gcc/libstdc++-v3/include/bits/stl_bvector.h
Benjamin Kosnik 988ad90d00 localename.cc: Standardize exception strings.
2003-04-28  Benjamin Kosnik  <bkoz@redhat.com>

	* src/localename.cc: Standardize exception strings.
	* src/locale.cc: Same.
	* src/ios.cc: Same.
	* include/bits/basic_string.tcc: Same.
	* include/bits/basic_ios.tcc: Same.
	* include/std/std_bitset.h: Same.
	* include/ext/ropeimpl.h: Same.
	* include/bits/stl_vector.h: Same.
	* include/bits/stl_deque.h: Same.
	* include/bits/stl_bvector.h: Same.
	* config/locale/generic/c_locale.cc: Same.
	* config/locale/gnu/c_locale.cc: Same.
	* config/locale/ieee_1003.1-2001/codecvt_specializations.h: Same.

	* testsuite/testsuite_hooks.cc (__gnu_cxx_test): Modify.

From-SVN: r66192
2003-04-28 23:05:57 +00:00

736 lines
24 KiB
C++

// bit_vector and vector<bool> specialization -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996-1999
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_bvector.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef __GLIBCPP_INTERNAL_BVECTOR_H
#define __GLIBCPP_INTERNAL_BVECTOR_H
namespace std
{
typedef unsigned long _Bit_type;
enum { _M_word_bit = int(CHAR_BIT * sizeof(_Bit_type)) };
struct _Bit_reference {
_Bit_type * _M_p;
_Bit_type _M_mask;
_Bit_reference(_Bit_type * __x, _Bit_type __y)
: _M_p(__x), _M_mask(__y) {}
public:
_Bit_reference() : _M_p(0), _M_mask(0) {}
operator bool() const { return !!(*_M_p & _M_mask); }
_Bit_reference& operator=(bool __x)
{
if (__x) *_M_p |= _M_mask;
else *_M_p &= ~_M_mask;
return *this;
}
_Bit_reference& operator=(const _Bit_reference& __x)
{ return *this = bool(__x); }
bool operator==(const _Bit_reference& __x) const
{ return bool(*this) == bool(__x); }
bool operator<(const _Bit_reference& __x) const
{ return !bool(*this) && bool(__x); }
void flip() { *_M_p ^= _M_mask; }
};
struct _Bit_iterator_base : public iterator<random_access_iterator_tag, bool>
{
_Bit_type * _M_p;
unsigned int _M_offset;
_Bit_iterator_base(_Bit_type * __x, unsigned int __y)
: _M_p(__x), _M_offset(__y) {}
void _M_bump_up() {
if (_M_offset++ == _M_word_bit - 1) {
_M_offset = 0;
++_M_p;
}
}
void _M_bump_down() {
if (_M_offset-- == 0) {
_M_offset = _M_word_bit - 1;
--_M_p;
}
}
void _M_incr(ptrdiff_t __i) {
difference_type __n = __i + _M_offset;
_M_p += __n / _M_word_bit;
__n = __n % _M_word_bit;
if (__n < 0) {
_M_offset = (unsigned int) __n + _M_word_bit;
--_M_p;
} else
_M_offset = (unsigned int) __n;
}
bool operator==(const _Bit_iterator_base& __i) const {
return _M_p == __i._M_p && _M_offset == __i._M_offset;
}
bool operator<(const _Bit_iterator_base& __i) const {
return _M_p < __i._M_p || (_M_p == __i._M_p && _M_offset < __i._M_offset);
}
bool operator!=(const _Bit_iterator_base& __i) const {
return !(*this == __i);
}
bool operator>(const _Bit_iterator_base& __i) const {
return __i < *this;
}
bool operator<=(const _Bit_iterator_base& __i) const {
return !(__i < *this);
}
bool operator>=(const _Bit_iterator_base& __i) const {
return !(*this < __i);
}
};
inline ptrdiff_t
operator-(const _Bit_iterator_base& __x, const _Bit_iterator_base& __y) {
return _M_word_bit * (__x._M_p - __y._M_p) + __x._M_offset - __y._M_offset;
}
struct _Bit_iterator : public _Bit_iterator_base
{
typedef _Bit_reference reference;
typedef _Bit_reference* pointer;
