_reg_rtx (mode);
|
||
|
||
emit_insn (gen_canonicalize_funcptr_for_compare (new_op0, op0));
|
||
op0 = new_op0;
|
||
}
|
||
|
||
if (HAVE_canonicalize_funcptr_for_compare
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
|
||
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
|
||
== FUNCTION_TYPE))
|
||
{
|
||
rtx new_op1 = gen_reg_rtx (mode);
|
||
|
||
emit_insn (gen_canonicalize_funcptr_for_compare (new_op1, op1));
|
||
op1 = new_op1;
|
||
}
|
||
#endif
|
||
|
||
/* Do any postincrements in the expression that was tested. */
|
||
emit_queue ();
|
||
|
||
do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode,
|
||
((mode == BLKmode)
|
||
? expr_size (TREE_OPERAND (exp, 0)) : NULL_RTX),
|
||
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT,
|
||
if_false_label, if_true_label);
|
||
}
|
||
|
||
/* Generate code to calculate EXP using a store-flag instruction
|
||
and return an rtx for the result. EXP is either a comparison
|
||
or a TRUTH_NOT_EXPR whose operand is a comparison.
|
||
|
||
If TARGET is nonzero, store the result there if convenient.
|
||
|
||
If ONLY_CHEAP is non-zero, only do this if it is likely to be very
|
||
cheap.
|
||
|
||
Return zero if there is no suitable set-flag instruction
|
||
available on this machine.
|
||
|
||
Once expand_expr has been called on the arguments of the comparison,
|
||
we are committed to doing the store flag, since it is not safe to
|
||
re-evaluate the expression. We emit the store-flag insn by calling
|
||
emit_store_flag, but only expand the arguments if we have a reason
|
||
to believe that emit_store_flag will be successful. If we think that
|
||
it will, but it isn't, we have to simulate the store-flag with a
|
||
set/jump/set sequence. */
|
||
|
||
static rtx
|
||
do_store_flag (exp, target, mode, only_cheap)
|
||
tree exp;
|
||
rtx target;
|
||
enum machine_mode mode;
|
||
int only_cheap;
|
||
{
|
||
enum rtx_code code;
|
||
tree arg0, arg1, type;
|
||
tree tem;
|
||
enum machine_mode operand_mode;
|
||
int invert = 0;
|
||
int unsignedp;
|
||
rtx op0, op1;
|
||
enum insn_code icode;
|
||
rtx subtarget = target;
|
||
rtx result, label;
|
||
|
||
/* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
|
||
result at the end. We can't simply invert the test since it would
|
||
have already been inverted if it were valid. This case occurs for
|
||
some floating-point comparisons. */
|
||
|
||
if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
|
||
invert = 1, exp = TREE_OPERAND (exp, 0);
|
||
|
||
arg0 = TREE_OPERAND (exp, 0);
|
||
arg1 = TREE_OPERAND (exp, 1);
|
||
type = TREE_TYPE (arg0);
|
||
operand_mode = TYPE_MODE (type);
|
||
unsignedp = TREE_UNSIGNED (type);
|
||
|
||
/* We won't bother with BLKmode store-flag operations because it would mean
|
||
passing a lot of information to emit_store_flag. */
|
||
if (operand_mode == BLKmode)
|
||
return 0;
|
||
|
||
/* We won't bother with store-flag operations involving function pointers
|
||
when function pointers must be canonicalized before comparisons. */
|
||
#ifdef HAVE_canonicalize_funcptr_for_compare
|
||
if (HAVE_canonicalize_funcptr_for_compare
|
||
&& ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
|
||
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
== FUNCTION_TYPE))
|
||
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
|
||
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
|
||
== FUNCTION_TYPE))))
|
||
return 0;
|
||
#endif
|
||
|
||
STRIP_NOPS (arg0);
|
||
STRIP_NOPS (arg1);
|
||
|
||
/* Get the rtx comparison code to use. We know that EXP is a comparison
|
||
operation of some type. Some comparisons against 1 and -1 can be
|
||
converted to comparisons with zero. Do so here so that the tests
|
||
below will be aware that we have a comparison with zero. These
|
||
tests will not catch constants in the first operand, but constants
|
||
are rarely passed as the first operand. */
|
||
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case EQ_EXPR:
|
||
code = EQ;
|
||
break;
|
||
case NE_EXPR:
|
||
code = NE;
|
||
break;
|
||
case LT_EXPR:
|
||
if (integer_onep (arg1))
|
||
arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
|
||
else
|
||
code = unsignedp ? LTU : LT;
|
||
break;
|
||
case LE_EXPR:
|
||
if (! unsignedp && integer_all_onesp (arg1))
|
||
arg1 = integer_zero_node, code = LT;
|
||
