mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-03-27 18:31:24 +08:00
2010-11-22 Sebastian Pop <sebastian.pop@amd.com> PR middle-end/45297 * graphite-poly.c (new_poly_bb): Returns a poly_bb_p. Do not take the reduction bool in parameter. Clear PBB_IS_REDUCTION. Set GBB_PBB. * graphite-poly.h (new_poly_bb): Update declaration. (gbb_from_bb): Moved here... (pbb_from_bb): New. * graphite-sese-to-poly.c (var_used_in_not_loop_header_phi_node): Removed. (graphite_stmt_p): Removed. (try_generate_gimple_bb): Returns a gimple_bb_p. Do not pass in sbitmap reductions. Always build a gimple_bb_p. Do not call new_poly_bb. (build_scop_bbs_1): Do not pass in sbitmap reductions. (build_scop_bbs): Same. (gbb_from_bb): ... from here. (add_conditions_to_constraints): Moved up. (analyze_drs): New. (build_scop_drs): Call analyze_drs. Remove all the PBBs that do not contain data references. (new_pbb_from_pbb): New. (insert_out_of_ssa_copy_on_edge): Call new_pbb_from_pbb after a block is split. (rewrite_close_phi_out_of_ssa): Update call to insert_out_of_ssa_copy_on_edge. (rewrite_reductions_out_of_ssa): Now static. (rewrite_cross_bb_scalar_deps_out_of_ssa): Same. (split_pbb): New. (split_reduction_stmt): Call split_pbb. (translate_scalar_reduction_to_array): Pass in the scop, do not pass in the sbitmap reductions. (rewrite_commutative_reductions_out_of_ssa_close_phi): Same. (rewrite_commutative_reductions_out_of_ssa_loop): Same. (rewrite_commutative_reductions_out_of_ssa): Same. (build_poly_scop): Call build_scop_bbs, rewrite_commutative_reductions_out_of_ssa, rewrite_reductions_out_of_ssa, and rewrite_cross_bb_scalar_deps_out_of_ssa. Move build_scop_drs before scop_to_lst. * graphite-sese-to-poly.h (rewrite_commutative_reductions_out_of_ssa): Removed declaration. (rewrite_reductions_out_of_ssa): Same. (rewrite_cross_bb_scalar_deps_out_of_ssa): Same. (build_scop_bbs): Same. * graphite.c (graphite_transform_loops): Do not initialize reductions. Do not call build_scop_bbs, rewrite_commutative_reductions_out_of_ssa, rewrite_reductions_out_of_ssa, and rewrite_cross_bb_scalar_deps_out_of_ssa. * sese.h (struct gimple_bb): Add field pbb. (GBB_PBB): New. * gcc.dg/graphite/pr45297.c: New. From-SVN: r167348
415 lines
10 KiB
C
415 lines
10 KiB
C
/* Single entry single exit control flow regions.
|
||
Copyright (C) 2008, 2009, 2010
|
||
Free Software Foundation, Inc.