typedef _Bit_iterator iterator;
_Bit_iterator() : _Bit_iterator_base(0, 0) {}
_Bit_iterator(_Bit_type * __x, unsigned int __y)
: _Bit_iterator_base(__x, __y) {}
reference operator*() const { return reference(_M_p, 1UL << _M_offset); }
iterator& operator++() {
_M_bump_up();
return *this;
}
iterator operator++(int) {
iterator __tmp = *this;
_M_bump_up();
return __tmp;
}
iterator& operator--() {
_M_bump_down();
return *this;
}
iterator operator--(int) {
iterator __tmp = *this;
_M_bump_down();
return __tmp;
}
iterator& operator+=(difference_type __i) {
_M_incr(__i);
return *this;
}
iterator& operator-=(difference_type __i) {
*this += -__i;
return *this;
}
iterator operator+(difference_type __i) const {
iterator __tmp = *this;
return __tmp += __i;
}
iterator operator-(difference_type __i) const {
iterator __tmp = *this;
return __tmp -= __i;
}
reference operator[](difference_type __i) { return *(*this + __i); }
};
inline _Bit_iterator
operator+(ptrdiff_t __n, const _Bit_iterator& __x) { return __x + __n; }
struct _Bit_const_iterator : public _Bit_iterator_base
{
typedef bool reference;
typedef bool const_reference;
typedef const bool* pointer;
typedef _Bit_const_iterator const_iterator;
_Bit_const_iterator() : _Bit_iterator_base(0, 0) {}
_Bit_const_iterator(_Bit_type * __x, unsigned int __y)
: _Bit_iterator_base(__x, __y) {}
_Bit_const_iterator(const _Bit_iterator& __x)
: _Bit_iterator_base(__x._M_p, __x._M_offset) {}
const_reference operator*() const {
return _Bit_reference(_M_p, 1UL << _M_offset);
}
const_iterator& operator++() {
_M_bump_up();
return *this;
}
const_iterator operator++(int) {
const_iterator __tmp = *this;
_M_bump_up();
return __tmp;
}
const_iterator& operator--() {
_M_bump_down();
return *this;
}
const_iterator operator--(int) {
const_iterator __tmp = *this;
_M_bump_down();
return __tmp;
}
const_iterator& operator+=(difference_type __i) {
_M_incr(__i);
return *this;
}
const_iterator& operator-=(difference_type __i) {
*this += -__i;
return *this;
}
const_iterator operator+(difference_type __i) const {
const_iterator __tmp = *this;
return __tmp += __i;
}
const_iterator operator-(difference_type __i) const {
const_iterator __tmp = *this;
return __tmp -= __i;
}
const_reference operator[](difference_type __i) {
return *(*this + __i);
}
};
inline _Bit_const_iterator
operator+(ptrdiff_t __n, const _Bit_const_iterator& __x) { return __x + __n; }
// Bit-vector base class, which encapsulates the difference between
// old SGI-style allocators and standard-conforming allocators.
// Base class for ordinary allocators.
template <class _Allocator, bool __is_static>
class _Bvector_alloc_base {
public:
typedef typename _Alloc_traits<bool, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
_Bvector_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(), _M_finish(), _M_end_of_storage(0) {}
protected:
_Bit_type * _M_bit_alloc(size_t __n)
{ return _M_data_allocator.allocate((__n + _M_word_bit - 1)/_M_word_bit); }
void _M_deallocate() {
if (_M_start._M_p)
_M_data_allocator.deallocate(_M_start._M_p,
_M_end_of_storage - _M_start._M_p);
}
typename _Alloc_traits<_Bit_type, _Allocator>::allocator_type
_M_data_allocator;
_Bit_iterator _M_start;
_Bit_iterator _M_finish;
_Bit_type * _M_end_of_storage;
};
// Specialization for instanceless allocators.