else
|
||
code = unsignedp ? LEU : LE;
|
||
break;
|
||
case GT_EXPR:
|
||
if (! unsignedp && integer_all_onesp (arg1))
|
||
arg1 = integer_zero_node, code = GE;
|
||
else
|
||
code = unsignedp ? GTU : GT;
|
||
break;
|
||
case GE_EXPR:
|
||
if (integer_onep (arg1))
|
||
arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
|
||
else
|
||
code = unsignedp ? GEU : GE;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Put a constant second. */
|
||
if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
|
||
{
|
||
tem = arg0; arg0 = arg1; arg1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
/* If this is an equality or inequality test of a single bit, we can
|
||
do this by shifting the bit being tested to the low-order bit and
|
||
masking the result with the constant 1. If the condition was EQ,
|
||
we xor it with 1. This does not require an scc insn and is faster
|
||
than an scc insn even if we have it. */
|
||
|
||
if ((code == NE || code == EQ)
|
||
&& TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
|
||
&& integer_pow2p (TREE_OPERAND (arg0, 1)))
|
||
{
|
||
tree inner = TREE_OPERAND (arg0, 0);
|
||
int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
|
||
int ops_unsignedp;
|
||
|
||
/* If INNER is a right shift of a constant and it plus BITNUM does
|
||
not overflow, adjust BITNUM and INNER. */
|
||
|
||
if (TREE_CODE (inner) == RSHIFT_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
|
||
&& TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
|
||
&& (bitnum + TREE_INT_CST_LOW (TREE_OPERAND (inner, 1))
|
||
< TYPE_PRECISION (type)))
|
||
{
|
||
bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
|
||
inner = TREE_OPERAND (inner, 0);
|
||
}
|
||
|
||
/* If we are going to be able to omit the AND below, we must do our
|
||
operations as unsigned. If we must use the AND, we have a choice.
|
||
Normally unsigned is faster, but for some machines signed is. */
|
||
ops_unsignedp = (bitnum == TYPE_PRECISION (type) - 1 ? 1
|
||
#ifdef LOAD_EXTEND_OP
|
||
: (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND ? 0 : 1)
|
||
#else
|
||
: 1
|
||
#endif
|
||
);
|
||
|
||
if (subtarget == 0 || GET_CODE (subtarget) != REG
|
||
|| GET_MODE (subtarget) != operand_mode
|
||
|| ! safe_from_p (subtarget, inner, 1))
|
||
subtarget = 0;
|
||
|
||
op0 = expand_expr (inner, subtarget, VOIDmode, 0);
|
||
|
||
if (bitnum != 0)
|
||
op0 = expand_shift (RSHIFT_EXPR, GET_MODE (op0), op0,
|
||
size_int (bitnum), subtarget, ops_unsignedp);
|
||
|
||
if (GET_MODE (op0) != mode)
|
||
op0 = convert_to_mode (mode, op0, ops_unsignedp);
|
||
|
||
if ((code == EQ && ! invert) || (code == NE && invert))
|
||
op0 = expand_binop (mode, xor_optab, op0, const1_rtx, subtarget,
|
||
ops_unsignedp, OPTAB_LIB_WIDEN);
|
||
|
||
/* Put the AND last so it can combine with more things. */
|
||
if (bitnum != TYPE_PRECISION (type) - 1)
|
||
op0 = expand_and (op0, const1_rtx, subtarget);
|
||
|
||
return op0;
|
||
}
|
||
|
||
/* Now see if we are likely to be able to do this. Return if not. */
|
||
if (! can_compare_p (operand_mode))
|
||
return 0;
|
||
icode = setcc_gen_code[(int) code];
|
||
if (icode == CODE_FOR_nothing
|
||
|| (only_cheap && insn_operand_mode[(int) icode][0] != mode))
|
||
{
|
||
/* We can only do this if it is one of the special cases that
|
||
can be handled without an scc insn. */
|
||
if ((code == LT && integer_zerop (arg1))
|
||
|| (! only_cheap && code == GE && integer_zerop (arg1)))
|
||
;
|
||
else if (BRANCH_COST >= 0
|
||
&& ! only_cheap && (code == NE || code == EQ)
|
||
&& TREE_CODE (type) != REAL_TYPE
|
||
&& ((abs_optab->handlers[(int) operand_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| (ffs_optab->handlers[(int) operand_mode].insn_code
|
||
!= CODE_FOR_nothing)))
|
||
;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
preexpand_calls (exp);
|
||
if (subtarget == 0 || GET_CODE (subtarget) != REG
|
||
|| GET_MODE (subtarget) != operand_mode
|
||
|| ! safe_from_p (subtarget, arg1, 1))
|
||
subtarget = 0;
|
||
|
||
op0 = expand_expr (arg0, subtarget, VOIDmode, 0);
|
||
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* Pass copies of OP0 and OP1 in case they contain a QUEUED. This is safe
|
||
because, if the emit_store_flag does anything it will succeed and
|
||
OP0 and OP1 will not be used subsequently. */
|
||
|