|
||
Contributed by Jan Sjodin <jan.sjodin@amd.com> and
|
||
Sebastian Pop <sebastian.pop@amd.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#ifndef GCC_SESE_H
|
||
#define GCC_SESE_H
|
||
|
||
/* A Single Entry, Single Exit region is a part of the CFG delimited
|
||
by two edges. */
|
||
typedef struct sese_s
|
||
{
|
||
/* Single ENTRY and single EXIT from the SESE region. */
|
||
edge entry, exit;
|
||
|
||
/* Parameters used within the SCOP. */
|
||
VEC (tree, heap) *params;
|
||
|
||
/* Loops completely contained in the SCOP. */
|
||
bitmap loops;
|
||
VEC (loop_p, heap) *loop_nest;
|
||
|
||
/* Are we allowed to add more params? This is for debugging purpose. We
|
||
can only add new params before generating the bb domains, otherwise they
|
||
become invalid. */
|
||
bool add_params;
|
||
} *sese;
|
||
|
||
#define SESE_ENTRY(S) (S->entry)
|
||
#define SESE_ENTRY_BB(S) (S->entry->dest)
|
||
#define SESE_EXIT(S) (S->exit)
|
||
#define SESE_EXIT_BB(S) (S->exit->dest)
|
||
#define SESE_PARAMS(S) (S->params)
|
||
#define SESE_LOOPS(S) (S->loops)
|
||
#define SESE_LOOP_NEST(S) (S->loop_nest)
|
||
#define SESE_ADD_PARAMS(S) (S->add_params)
|
||
|
||
extern sese new_sese (edge, edge);
|
||
extern void free_sese (sese);
|
||
extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
|
||
extern void build_sese_loop_nests (sese);
|
||
extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge,
|
||
VEC (tree, heap) *);
|
||
extern struct loop *outermost_loop_in_sese (sese, basic_block);
|
||
extern void insert_loop_close_phis (htab_t, loop_p);
|
||
extern void insert_guard_phis (basic_block, edge, edge, htab_t, htab_t);
|
||
extern tree scalar_evolution_in_region (sese, loop_p, tree);
|
||
|
||
/* Check that SESE contains LOOP. */
|
||
|
||
static inline bool
|
||
sese_contains_loop (sese sese, struct loop *loop)
|
||
{
|
||
return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
|
||
}
|
||
|
||
/* The number of parameters in REGION. */
|
||
|
||
static inline unsigned
|
||
sese_nb_params (sese region)
|
||
{
|
||
return VEC_length (tree, SESE_PARAMS (region));
|
||
}
|
||
|
||
/* Checks whether BB is contained in the region delimited by ENTRY and
|
||
EXIT blocks. */
|
||
|
||
static inline bool
|
||
bb_in_region (basic_block bb, basic_block entry, basic_block exit)
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
/* Check that there are no edges coming in the region: all the
|
||
predecessors of EXIT are dominated by ENTRY. */
|
||
FOR_EACH_EDGE (e, ei, exit->preds)
|
||
dominated_by_p (CDI_DOMINATORS, e->src, entry);
|
||
}
|
||
#endif
|
||
|
||
return dominated_by_p (CDI_DOMINATORS, bb, entry)
|
||
&& !(dominated_by_p (CDI_DOMINATORS, bb, exit)
|
||
&& !dominated_by_p (CDI_DOMINATORS, entry, exit));
|
||
}
|
||
|
||
/* Checks whether BB is contained in the region delimited by ENTRY and
|
||
EXIT blocks. */
|
||
|
||
static inline bool
|
||
bb_in_sese_p (basic_block bb, sese region)
|
||
{
|
||
basic_block entry = SESE_ENTRY_BB (region);
|
||
basic_block exit = SESE_EXIT_BB (region);
|
||
|
||
return bb_in_region (bb, entry, exit);
|
||
}
|
||
|
||
/* Returns true when NAME is defined in REGION. */
|
||
|
||
static inline bool
|
||
defined_in_sese_p (tree name, sese region)
|
||
{
|
||
gimple stmt = SSA_NAME_DEF_STMT (name);
|
||
basic_block bb = gimple_bb (stmt);
|
||
|
||
return bb && bb_in_sese_p (bb, region);
|
||
}
|
||
|
||
/* Returns true when LOOP is in REGION. */
|
||
|
||
static inline bool
|
||
loop_in_sese_p (struct loop *loop, sese region)
|
||
{
|
||
return (bb_in_sese_p (loop->header, region)
|
||
&& bb_in_sese_p (loop->latch, region));
|
||
}
|
||
|
||
/* Returns the loop depth of LOOP in REGION. The loop depth
|
||
is the same as the normal loop depth, but limited by a region.