template <class _Allocator>
class _Bvector_alloc_base<_Allocator, true> {
public:
typedef typename _Alloc_traits<bool, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Bvector_alloc_base(const allocator_type&)
: _M_start(), _M_finish(), _M_end_of_storage(0) {}
protected:
typedef typename _Alloc_traits<_Bit_type, _Allocator>::_Alloc_type
_Alloc_type;
_Bit_type * _M_bit_alloc(size_t __n)
{ return _Alloc_type::allocate((__n + _M_word_bit - 1)/_M_word_bit); }
void _M_deallocate() {
if (_M_start._M_p)
_Alloc_type::deallocate(_M_start._M_p,
_M_end_of_storage - _M_start._M_p);
}
_Bit_iterator _M_start;
_Bit_iterator _M_finish;
_Bit_type * _M_end_of_storage;
};
template <class _Alloc>
class _Bvector_base
: public _Bvector_alloc_base<_Alloc,
_Alloc_traits<bool, _Alloc>::_S_instanceless>
{
typedef _Bvector_alloc_base<_Alloc,
_Alloc_traits<bool, _Alloc>::_S_instanceless>
_Base;
public:
typedef typename _Base::allocator_type allocator_type;
_Bvector_base(const allocator_type& __a) : _Base(__a) {}
~_Bvector_base() { _Base::_M_deallocate(); }
};
} // namespace std
// Declare a partial specialization of vector<T, Alloc>.
#include <bits/stl_vector.h>
namespace std
{
template <typename _Alloc>
class vector<bool, _Alloc> : public _Bvector_base<_Alloc>
{
public:
typedef bool value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Bit_reference reference;
typedef bool const_reference;
typedef _Bit_reference* pointer;
typedef const bool* const_pointer;
typedef _Bit_iterator iterator;
typedef _Bit_const_iterator const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef typename _Bvector_base<_Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const {
return _Bvector_base<_Alloc>::get_allocator();
}
protected:
using _Bvector_base<_Alloc>::_M_bit_alloc;
using _Bvector_base<_Alloc>::_M_deallocate;
using _Bvector_base<_Alloc>::_M_start;
using _Bvector_base<_Alloc>::_M_finish;
using _Bvector_base<_Alloc>::_M_end_of_storage;
protected:
void _M_initialize(size_type __n) {
_Bit_type * __q = _M_bit_alloc(__n);
this->_M_end_of_storage = __q + (__n + _M_word_bit - 1)/_M_word_bit;
this->_M_start = iterator(__q, 0);
this->_M_finish = this->_M_start + difference_type(__n);
}
void _M_insert_aux(iterator __position, bool __x) {
if (this->_M_finish._M_p != this->_M_end_of_storage) {
copy_backward(__position, this->_M_finish, this->_M_finish + 1);
*__position = __x;
++this->_M_finish;
}
else {
size_type __len = size()
? 2 * size() : static_cast<size_type>(_M_word_bit);
_Bit_type * __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
*__i++ = __x;
this->_M_finish = copy(__position, end(), __i);
_M_deallocate();
this->_M_end_of_storage = __q + (__len + _M_word_bit - 1)/_M_word_bit;
this->_M_start = iterator(__q, 0);
}
}
template <class _InputIterator>
void _M_initialize_range(_InputIterator __first, _InputIterator __last,
input_iterator_tag) {
this->_M_start = iterator();
this->_M_finish = iterator();
this->_M_end_of_storage = 0;
for ( ; __first != __last; ++__first)
push_back(*__first);
}
template <class _ForwardIterator>
void _M_initialize_range(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __n = std::distance(__first, __last);
_M_initialize(__n);
copy(__first, __last, this->_M_start);
}
template <class _InputIterator>
void _M_insert_range(iterator __pos,
_InputIterator __first, _InputIterator __last,
input_iterator_tag) {
for ( ; __first != __last; ++__first) {
__pos = insert(__pos, *__first);
++__pos;
}
}
template <class _ForwardIterator>
void _M_insert_range(iterator __position,
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
if (__first != __last) {
size_type __n = std::distance(__first, __last);
if (capacity() - size() >= __n) {
copy_backward(__position, end(),