||
result = emit_store_flag (target, code,
|
||
queued_subexp_p (op0) ? copy_rtx (op0) : op0,
|
||
queued_subexp_p (op1) ? copy_rtx (op1) : op1,
|
||
operand_mode, unsignedp, 1);
|
||
|
||
if (result)
|
||
{
|
||
if (invert)
|
||
result = expand_binop (mode, xor_optab, result, const1_rtx,
|
||
result, 0, OPTAB_LIB_WIDEN);
|
||
return result;
|
||
}
|
||
|
||
/* If this failed, we have to do this with set/compare/jump/set code. */
|
||
if (GET_CODE (target) != REG
|
||
|| reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
|
||
target = gen_reg_rtx (GET_MODE (target));
|
||
|
||
emit_move_insn (target, invert ? const0_rtx : const1_rtx);
|
||
result = compare_from_rtx (op0, op1, code, unsignedp,
|
||
operand_mode, NULL_RTX, 0);
|
||
if (GET_CODE (result) == CONST_INT)
|
||
return (((result == const0_rtx && ! invert)
|
||
|| (result != const0_rtx && invert))
|
||
? const0_rtx : const1_rtx);
|
||
|
||
label = gen_label_rtx ();
|
||
if (bcc_gen_fctn[(int) code] == 0)
|
||
abort ();
|
||
|
||
emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
|
||
emit_move_insn (target, invert ? const1_rtx : const0_rtx);
|
||
emit_label (label);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Generate a tablejump instruction (used for switch statements). */
|
||
|
||
#ifdef HAVE_tablejump
|
||
|
||
/* INDEX is the value being switched on, with the lowest value
|
||
in the table already subtracted.
|
||
MODE is its expected mode (needed if INDEX is constant).
|
||
RANGE is the length of the jump table.
|
||
TABLE_LABEL is a CODE_LABEL rtx for the table itself.
|
||
|
||
DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
|
||
index value is out of range. */
|
||
|
||
void
|
||
do_tablejump (index, mode, range, table_label, default_label)
|
||
rtx index, range, table_label, default_label;
|
||
enum machine_mode mode;
|
||
{
|
||
register rtx temp, vector;
|
||
|
||
/* Do an unsigned comparison (in the proper mode) between the index
|
||
expression and the value which represents the length of the range.
|
||
Since we just finished subtracting the lower bound of the range
|
||
from the index expression, this comparison allows us to simultaneously
|
||
check that the original index expression value is both greater than
|
||
or equal to the minimum value of the range and less than or equal to
|
||
the maximum value of the range. */
|
||
|
||
emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
|
||
0, default_label);
|
||
|
||
/* If index is in range, it must fit in Pmode.
|
||
Convert to Pmode so we can index with it. */
|
||
if (mode != Pmode)
|
||
index = convert_to_mode (Pmode, index, 1);
|
||
|
||
/* Don't let a MEM slip thru, because then INDEX that comes
|
||
out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
|
||
and break_out_memory_refs will go to work on it and mess it up. */
|
||
#ifdef PIC_CASE_VECTOR_ADDRESS
|
||
if (flag_pic && GET_CODE (index) != REG)
|
||
index = copy_to_mode_reg (Pmode, index);
|
||
#endif
|
||
|
||
/* If flag_force_addr were to affect this address
|
||
it could interfere with the tricky assumptions made
|
||
about addresses that contain label-refs,
|
||
which may be valid only very near the tablejump itself. */
|
||
/* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
|
||
GET_MODE_SIZE, because this indicates how large insns are. The other
|
||
uses should all be Pmode, because they are addresses. This code
|
||
could fail if addresses and insns are not the same size. */
|
||
index = gen_rtx_PLUS (Pmode,
|
||
gen_rtx_MULT (Pmode, index,
|
||
GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
|
||
gen_rtx_LABEL_REF (Pmode, table_label));
|
||
#ifdef PIC_CASE_VECTOR_ADDRESS
|
||
if (flag_pic)
|
||
index = PIC_CASE_VECTOR_ADDRESS (index);
|
||
else
|
||
#endif
|
||
index = memory_address_noforce (CASE_VECTOR_MODE, index);
|
||
temp = gen_reg_rtx (CASE_VECTOR_MODE);
|
||
vector = gen_rtx_MEM (CASE_VECTOR_MODE, index);
|
||
RTX_UNCHANGING_P (vector) = 1;
|
||
convert_move (temp, vector, 0);
|
||
|
||
emit_jump_insn (gen_tablejump (temp, table_label));
|
||
|
||
/* If we are generating PIC code or if the table is PC-relative, the
|
||
table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
|
||
if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
|
||
emit_barrier ();
|
||
}
|
||
|
||
#endif /* HAVE_tablejump */
|