|
||
|
||
Example:
|
||
|
||
loop_0
|
||
loop_1
|
||
{
|
||
S0
|
||
<- region start
|
||
S1
|
||
|
||
loop_2
|
||
S2
|
||
|
||
S3
|
||
<- region end
|
||
}
|
||
|
||
loop_0 does not exist in the region -> invalid
|
||
loop_1 exists, but is not completely contained in the region -> depth 0
|
||
loop_2 is completely contained -> depth 1 */
|
||
|
||
static inline unsigned int
|
||
sese_loop_depth (sese region, loop_p loop)
|
||
{
|
||
unsigned int depth = 0;
|
||
|
||
gcc_assert ((!loop_in_sese_p (loop, region)
|
||
&& (SESE_ENTRY_BB (region)->loop_father == loop
|
||
|| SESE_EXIT (region)->src->loop_father == loop))
|
||
|| loop_in_sese_p (loop, region));
|
||
|
||
while (loop_in_sese_p (loop, region))
|
||
{
|
||
depth++;
|
||
loop = loop_outer (loop);
|
||
}
|
||
|
||
return depth;
|
||
}
|
||
|
||
/* Splits BB to make a single entry single exit region. */
|
||
|
||
static inline sese
|
||
split_region_for_bb (basic_block bb)
|
||
{
|
||
edge entry, exit;
|
||
|
||
if (single_pred_p (bb))
|
||
entry = single_pred_edge (bb);
|
||
else
|
||
{
|
||
entry = split_block_after_labels (bb);
|
||
bb = single_succ (bb);
|
||
}
|
||
|
||
if (single_succ_p (bb))
|
||
exit = single_succ_edge (bb);
|
||
else
|
||
{
|
||
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
||
gsi_prev (&gsi);
|
||
exit = split_block (bb, gsi_stmt (gsi));
|
||
}
|
||
|
||
return new_sese (entry, exit);
|
||
}
|
||
|
||
/* Returns the block preceding the entry of a SESE. */
|
||
|
||
static inline basic_block
|
||
block_before_sese (sese sese)
|
||
{
|
||
return SESE_ENTRY (sese)->src;
|
||
}
|
||
|
||
|
||
|
||
/* A single entry single exit specialized for conditions. */
|
||
|
||
typedef struct ifsese_s {
|
||
sese region;
|
||
sese true_region;
|
||
sese false_region;
|
||
} *ifsese;
|
||
|
||
extern void if_region_set_false_region (ifsese, sese);
|
||
extern ifsese move_sese_in_condition (sese);
|
||
extern edge get_true_edge_from_guard_bb (basic_block);
|
||
extern edge get_false_edge_from_guard_bb (basic_block);
|
||
extern void set_ifsese_condition (ifsese, tree);
|
||
|
||
static inline edge
|
||
if_region_entry (ifsese if_region)
|
||
{
|
||
return SESE_ENTRY (if_region->region);
|
||
}
|
||
|
||
static inline edge
|
||
if_region_exit (ifsese if_region)
|
||
{
|
||
return SESE_EXIT (if_region->region);
|
||
}
|
||
|
||
static inline basic_block
|
||
if_region_get_condition_block (ifsese if_region)
|
||
{
|
||
return if_region_entry (if_region)->dest;
|
||
}
|
||
|
||
/* Structure containing the mapping between the old names and the new
|
||
names used after block copy in the new loop context. */
|
||
typedef struct rename_map_elt_s
|
||
{
|
||
tree old_name, expr;
|
||
} *rename_map_elt;
|
||
|
||
DEF_VEC_P(rename_map_elt);
|
||
DEF_VEC_ALLOC_P (rename_map_elt, heap);
|
||
|
||
extern void debug_rename_map (htab_t);
|
||
extern hashval_t rename_map_elt_info (const void *);
|
||
extern int eq_rename_map_elts (const void *, const void *);
|
||
|
||
/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
|
||
|
||
static inline rename_map_elt
|
||
new_rename_map_elt (tree old_name, tree expr)
|
||
{
|
||
rename_map_elt res;
|
||
|
||
res = XNEW (struct rename_map_elt_s);
|
||
res->old_name = old_name;
|
||
res->expr = expr;
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Structure containing the mapping between the CLooG's induction
|
||
variable and the type of the old induction variable. */
|
||
typedef struct ivtype_map_elt_s
|
||
{
|
||
tree type;
|
||
const char *cloog_iv;
|
||
} *ivtype_map_elt;
|
||
|
||
extern void debug_ivtype_map (htab_t);
|
||
extern hashval_t ivtype_map_elt_info (const void *);
|
||
extern int eq_ivtype_map_elts (const void *, const void *);
|
||
|
||
/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
|
||
|
||
static inline ivtype_map_elt
|
||
new_ivtype_map_elt (const char *cloog_iv, tree type)
|
||
{
|
||
ivtype_map_elt res;
|
||
|
||
res = XNEW (struct ivtype_map_elt_s);
|
||
res->cloog_iv = cloog_iv;
|
||
res->type = type;
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Free and compute again all the dominators information. */
|
||
|
||
static inline void
|
||
recompute_all_dominators (void)
|
||
{
|
||
mark_irreducible_loops ();
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
}
|
||
|
||
typedef struct gimple_bb
|
||
{
|
||
basic_block bb;
|
||
struct poly_bb *pbb;
|
||
|
||
/* Lists containing the restrictions of the conditional statements
|
||
dominating this bb. This bb can only be executed, if all conditions
|
||
are true.
|
||
|
||
Example:
|
||
|
||
for (i = 0; i <= 20; i++)
|
||
{
|
||
A
|
||
|
||
if (2i <= 8)
|
||
B
|
||
}
|
||
|
||
So for B there is an additional condition (2i <= 8).
|
||
|
||
List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
|
||
corresponding element in CONDITION_CASES is not NULL_TREE. For a
|
||
SWITCH_EXPR the corresponding element in CONDITION_CASES is a
|
||
CASE_LABEL_EXPR. */
|
||
VEC (gimple, heap) *conditions;
|
||
VEC (gimple, heap) *condition_cases;
|
||
VEC (data_reference_p, heap) *data_refs;
|
||
} *gimple_bb_p;
|
||
|
||
#define GBB_BB(GBB) (GBB)->bb
|
||
#define GBB_PBB(GBB) (GBB)->pbb
|
||
#define GBB_DATA_REFS(GBB) (GBB)->data_refs
|
||
#define GBB_CONDITIONS(GBB) (GBB)->conditions
|
||
#define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
|
||
|
||
/* Return the innermost loop that contains the basic block GBB. */
|
||
|
||
static inline struct loop *
|
||
gbb_loop (struct gimple_bb *gbb)
|
||
{
|
||
return GBB_BB (gbb)->loop_father;
|
||
}
|
||
|
||
/* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
|
||
If there is no corresponding gimple loop, we return NULL. */
|
||
|
||
static inline loop_p
|
||
gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
|
||
{
|
||
loop_p loop = gbb_loop (gbb);
|
||
int depth = sese_loop_depth (region, loop);
|
||
|
||
while (--depth > index)
|
||
loop = loop_outer (loop);
|
||
|
||
gcc_assert (sese_contains_loop (region, loop));
|
||
|
||
return loop;
|
||
}
|
||
|
||
/* The number of common loops in REGION for GBB1 and GBB2. */
|
||
|
||
static inline int
|
||
nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
|
||
{
|
||
loop_p l1 = gbb_loop (gbb1);
|
||
loop_p l2 = gbb_loop (gbb2);
|
||
loop_p common = find_common_loop (l1, l2);
|
||
|
||
return sese_loop_depth (region, common);
|
||
}
|
||
|
||
/* Return true when DEF can be analyzed in REGION by the scalar
|
||
evolution analyzer. */
|
||
|
||
static inline bool
|
||
scev_analyzable_p (tree def, sese region)
|
||
{
|
||
loop_p loop;
|
||
tree scev;
|
||
tree type = TREE_TYPE (def);
|
||
|
||
/* When Graphite generates code for a scev, the code generator
|
||
expresses the scev in function of a single induction variable.
|
||
This is unsafe for floating point computations, as it may replace
|
||
a floating point sum reduction with a multiplication. The
|
||
following test returns false for non integer types to avoid such
|
||
problems. */
|
||
if (!INTEGRAL_TYPE_P (type)
|
||
&& !POINTER_TYPE_P (type))
|
||
return false;
|
||
|
||
loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
|
||
scev = scalar_evolution_in_region (region, loop, def);
|
||
|
||
return !chrec_contains_undetermined (scev)
|
||
&& TREE_CODE (scev) != SSA_NAME
|
||
&& (tree_does_not_contain_chrecs (scev)
|
||
|| evolution_function_is_affine_p (scev));
|
||
}
|
||
|
||
#endif
|