this->_M_finish + difference_type(__n));
copy(__first, __last, __position);
this->_M_finish += difference_type(__n);
}
else {
size_type __len = size() + std::max(size(), __n);
_Bit_type * __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
__i = copy(__first, __last, __i);
this->_M_finish = copy(__position, end(), __i);
_M_deallocate();
this->_M_end_of_storage
= __q + (__len + _M_word_bit - 1)/_M_word_bit;
this->_M_start = iterator(__q, 0);
}
}
}
public:
iterator begin() { return this->_M_start; }
const_iterator begin() const { return this->_M_start; }
iterator end() { return this->_M_finish; }
const_iterator end() const { return this->_M_finish; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
size_type size() const { return size_type(end() - begin()); }
size_type max_size() const { return size_type(-1); }
size_type capacity() const {
return size_type(const_iterator(this->_M_end_of_storage, 0) - begin());
}
bool empty() const { return begin() == end(); }
reference operator[](size_type __n)
{ return *(begin() + difference_type(__n)); }
const_reference operator[](size_type __n) const
{ return *(begin() + difference_type(__n)); }
void _M_range_check(size_type __n) const {
if (__n >= this->size())
__throw_out_of_range(__N("vector<bool>::_M_range_check"));
}
reference at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
const_reference at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
explicit vector(const allocator_type& __a = allocator_type())
: _Bvector_base<_Alloc>(__a) {}
vector(size_type __n, bool __value,
const allocator_type& __a = allocator_type())
: _Bvector_base<_Alloc>(__a)
{
_M_initialize(__n);
fill(this->_M_start._M_p, this->_M_end_of_storage, __value ? ~0 : 0);
}
explicit vector(size_type __n)
: _Bvector_base<_Alloc>(allocator_type())
{
_M_initialize(__n);
fill(this->_M_start._M_p, this->_M_end_of_storage, 0);
}
vector(const vector& __x) : _Bvector_base<_Alloc>(__x.get_allocator()) {
_M_initialize(__x.size());
copy(__x.begin(), __x.end(), this->_M_start);
}
// Check whether it's an integral type. If so, it's not an iterator.
template <class _Integer>
void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) {
_M_initialize(__n);
fill(this->_M_start._M_p, this->_M_end_of_storage, __x ? ~0 : 0);
}
template <class _InputIterator>
void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type) {
_M_initialize_range(__first, __last, __iterator_category(__first));
}
template <class _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Bvector_base<_Alloc>(__a)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
~vector() { }
vector& operator=(const vector& __x) {
if (&__x == this) return *this;
if (__x.size() > capacity()) {
_M_deallocate();
_M_initialize(__x.size());
}
copy(__x.begin(), __x.end(), begin());
this->_M_finish = begin() + difference_type(__x.size());
return *this;
}
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void _M_fill_assign(size_t __n, bool __x) {
if (__n > size()) {
fill(this->_M_start._M_p, this->_M_end_of_storage, __x ? ~0 : 0);
insert(end(), __n - size(), __x);
}
else {
erase(begin() + __n, end());
fill(this->_M_start._M_p, this->_M_end_of_storage, __x ? ~0 : 0);
}
}
void assign(size_t __n, bool __x) { _M_fill_assign(__n, __x); }
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_t) __n, (bool) __val); }
template <class _InputIter>
void _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
{ _M_assign_aux(__first, __last, __iterator_category(__first)); }
template <class _InputIterator>
void _M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag) {
iterator __cur = begin();
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
*__cur = *__first;
if (__first == __last)
erase(__cur, end());
else
insert(end(), __first, __last);
}
