mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-10 19:35:32 +08:00
709f271858
2002-01-01 Roger Sayle <roger@eyesopen.com> * libmath/stubs.c (sinf,cosf): Implement stubs to enable the equivalent ___builtin__ versions. * include/c_shadow/bits/std_cmath.h: All __builtin math functions are available in libstdc++ as the necessary stub implementations are provided by libmath/stubs.c. From-SVN: r48445
272 lines
4.2 KiB
C
272 lines
4.2 KiB
C
/* Stub definitions for libmath subpart of libstdc++. */
|
|
|
|
/* Copyright (C) 2001, 2002 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU ISO C++ Library. This library is free
|
|
software; you can redistribute it and/or modify it under the
|
|
terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this library; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
USA.
|
|
|
|
As a special exception, you may use this file as part of a free software
|
|
library without restriction. Specifically, if other files instantiate
|
|
templates or use macros or inline functions from this file, or you compile
|
|
this file and link it with other files to produce an executable, this
|
|
file does not by itself cause the resulting executable to be covered by
|
|
the GNU General Public License. This exception does not however
|
|
invalidate any other reasons why the executable file might be covered by
|
|
the GNU General Public License. */
|
|
|
|
#include <math.h>
|
|
#include "config.h"
|
|
|
|
/* For targets which do not have support for long double versions,
|
|
we use the crude approximation. We'll do better later. */
|
|
|
|
|
|
#ifndef HAVE_ATAN2F
|
|
float
|
|
atan2f(float x, float y)
|
|
{
|
|
return (float) atan2(x, y);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_ATAN2L
|
|
long double
|
|
atan2l(long double x, long double y)
|
|
{
|
|
return atan2((double) x, (double) y);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_COSF
|
|
float
|
|
cosf(float x)
|
|
{
|
|
return (float) cos(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_COSL
|
|
long double
|
|
cosl(long double x)
|
|
{
|
|
return cos((double) x);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_COSHF
|
|
float
|
|
coshf(float x)
|
|
{
|
|
return (float) cosh(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_COSHL
|
|
long double
|
|
coshl(long double x)
|
|
{
|
|
return cosh((double) x);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_EXPF
|
|
float
|
|
expf(float x)
|
|
{
|
|
return (float) exp(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_EXPL
|
|
long double
|
|
expl(long double x)
|
|
{
|
|
return exp((double) x);
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Compute the hypothenuse of a right triangle with side x and y. */
|
|
#ifndef HAVE_HYPOTF
|
|
float
|
|
hypotf(float x, float y)
|
|
{
|
|
float s = fabsf(x) + fabsf(y);
|
|
x /= s; y /= s;
|
|
return s * sqrtf(x * x + y * y);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_HYPOT
|
|
double
|
|
hypot(double x, double y)
|
|
{
|
|
double s = fabs(x) + fabs(y);
|
|
x /= s; y /= s;
|
|
return s * sqrt(x * x + y * y);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_HYPOTL
|
|
long double
|
|
hypotl(long double x, long double y)
|
|
{
|
|
long double s = fabsl(x) + fabsl(y);
|
|
x /= s; y /= s;
|
|
return s * sqrtl(x * x + y * y);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef HAVE_LOGF
|
|
float
|
|
logf(float x)
|
|
{
|
|
return (float) log(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_LOGL
|
|
long double
|
|
logl(long double x)
|
|
{
|
|
return log((double) x);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_LOG10F
|
|
float
|
|
log10f(float x)
|
|
{
|
|
return (float) log10(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_LOG10L
|
|
long double
|
|
log10l(long double x)
|
|
{
|
|
return log10((double) x);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_POWF
|
|
float
|
|
powf(float x, float y)
|
|
{
|
|
return (float) pow(x, y);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_POWL
|
|
long double
|
|
powl(long double x, long double y)
|
|
{
|
|
return pow((double) x, (double) y);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_SINF
|
|
float
|
|
sinf(float x)
|
|
{
|
|
return (float) sin(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_SINL
|
|
long double
|
|
sinl(long double x)
|
|
{
|
|
return sin((double) x);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_SINHF
|
|
float
|
|
sinhf(float x)
|
|
{
|
|
return (float) sinh(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_SINHL
|
|
long double
|
|
sinhl(long double x)
|
|
{
|
|
return sinh((double) x);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_SQRTF
|
|
float
|
|
sqrtf(float x)
|
|
{
|
|
return (float) sqrt(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_SQRTL
|
|
long double
|
|
sqrtl(long double x)
|
|
{
|
|
return sqrt((double) x);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_TANF
|
|
float
|
|
tanf(float x)
|
|
{
|
|
return (float) tan(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_TANL
|
|
long double
|
|
tanl(long double x)
|
|
{
|
|
return tan((double) x);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef HAVE_TANHF
|
|
float
|
|
tanhf(float x)
|
|
{
|
|
return (float) tanh(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_TANHL
|
|
long double
|
|
tanhl(long double x)
|
|
{
|
|
return tanh((double) x);
|
|
}
|
|
#endif
|