template <class _ForwardIterator>
void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __len = std::distance(__first, __last);
if (__len < size())
erase(copy(__first, __last, begin()), end());
else {
_ForwardIterator __mid = __first;
advance(__mid, size());
copy(__first, __mid, begin());
insert(end(), __mid, __last);
}
}
void reserve(size_type __n) {
if (__n > this->max_size())
__throw_length_error(__N("vector::reserve"));
if (this->capacity() < __n) {
_Bit_type * __q = _M_bit_alloc(__n);
this->_M_finish = copy(begin(), end(), iterator(__q, 0));
_M_deallocate();
this->_M_start = iterator(__q, 0);
this->_M_end_of_storage = __q + (__n + _M_word_bit - 1)/_M_word_bit;
}
}
reference front() { return *begin(); }
const_reference front() const { return *begin(); }
reference back() { return *(end() - 1); }
const_reference back() const { return *(end() - 1); }
void push_back(bool __x) {
if (this->_M_finish._M_p != this->_M_end_of_storage)
*this->_M_finish++ = __x;
else
_M_insert_aux(end(), __x);
}
void swap(vector<bool, _Alloc>& __x) {
std::swap(this->_M_start, __x._M_start);
std::swap(this->_M_finish, __x._M_finish);
std::swap(this->_M_end_of_storage, __x._M_end_of_storage);
}
// [23.2.5]/1, third-to-last entry in synopsis listing
static void swap(reference __x, reference __y) {
bool __tmp = __x;
__x = __y;
__y = __tmp;
}
iterator insert(iterator __position, bool __x = bool()) {
difference_type __n = __position - begin();
if (this->_M_finish._M_p != this->_M_end_of_storage
&& __position == end())
*this->_M_finish++ = __x;
else
_M_insert_aux(__position, __x);
return begin() + __n;
}
// Check whether it's an integral type. If so, it's not an iterator.
template <class _Integer>
void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type) {
_M_fill_insert(__pos, __n, __x);
}
template <class _InputIterator>
void _M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type) {
_M_insert_range(__pos, __first, __last, __iterator_category(__first));
}
template <class _InputIterator>
void insert(iterator __position,
_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__position, __first, __last, _Integral());
}
void _M_fill_insert(iterator __position, size_type __n, bool __x) {
if (__n == 0) return;
if (capacity() - size() >= __n) {
copy_backward(__position, end(),
this->_M_finish + difference_type(__n));
fill(__position, __position + difference_type(__n), __x);
this->_M_finish += difference_type(__n);
}
else {
size_type __len = size() + std::max(size(), __n);
_Bit_type * __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
fill_n(__i, __n, __x);
this->_M_finish = copy(__position, end(), __i + difference_type(__n));
_M_deallocate();
this->_M_end_of_storage = __q + (__len + _M_word_bit - 1)/_M_word_bit;
this->_M_start = iterator(__q, 0);
}
}
void insert(iterator __position, size_type __n, bool __x) {
_M_fill_insert(__position, __n, __x);
}
void pop_back() { --this->_M_finish; }
iterator erase(iterator __position) {
if (__position + 1 != end())
copy(__position + 1, end(), __position);
--this->_M_finish;
return __position;
}
iterator erase(iterator __first, iterator __last) {
this->_M_finish = copy(__last, end(), __first);
return __first;
}
void resize(size_type __new_size, bool __x = bool()) {
if (__new_size < size())
erase(begin() + difference_type(__new_size), end());
else
insert(end(), __new_size - size(), __x);
}
void flip() {
for (_Bit_type * __p = this->_M_start._M_p;
__p != this->_M_end_of_storage;
++__p)
*__p = ~*__p;
}
void clear() { erase(begin(), end()); }
};
// This typedef is non-standard. It is provided for backward compatibility.
typedef vector<bool, __alloc> bit_vector;
} // namespace std
#endif /* __GLIBCPP_INTERNAL_BVECTOR_H */
// Local Variables:
// mode:C++
// End: