mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-04-26 19:10:51 +08:00
gcc/fortran/ChangeLog: PR fortran/107000 * arith.cc (gfc_arith_error): Define error message for ARITH_INVALID_TYPE. (reduce_unary): Catch arithmetic expressions with invalid type. (reduce_binary_ac): Likewise. (reduce_binary_ca): Likewise. (reduce_binary_aa): Likewise. (eval_intrinsic): Likewise. (gfc_real2complex): Source expression must be of type REAL. * gfortran.h (enum arith): Add ARITH_INVALID_TYPE. gcc/testsuite/ChangeLog: PR fortran/107000 * gfortran.dg/pr107000.f90: New test. Co-authored-by: Mikael Morin <mikael@gcc.gnu.org>
2754 lines
67 KiB
C++
2754 lines
67 KiB
C++
/* Compiler arithmetic
|
|
Copyright (C) 2000-2022 Free Software Foundation, Inc.
|
|
Contributed by Andy Vaught
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Since target arithmetic must be done on the host, there has to
|
|
be some way of evaluating arithmetic expressions as the host
|
|
would evaluate them. We use the GNU MP library and the MPFR
|
|
library to do arithmetic, and this file provides the interface. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "options.h"
|
|
#include "gfortran.h"
|
|
#include "arith.h"
|
|
#include "target-memory.h"
|
|
#include "constructor.h"
|
|
|
|
bool gfc_seen_div0;
|
|
|
|
/* MPFR does not have a direct replacement for mpz_set_f() from GMP.
|
|
It's easily implemented with a few calls though. */
|
|
|
|
void
|
|
gfc_mpfr_to_mpz (mpz_t z, mpfr_t x, locus *where)
|
|
{
|
|
mpfr_exp_t e;
|
|
|
|
if (mpfr_inf_p (x) || mpfr_nan_p (x))
|
|
{
|
|
gfc_error ("Conversion of an Infinity or Not-a-Number at %L "
|
|
"to INTEGER", where);
|
|
mpz_set_ui (z, 0);
|
|
return;
|
|
}
|
|
|
|
e = mpfr_get_z_exp (z, x);
|
|
|
|
if (e > 0)
|
|
mpz_mul_2exp (z, z, e);
|
|
else
|
|
mpz_tdiv_q_2exp (z, z, -e);
|
|
}
|
|
|
|
|
|
/* Set the model number precision by the requested KIND. */
|
|
|
|
void
|
|
gfc_set_model_kind (int kind)
|
|
{
|
|
int index = gfc_validate_kind (BT_REAL, kind, false);
|
|
int base2prec;
|
|
|
|
base2prec = gfc_real_kinds[index].digits;
|
|
if (gfc_real_kinds[index].radix != 2)
|
|
base2prec *= gfc_real_kinds[index].radix / 2;
|
|
mpfr_set_default_prec (base2prec);
|
|
}
|
|
|
|
|
|
/* Set the model number precision from mpfr_t x. */
|
|
|
|
void
|
|
gfc_set_model (mpfr_t x)
|
|
{
|
|
mpfr_set_default_prec (mpfr_get_prec (x));
|
|
}
|
|
|
|
|
|
/* Given an arithmetic error code, return a pointer to a string that
|
|
explains the error. */
|
|
|
|
static const char *
|
|
gfc_arith_error (arith code)
|
|
{
|
|
const char *p;
|
|
|
|
switch (code)
|
|
{
|
|
case ARITH_OK:
|
|
p = G_("Arithmetic OK at %L");
|
|
break;
|
|
case ARITH_OVERFLOW:
|
|
p = G_("Arithmetic overflow at %L");
|
|
break;
|
|
case ARITH_UNDERFLOW:
|
|
p = G_("Arithmetic underflow at %L");
|
|
break;
|
|
case ARITH_NAN:
|
|
p = G_("Arithmetic NaN at %L");
|
|
break;
|
|
case ARITH_DIV0:
|
|
p = G_("Division by zero at %L");
|
|
break;
|
|
case ARITH_INCOMMENSURATE:
|
|
p = G_("Array operands are incommensurate at %L");
|
|
break;
|
|
case ARITH_ASYMMETRIC:
|
|
p = G_("Integer outside symmetric range implied by Standard Fortran"
|
|
" at %L");
|
|
break;
|
|
case ARITH_WRONGCONCAT:
|
|
p = G_("Illegal type in character concatenation at %L");
|
|
break;
|
|
case ARITH_INVALID_TYPE:
|
|
p = G_("Invalid type in arithmetic operation at %L");
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("gfc_arith_error(): Bad error code");
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Get things ready to do math. */
|
|
|
|
void
|
|
gfc_arith_init_1 (void)
|
|
{
|
|
gfc_integer_info *int_info;
|
|
gfc_real_info *real_info;
|
|
mpfr_t a, b;
|
|
int i;
|
|
|
|
mpfr_set_default_prec (128);
|
|
mpfr_init (a);
|
|
|
|
/* Convert the minimum and maximum values for each kind into their
|
|
GNU MP representation. */
|
|
for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++)
|
|
{
|
|
/* Huge */
|
|
mpz_init (int_info->huge);
|
|
mpz_set_ui (int_info->huge, int_info->radix);
|
|
mpz_pow_ui (int_info->huge, int_info->huge, int_info->digits);
|
|
mpz_sub_ui (int_info->huge, int_info->huge, 1);
|
|
|
|
/* These are the numbers that are actually representable by the
|
|
target. For bases other than two, this needs to be changed. */
|
|
if (int_info->radix != 2)
|
|
gfc_internal_error ("Fix min_int calculation");
|
|
|
|
/* See PRs 13490 and 17912, related to integer ranges.
|
|
The pedantic_min_int exists for range checking when a program
|
|
is compiled with -pedantic, and reflects the belief that
|
|
Standard Fortran requires integers to be symmetrical, i.e.
|
|
every negative integer must have a representable positive
|
|
absolute value, and vice versa. */
|
|
|
|
mpz_init (int_info->pedantic_min_int);
|
|
mpz_neg (int_info->pedantic_min_int, int_info->huge);
|
|
|
|
mpz_init (int_info->min_int);
|
|
mpz_sub_ui (int_info->min_int, int_info->pedantic_min_int, 1);
|
|
|
|
/* Range */
|
|
mpfr_set_z (a, int_info->huge, GFC_RND_MODE);
|
|
mpfr_log10 (a, a, GFC_RND_MODE);
|
|
mpfr_trunc (a, a);
|
|
int_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
|
|
}
|
|
|
|
mpfr_clear (a);
|
|
|
|
for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++)
|
|
{
|
|
gfc_set_model_kind (real_info->kind);
|
|
|
|
mpfr_init (a);
|
|
mpfr_init (b);
|
|
|
|
/* huge(x) = (1 - b**(-p)) * b**(emax-1) * b */
|
|
/* 1 - b**(-p) */
|
|
mpfr_init (real_info->huge);
|
|
mpfr_set_ui (real_info->huge, 1, GFC_RND_MODE);
|
|
mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
|
|
mpfr_pow_si (a, a, -real_info->digits, GFC_RND_MODE);
|
|
mpfr_sub (real_info->huge, real_info->huge, a, GFC_RND_MODE);
|
|
|
|
/* b**(emax-1) */
|
|
mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
|
|
mpfr_pow_ui (a, a, real_info->max_exponent - 1, GFC_RND_MODE);
|
|
|
|
/* (1 - b**(-p)) * b**(emax-1) */
|
|
mpfr_mul (real_info->huge, real_info->huge, a, GFC_RND_MODE);
|
|
|
|
/* (1 - b**(-p)) * b**(emax-1) * b */
|
|
mpfr_mul_ui (real_info->huge, real_info->huge, real_info->radix,
|
|
GFC_RND_MODE);
|
|
|
|
/* tiny(x) = b**(emin-1) */
|
|
mpfr_init (real_info->tiny);
|
|
mpfr_set_ui (real_info->tiny, real_info->radix, GFC_RND_MODE);
|
|
mpfr_pow_si (real_info->tiny, real_info->tiny,
|
|
real_info->min_exponent - 1, GFC_RND_MODE);
|
|
|
|
/* subnormal (x) = b**(emin - digit) */
|
|
mpfr_init (real_info->subnormal);
|
|
mpfr_set_ui (real_info->subnormal, real_info->radix, GFC_RND_MODE);
|
|
mpfr_pow_si (real_info->subnormal, real_info->subnormal,
|
|
real_info->min_exponent - real_info->digits, GFC_RND_MODE);
|
|
|
|
/* epsilon(x) = b**(1-p) */
|
|
mpfr_init (real_info->epsilon);
|
|
mpfr_set_ui (real_info->epsilon, real_info->radix, GFC_RND_MODE);
|
|
mpfr_pow_si (real_info->epsilon, real_info->epsilon,
|
|
1 - real_info->digits, GFC_RND_MODE);
|
|
|
|
/* range(x) = int(min(log10(huge(x)), -log10(tiny)) */
|
|
mpfr_log10 (a, real_info->huge, GFC_RND_MODE);
|
|
mpfr_log10 (b, real_info->tiny, GFC_RND_MODE);
|
|
mpfr_neg (b, b, GFC_RND_MODE);
|
|
|
|
/* a = min(a, b) */
|
|
mpfr_min (a, a, b, GFC_RND_MODE);
|
|
mpfr_trunc (a, a);
|
|
real_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
|
|
|
|
/* precision(x) = int((p - 1) * log10(b)) + k */
|
|
mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
|
|
mpfr_log10 (a, a, GFC_RND_MODE);
|
|
mpfr_mul_ui (a, a, real_info->digits - 1, GFC_RND_MODE);
|
|
mpfr_trunc (a, a);
|
|
real_info->precision = (int) mpfr_get_si (a, GFC_RND_MODE);
|
|
|
|
/* If the radix is an integral power of 10, add one to the precision. */
|
|
for (i = 10; i <= real_info->radix; i *= 10)
|
|
if (i == real_info->radix)
|
|
real_info->precision++;
|
|
|
|
mpfr_clears (a, b, NULL);
|
|
}
|
|
}
|
|
|
|
|
|
/* Clean up, get rid of numeric constants. */
|
|
|
|
void
|
|
gfc_arith_done_1 (void)
|
|
{
|
|
gfc_integer_info *ip;
|
|
gfc_real_info *rp;
|
|
|
|
for (ip = gfc_integer_kinds; ip->kind; ip++)
|
|
{
|
|
mpz_clear (ip->min_int);
|
|
mpz_clear (ip->pedantic_min_int);
|
|
mpz_clear (ip->huge);
|
|
}
|
|
|
|
for (rp = gfc_real_kinds; rp->kind; rp++)
|
|
mpfr_clears (rp->epsilon, rp->huge, rp->tiny, rp->subnormal, NULL);
|
|
|
|
mpfr_free_cache ();
|
|
}
|
|
|
|
|
|
/* Given a wide character value and a character kind, determine whether
|
|
the character is representable for that kind. */
|
|
bool
|
|
gfc_check_character_range (gfc_char_t c, int kind)
|
|
{
|
|
/* As wide characters are stored as 32-bit values, they're all
|
|
representable in UCS=4. */
|
|
if (kind == 4)
|
|
return true;
|
|
|
|
if (kind == 1)
|
|
return c <= 255 ? true : false;
|
|
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
|
|
/* Given an integer and a kind, make sure that the integer lies within
|
|
the range of the kind. Returns ARITH_OK, ARITH_ASYMMETRIC or
|
|
ARITH_OVERFLOW. */
|
|
|
|
arith
|
|
gfc_check_integer_range (mpz_t p, int kind)
|
|
{
|
|
arith result;
|
|
int i;
|
|
|
|
i = gfc_validate_kind (BT_INTEGER, kind, false);
|
|
result = ARITH_OK;
|
|
|
|
if (pedantic)
|
|
{
|
|
if (mpz_cmp (p, gfc_integer_kinds[i].pedantic_min_int) < 0)
|
|
result = ARITH_ASYMMETRIC;
|
|
}
|
|
|
|
|
|
if (flag_range_check == 0)
|
|
return result;
|
|
|
|
if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0
|
|
|| mpz_cmp (p, gfc_integer_kinds[i].huge) > 0)
|
|
result = ARITH_OVERFLOW;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Given a real and a kind, make sure that the real lies within the
|
|
range of the kind. Returns ARITH_OK, ARITH_OVERFLOW or
|
|
ARITH_UNDERFLOW. */
|
|
|
|
static arith
|
|
gfc_check_real_range (mpfr_t p, int kind)
|
|
{
|
|
arith retval;
|
|
mpfr_t q;
|
|
int i;
|
|
|
|
i = gfc_validate_kind (BT_REAL, kind, false);
|
|
|
|
gfc_set_model (p);
|
|
mpfr_init (q);
|
|
mpfr_abs (q, p, GFC_RND_MODE);
|
|
|
|
retval = ARITH_OK;
|
|
|
|
if (mpfr_inf_p (p))
|
|
{
|
|
if (flag_range_check != 0)
|
|
retval = ARITH_OVERFLOW;
|
|
}
|
|
else if (mpfr_nan_p (p))
|
|
{
|
|
if (flag_range_check != 0)
|
|
retval = ARITH_NAN;
|
|
}
|
|
else if (mpfr_sgn (q) == 0)
|
|
{
|
|
mpfr_clear (q);
|
|
return retval;
|
|
}
|
|
else if (mpfr_cmp (q, gfc_real_kinds[i].huge) > 0)
|
|
{
|
|
if (flag_range_check == 0)
|
|
mpfr_set_inf (p, mpfr_sgn (p));
|
|
else
|
|
retval = ARITH_OVERFLOW;
|
|
}
|
|
else if (mpfr_cmp (q, gfc_real_kinds[i].subnormal) < 0)
|
|
{
|
|
if (flag_range_check == 0)
|
|
{
|
|
if (mpfr_sgn (p) < 0)
|
|
{
|
|
mpfr_set_ui (p, 0, GFC_RND_MODE);
|
|
mpfr_set_si (q, -1, GFC_RND_MODE);
|
|
mpfr_copysign (p, p, q, GFC_RND_MODE);
|
|
}
|
|
else
|
|
mpfr_set_ui (p, 0, GFC_RND_MODE);
|
|
}
|
|
else
|
|
retval = ARITH_UNDERFLOW;
|
|
}
|
|
else if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0)
|
|
{
|
|
mpfr_exp_t emin, emax;
|
|
int en;
|
|
|
|
/* Save current values of emin and emax. */
|
|
emin = mpfr_get_emin ();
|
|
emax = mpfr_get_emax ();
|
|
|
|
/* Set emin and emax for the current model number. */
|
|
en = gfc_real_kinds[i].min_exponent - gfc_real_kinds[i].digits + 1;
|
|
mpfr_set_emin ((mpfr_exp_t) en);
|
|
mpfr_set_emax ((mpfr_exp_t) gfc_real_kinds[i].max_exponent);
|
|
mpfr_check_range (q, 0, GFC_RND_MODE);
|
|
mpfr_subnormalize (q, 0, GFC_RND_MODE);
|
|
|
|
/* Reset emin and emax. */
|
|
mpfr_set_emin (emin);
|
|
mpfr_set_emax (emax);
|
|
|
|
/* Copy sign if needed. */
|
|
if (mpfr_sgn (p) < 0)
|
|
mpfr_neg (p, q, MPFR_RNDN);
|
|
else
|
|
mpfr_set (p, q, MPFR_RNDN);
|
|
}
|
|
|
|
mpfr_clear (q);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/* Low-level arithmetic functions. All of these subroutines assume
|
|
that all operands are of the same type and return an operand of the
|
|
same type. The other thing about these subroutines is that they
|
|
can fail in various ways -- overflow, underflow, division by zero,
|
|
zero raised to the zero, etc. */
|
|
|
|
static arith
|
|
gfc_arith_not (gfc_expr *op1, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, op1->ts.kind, &op1->where);
|
|
result->value.logical = !op1->value.logical;
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_and (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
|
|
&op1->where);
|
|
result->value.logical = op1->value.logical && op2->value.logical;
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_or (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
|
|
&op1->where);
|
|
result->value.logical = op1->value.logical || op2->value.logical;
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_eqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
|
|
&op1->where);
|
|
result->value.logical = op1->value.logical == op2->value.logical;
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_neqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
|
|
&op1->where);
|
|
result->value.logical = op1->value.logical != op2->value.logical;
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
/* Make sure a constant numeric expression is within the range for
|
|
its type and kind. Note that there's also a gfc_check_range(),
|
|
but that one deals with the intrinsic RANGE function. */
|
|
|
|
arith
|
|
gfc_range_check (gfc_expr *e)
|
|
{
|
|
arith rc;
|
|
arith rc2;
|
|
|
|
switch (e->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
rc = gfc_check_integer_range (e->value.integer, e->ts.kind);
|
|
break;
|
|
|
|
case BT_REAL:
|
|
rc = gfc_check_real_range (e->value.real, e->ts.kind);
|
|
if (rc == ARITH_UNDERFLOW)
|
|
mpfr_set_ui (e->value.real, 0, GFC_RND_MODE);
|
|
if (rc == ARITH_OVERFLOW)
|
|
mpfr_set_inf (e->value.real, mpfr_sgn (e->value.real));
|
|
if (rc == ARITH_NAN)
|
|
mpfr_set_nan (e->value.real);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
rc = gfc_check_real_range (mpc_realref (e->value.complex), e->ts.kind);
|
|
if (rc == ARITH_UNDERFLOW)
|
|
mpfr_set_ui (mpc_realref (e->value.complex), 0, GFC_RND_MODE);
|
|
if (rc == ARITH_OVERFLOW)
|
|
mpfr_set_inf (mpc_realref (e->value.complex),
|
|
mpfr_sgn (mpc_realref (e->value.complex)));
|
|
if (rc == ARITH_NAN)
|
|
mpfr_set_nan (mpc_realref (e->value.complex));
|
|
|
|
rc2 = gfc_check_real_range (mpc_imagref (e->value.complex), e->ts.kind);
|
|
if (rc == ARITH_UNDERFLOW)
|
|
mpfr_set_ui (mpc_imagref (e->value.complex), 0, GFC_RND_MODE);
|
|
if (rc == ARITH_OVERFLOW)
|
|
mpfr_set_inf (mpc_imagref (e->value.complex),
|
|
mpfr_sgn (mpc_imagref (e->value.complex)));
|
|
if (rc == ARITH_NAN)
|
|
mpfr_set_nan (mpc_imagref (e->value.complex));
|
|
|
|
if (rc == ARITH_OK)
|
|
rc = rc2;
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("gfc_range_check(): Bad type");
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Several of the following routines use the same set of statements to
|
|
check the validity of the result. Encapsulate the checking here. */
|
|
|
|
static arith
|
|
check_result (arith rc, gfc_expr *x, gfc_expr *r, gfc_expr **rp)
|
|
{
|
|
arith val = rc;
|
|
|
|
if (val == ARITH_UNDERFLOW)
|
|
{
|
|
if (warn_underflow)
|
|
gfc_warning (OPT_Wunderflow, gfc_arith_error (val), &x->where);
|
|
val = ARITH_OK;
|
|
}
|
|
|
|
if (val == ARITH_ASYMMETRIC)
|
|
{
|
|
gfc_warning (0, gfc_arith_error (val), &x->where);
|
|
val = ARITH_OK;
|
|
}
|
|
|
|
if (val == ARITH_OK || val == ARITH_OVERFLOW)
|
|
*rp = r;
|
|
else
|
|
gfc_free_expr (r);
|
|
|
|
return val;
|
|
}
|
|
|
|
|
|
/* It may seem silly to have a subroutine that actually computes the
|
|
unary plus of a constant, but it prevents us from making exceptions
|
|
in the code elsewhere. Used for unary plus and parenthesized
|
|
expressions. */
|
|
|
|
static arith
|
|
gfc_arith_identity (gfc_expr *op1, gfc_expr **resultp)
|
|
{
|
|
*resultp = gfc_copy_expr (op1);
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_uminus (gfc_expr *op1, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
|
|
result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
|
|
|
|
switch (op1->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
mpz_neg (result->value.integer, op1->value.integer);
|
|
break;
|
|
|
|
case BT_REAL:
|
|
mpfr_neg (result->value.real, op1->value.real, GFC_RND_MODE);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
mpc_neg (result->value.complex, op1->value.complex, GFC_MPC_RND_MODE);
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("gfc_arith_uminus(): Bad basic type");
|
|
}
|
|
|
|
rc = gfc_range_check (result);
|
|
|
|
return check_result (rc, op1, result, resultp);
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_plus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
|
|
result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
|
|
|
|
switch (op1->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
mpz_add (result->value.integer, op1->value.integer, op2->value.integer);
|
|
break;
|
|
|
|
case BT_REAL:
|
|
mpfr_add (result->value.real, op1->value.real, op2->value.real,
|
|
GFC_RND_MODE);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
mpc_add (result->value.complex, op1->value.complex, op2->value.complex,
|
|
GFC_MPC_RND_MODE);
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("gfc_arith_plus(): Bad basic type");
|
|
}
|
|
|
|
rc = gfc_range_check (result);
|
|
|
|
return check_result (rc, op1, result, resultp);
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_minus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
|
|
result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
|
|
|
|
switch (op1->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
mpz_sub (result->value.integer, op1->value.integer, op2->value.integer);
|
|
break;
|
|
|
|
case BT_REAL:
|
|
mpfr_sub (result->value.real, op1->value.real, op2->value.real,
|
|
GFC_RND_MODE);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
mpc_sub (result->value.complex, op1->value.complex,
|
|
op2->value.complex, GFC_MPC_RND_MODE);
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("gfc_arith_minus(): Bad basic type");
|
|
}
|
|
|
|
rc = gfc_range_check (result);
|
|
|
|
return check_result (rc, op1, result, resultp);
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_times (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
|
|
result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
|
|
|
|
switch (op1->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
mpz_mul (result->value.integer, op1->value.integer, op2->value.integer);
|
|
break;
|
|
|
|
case BT_REAL:
|
|
mpfr_mul (result->value.real, op1->value.real, op2->value.real,
|
|
GFC_RND_MODE);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
gfc_set_model (mpc_realref (op1->value.complex));
|
|
mpc_mul (result->value.complex, op1->value.complex, op2->value.complex,
|
|
GFC_MPC_RND_MODE);
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("gfc_arith_times(): Bad basic type");
|
|
}
|
|
|
|
rc = gfc_range_check (result);
|
|
|
|
return check_result (rc, op1, result, resultp);
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
|
|
rc = ARITH_OK;
|
|
|
|
result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
|
|
|
|
switch (op1->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
if (mpz_sgn (op2->value.integer) == 0)
|
|
{
|
|
rc = ARITH_DIV0;
|
|
break;
|
|
}
|
|
|
|
if (warn_integer_division)
|
|
{
|
|
mpz_t r;
|
|
mpz_init (r);
|
|
mpz_tdiv_qr (result->value.integer, r, op1->value.integer,
|
|
op2->value.integer);
|
|
|
|
if (mpz_cmp_si (r, 0) != 0)
|
|
{
|
|
char *p;
|
|
p = mpz_get_str (NULL, 10, result->value.integer);
|
|
gfc_warning_now (OPT_Winteger_division, "Integer division "
|
|
"truncated to constant %qs at %L", p,
|
|
&op1->where);
|
|
free (p);
|
|
}
|
|
mpz_clear (r);
|
|
}
|
|
else
|
|
mpz_tdiv_q (result->value.integer, op1->value.integer,
|
|
op2->value.integer);
|
|
|
|
break;
|
|
|
|
case BT_REAL:
|
|
if (mpfr_sgn (op2->value.real) == 0 && flag_range_check == 1)
|
|
{
|
|
rc = ARITH_DIV0;
|
|
break;
|
|
}
|
|
|
|
mpfr_div (result->value.real, op1->value.real, op2->value.real,
|
|
GFC_RND_MODE);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0
|
|
&& flag_range_check == 1)
|
|
{
|
|
rc = ARITH_DIV0;
|
|
break;
|
|
}
|
|
|
|
gfc_set_model (mpc_realref (op1->value.complex));
|
|
if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0)
|
|
{
|
|
/* In Fortran, return (NaN + NaN I) for any zero divisor. See
|
|
PR 40318. */
|
|
mpfr_set_nan (mpc_realref (result->value.complex));
|
|
mpfr_set_nan (mpc_imagref (result->value.complex));
|
|
}
|
|
else
|
|
mpc_div (result->value.complex, op1->value.complex, op2->value.complex,
|
|
GFC_MPC_RND_MODE);
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("gfc_arith_divide(): Bad basic type");
|
|
}
|
|
|
|
if (rc == ARITH_OK)
|
|
rc = gfc_range_check (result);
|
|
|
|
return check_result (rc, op1, result, resultp);
|
|
}
|
|
|
|
/* Raise a number to a power. */
|
|
|
|
static arith
|
|
arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
int power_sign;
|
|
gfc_expr *result;
|
|
arith rc;
|
|
|
|
rc = ARITH_OK;
|
|
result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
|
|
|
|
switch (op2->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
power_sign = mpz_sgn (op2->value.integer);
|
|
|
|
if (power_sign == 0)
|
|
{
|
|
/* Handle something to the zeroth power. Since we're dealing
|
|
with integral exponents, there is no ambiguity in the
|
|
limiting procedure used to determine the value of 0**0. */
|
|
switch (op1->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
mpz_set_ui (result->value.integer, 1);
|
|
break;
|
|
|
|
case BT_REAL:
|
|
mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
mpc_set_ui (result->value.complex, 1, GFC_MPC_RND_MODE);
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("arith_power(): Bad base");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (op1->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
{
|
|
/* First, we simplify the cases of op1 == 1, 0 or -1. */
|
|
if (mpz_cmp_si (op1->value.integer, 1) == 0)
|
|
{
|
|
/* 1**op2 == 1 */
|
|
mpz_set_si (result->value.integer, 1);
|
|
}
|
|
else if (mpz_cmp_si (op1->value.integer, 0) == 0)
|
|
{
|
|
/* 0**op2 == 0, if op2 > 0
|
|
0**op2 overflow, if op2 < 0 ; in that case, we
|
|
set the result to 0 and return ARITH_DIV0. */
|
|
mpz_set_si (result->value.integer, 0);
|
|
if (mpz_cmp_si (op2->value.integer, 0) < 0)
|
|
rc = ARITH_DIV0;
|
|
}
|
|
else if (mpz_cmp_si (op1->value.integer, -1) == 0)
|
|
{
|
|
/* (-1)**op2 == (-1)**(mod(op2,2)) */
|
|
unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2);
|
|
if (odd)
|
|
mpz_set_si (result->value.integer, -1);
|
|
else
|
|
mpz_set_si (result->value.integer, 1);
|
|
}
|
|
/* Then, we take care of op2 < 0. */
|
|
else if (mpz_cmp_si (op2->value.integer, 0) < 0)
|
|
{
|
|
/* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */
|
|
mpz_set_si (result->value.integer, 0);
|
|
if (warn_integer_division)
|
|
gfc_warning_now (OPT_Winteger_division, "Negative "
|
|
"exponent of integer has zero "
|
|
"result at %L", &result->where);
|
|
}
|
|
else
|
|
{
|
|
/* We have abs(op1) > 1 and op2 > 1.
|
|
If op2 > bit_size(op1), we'll have an out-of-range
|
|
result. */
|
|
int k, power;
|
|
|
|
k = gfc_validate_kind (BT_INTEGER, op1->ts.kind, false);
|
|
power = gfc_integer_kinds[k].bit_size;
|
|
if (mpz_cmp_si (op2->value.integer, power) < 0)
|
|
{
|
|
gfc_extract_int (op2, &power);
|
|
mpz_pow_ui (result->value.integer, op1->value.integer,
|
|
power);
|
|
rc = gfc_range_check (result);
|
|
if (rc == ARITH_OVERFLOW)
|
|
gfc_error_now ("Result of exponentiation at %L "
|
|
"exceeds the range of %s", &op1->where,
|
|
gfc_typename (&(op1->ts)));
|
|
}
|
|
else
|
|
{
|
|
/* Provide a nonsense value to propagate up. */
|
|
mpz_set (result->value.integer,
|
|
gfc_integer_kinds[k].huge);
|
|
mpz_add_ui (result->value.integer,
|
|
result->value.integer, 1);
|
|
rc = ARITH_OVERFLOW;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BT_REAL:
|
|
mpfr_pow_z (result->value.real, op1->value.real,
|
|
op2->value.integer, GFC_RND_MODE);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
mpc_pow_z (result->value.complex, op1->value.complex,
|
|
op2->value.integer, GFC_MPC_RND_MODE);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BT_REAL:
|
|
|
|
if (gfc_init_expr_flag)
|
|
{
|
|
if (!gfc_notify_std (GFC_STD_F2003, "Noninteger "
|
|
"exponent in an initialization "
|
|
"expression at %L", &op2->where))
|
|
{
|
|
gfc_free_expr (result);
|
|
return ARITH_PROHIBIT;
|
|
}
|
|
}
|
|
|
|
if (mpfr_cmp_si (op1->value.real, 0) < 0)
|
|
{
|
|
gfc_error ("Raising a negative REAL at %L to "
|
|
"a REAL power is prohibited", &op1->where);
|
|
gfc_free_expr (result);
|
|
return ARITH_PROHIBIT;
|
|
}
|
|
|
|
mpfr_pow (result->value.real, op1->value.real, op2->value.real,
|
|
GFC_RND_MODE);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
{
|
|
if (gfc_init_expr_flag)
|
|
{
|
|
if (!gfc_notify_std (GFC_STD_F2003, "Noninteger "
|
|
"exponent in an initialization "
|
|
"expression at %L", &op2->where))
|
|
{
|
|
gfc_free_expr (result);
|
|
return ARITH_PROHIBIT;
|
|
}
|
|
}
|
|
|
|
mpc_pow (result->value.complex, op1->value.complex,
|
|
op2->value.complex, GFC_MPC_RND_MODE);
|
|
}
|
|
break;
|
|
default:
|
|
gfc_internal_error ("arith_power(): unknown type");
|
|
}
|
|
|
|
if (rc == ARITH_OK)
|
|
rc = gfc_range_check (result);
|
|
|
|
return check_result (rc, op1, result, resultp);
|
|
}
|
|
|
|
|
|
/* Concatenate two string constants. */
|
|
|
|
static arith
|
|
gfc_arith_concat (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
size_t len;
|
|
|
|
/* By cleverly playing around with constructors, it is possible
|
|
to get mismaching types here. */
|
|
if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER
|
|
|| op1->ts.kind != op2->ts.kind)
|
|
return ARITH_WRONGCONCAT;
|
|
|
|
result = gfc_get_constant_expr (BT_CHARACTER, op1->ts.kind,
|
|
&op1->where);
|
|
|
|
len = op1->value.character.length + op2->value.character.length;
|
|
|
|
result->value.character.string = gfc_get_wide_string (len + 1);
|
|
result->value.character.length = len;
|
|
|
|
memcpy (result->value.character.string, op1->value.character.string,
|
|
op1->value.character.length * sizeof (gfc_char_t));
|
|
|
|
memcpy (&result->value.character.string[op1->value.character.length],
|
|
op2->value.character.string,
|
|
op2->value.character.length * sizeof (gfc_char_t));
|
|
|
|
result->value.character.string[len] = '\0';
|
|
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
/* Comparison between real values; returns 0 if (op1 .op. op2) is true.
|
|
This function mimics mpfr_cmp but takes NaN into account. */
|
|
|
|
static int
|
|
compare_real (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
|
|
{
|
|
int rc;
|
|
switch (op)
|
|
{
|
|
case INTRINSIC_EQ:
|
|
rc = mpfr_equal_p (op1->value.real, op2->value.real) ? 0 : 1;
|
|
break;
|
|
case INTRINSIC_GT:
|
|
rc = mpfr_greater_p (op1->value.real, op2->value.real) ? 1 : -1;
|
|
break;
|
|
case INTRINSIC_GE:
|
|
rc = mpfr_greaterequal_p (op1->value.real, op2->value.real) ? 1 : -1;
|
|
break;
|
|
case INTRINSIC_LT:
|
|
rc = mpfr_less_p (op1->value.real, op2->value.real) ? -1 : 1;
|
|
break;
|
|
case INTRINSIC_LE:
|
|
rc = mpfr_lessequal_p (op1->value.real, op2->value.real) ? -1 : 1;
|
|
break;
|
|
default:
|
|
gfc_internal_error ("compare_real(): Bad operator");
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Comparison operators. Assumes that the two expression nodes
|
|
contain two constants of the same type. The op argument is
|
|
needed to handle NaN correctly. */
|
|
|
|
int
|
|
gfc_compare_expr (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
|
|
{
|
|
int rc;
|
|
|
|
switch (op1->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
rc = mpz_cmp (op1->value.integer, op2->value.integer);
|
|
break;
|
|
|
|
case BT_REAL:
|
|
rc = compare_real (op1, op2, op);
|
|
break;
|
|
|
|
case BT_CHARACTER:
|
|
rc = gfc_compare_string (op1, op2);
|
|
break;
|
|
|
|
case BT_LOGICAL:
|
|
rc = ((!op1->value.logical && op2->value.logical)
|
|
|| (op1->value.logical && !op2->value.logical));
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("gfc_compare_expr(): Bad basic type");
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Compare a pair of complex numbers. Naturally, this is only for
|
|
equality and inequality. */
|
|
|
|
static int
|
|
compare_complex (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return mpc_cmp (op1->value.complex, op2->value.complex) == 0;
|
|
}
|
|
|
|
|
|
/* Given two constant strings and the inverse collating sequence, compare the
|
|
strings. We return -1 for a < b, 0 for a == b and 1 for a > b.
|
|
We use the processor's default collating sequence. */
|
|
|
|
int
|
|
gfc_compare_string (gfc_expr *a, gfc_expr *b)
|
|
{
|
|
size_t len, alen, blen, i;
|
|
gfc_char_t ac, bc;
|
|
|
|
alen = a->value.character.length;
|
|
blen = b->value.character.length;
|
|
|
|
len = MAX(alen, blen);
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
ac = ((i < alen) ? a->value.character.string[i] : ' ');
|
|
bc = ((i < blen) ? b->value.character.string[i] : ' ');
|
|
|
|
if (ac < bc)
|
|
return -1;
|
|
if (ac > bc)
|
|
return 1;
|
|
}
|
|
|
|
/* Strings are equal */
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
gfc_compare_with_Cstring (gfc_expr *a, const char *b, bool case_sensitive)
|
|
{
|
|
size_t len, alen, blen, i;
|
|
gfc_char_t ac, bc;
|
|
|
|
alen = a->value.character.length;
|
|
blen = strlen (b);
|
|
|
|
len = MAX(alen, blen);
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
ac = ((i < alen) ? a->value.character.string[i] : ' ');
|
|
bc = ((i < blen) ? b[i] : ' ');
|
|
|
|
if (!case_sensitive)
|
|
{
|
|
ac = TOLOWER (ac);
|
|
bc = TOLOWER (bc);
|
|
}
|
|
|
|
if (ac < bc)
|
|
return -1;
|
|
if (ac > bc)
|
|
return 1;
|
|
}
|
|
|
|
/* Strings are equal */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Specific comparison subroutines. */
|
|
|
|
static arith
|
|
gfc_arith_eq (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
|
|
&op1->where);
|
|
result->value.logical = (op1->ts.type == BT_COMPLEX)
|
|
? compare_complex (op1, op2)
|
|
: (gfc_compare_expr (op1, op2, INTRINSIC_EQ) == 0);
|
|
|
|
*resultp = result;
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_ne (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
|
|
&op1->where);
|
|
result->value.logical = (op1->ts.type == BT_COMPLEX)
|
|
? !compare_complex (op1, op2)
|
|
: (gfc_compare_expr (op1, op2, INTRINSIC_EQ) != 0);
|
|
|
|
*resultp = result;
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_gt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
|
|
&op1->where);
|
|
result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GT) > 0);
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_ge (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
|
|
&op1->where);
|
|
result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GE) >= 0);
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_lt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
|
|
&op1->where);
|
|
result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LT) < 0);
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
gfc_arith_le (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
|
|
&op1->where);
|
|
result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LE) <= 0);
|
|
*resultp = result;
|
|
|
|
return ARITH_OK;
|
|
}
|
|
|
|
|
|
static arith
|
|
reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op,
|
|
gfc_expr **result)
|
|
{
|
|
gfc_constructor_base head;
|
|
gfc_constructor *c;
|
|
gfc_expr *r;
|
|
arith rc;
|
|
|
|
if (op->expr_type == EXPR_CONSTANT)
|
|
return eval (op, result);
|
|
|
|
rc = ARITH_OK;
|
|
head = gfc_constructor_copy (op->value.constructor);
|
|
for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
|
|
{
|
|
if (c->expr->expr_type == EXPR_OP && c->expr->ts.type == BT_UNKNOWN)
|
|
rc = ARITH_INVALID_TYPE;
|
|
else
|
|
rc = reduce_unary (eval, c->expr, &r);
|
|
|
|
if (rc != ARITH_OK)
|
|
break;
|
|
|
|
gfc_replace_expr (c->expr, r);
|
|
}
|
|
|
|
if (rc != ARITH_OK)
|
|
gfc_constructor_free (head);
|
|
else
|
|
{
|
|
gfc_constructor *c = gfc_constructor_first (head);
|
|
r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
|
|
&op->where);
|
|
r->shape = gfc_copy_shape (op->shape, op->rank);
|
|
r->rank = op->rank;
|
|
r->value.constructor = head;
|
|
*result = r;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static arith
|
|
reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
|
|
gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
|
|
{
|
|
gfc_constructor_base head;
|
|
gfc_constructor *c;
|
|
gfc_expr *r;
|
|
arith rc = ARITH_OK;
|
|
|
|
head = gfc_constructor_copy (op1->value.constructor);
|
|
for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
|
|
{
|
|
gfc_simplify_expr (c->expr, 0);
|
|
|
|
if (c->expr->expr_type == EXPR_CONSTANT)
|
|
rc = eval (c->expr, op2, &r);
|
|
else if (c->expr->expr_type == EXPR_OP && c->expr->ts.type == BT_UNKNOWN)
|
|
rc = ARITH_INVALID_TYPE;
|
|
else
|
|
rc = reduce_binary_ac (eval, c->expr, op2, &r);
|
|
|
|
if (rc != ARITH_OK)
|
|
break;
|
|
|
|
gfc_replace_expr (c->expr, r);
|
|
}
|
|
|
|
if (rc != ARITH_OK)
|
|
gfc_constructor_free (head);
|
|
else
|
|
{
|
|
gfc_constructor *c = gfc_constructor_first (head);
|
|
if (c)
|
|
{
|
|
r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
|
|
&op1->where);
|
|
r->shape = gfc_copy_shape (op1->shape, op1->rank);
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (op1->ts.type != BT_UNKNOWN);
|
|
r = gfc_get_array_expr (op1->ts.type, op1->ts.kind,
|
|
&op1->where);
|
|
r->shape = gfc_get_shape (op1->rank);
|
|
}
|
|
r->rank = op1->rank;
|
|
r->value.constructor = head;
|
|
*result = r;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static arith
|
|
reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
|
|
gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
|
|
{
|
|
gfc_constructor_base head;
|
|
gfc_constructor *c;
|
|
gfc_expr *r;
|
|
arith rc = ARITH_OK;
|
|
|
|
head = gfc_constructor_copy (op2->value.constructor);
|
|
for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
|
|
{
|
|
gfc_simplify_expr (c->expr, 0);
|
|
|
|
if (c->expr->expr_type == EXPR_CONSTANT)
|
|
rc = eval (op1, c->expr, &r);
|
|
else if (c->expr->expr_type == EXPR_OP && c->expr->ts.type == BT_UNKNOWN)
|
|
rc = ARITH_INVALID_TYPE;
|
|
else
|
|
rc = reduce_binary_ca (eval, op1, c->expr, &r);
|
|
|
|
if (rc != ARITH_OK)
|
|
break;
|
|
|
|
gfc_replace_expr (c->expr, r);
|
|
}
|
|
|
|
if (rc != ARITH_OK)
|
|
gfc_constructor_free (head);
|
|
else
|
|
{
|
|
gfc_constructor *c = gfc_constructor_first (head);
|
|
if (c)
|
|
{
|
|
r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
|
|
&op2->where);
|
|
r->shape = gfc_copy_shape (op2->shape, op2->rank);
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (op2->ts.type != BT_UNKNOWN);
|
|
r = gfc_get_array_expr (op2->ts.type, op2->ts.kind,
|
|
&op2->where);
|
|
r->shape = gfc_get_shape (op2->rank);
|
|
}
|
|
r->rank = op2->rank;
|
|
r->value.constructor = head;
|
|
*result = r;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* We need a forward declaration of reduce_binary. */
|
|
static arith reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
|
|
gfc_expr *op1, gfc_expr *op2, gfc_expr **result);
|
|
|
|
|
|
static arith
|
|
reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
|
|
gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
|
|
{
|
|
gfc_constructor_base head;
|
|
gfc_constructor *c, *d;
|
|
gfc_expr *r;
|
|
arith rc = ARITH_OK;
|
|
|
|
if (!gfc_check_conformance (op1, op2, _("elemental binary operation")))
|
|
return ARITH_INCOMMENSURATE;
|
|
|
|
head = gfc_constructor_copy (op1->value.constructor);
|
|
for (c = gfc_constructor_first (head),
|
|
d = gfc_constructor_first (op2->value.constructor);
|
|
c && d;
|
|
c = gfc_constructor_next (c), d = gfc_constructor_next (d))
|
|
{
|
|
if ((c->expr->expr_type == EXPR_OP && c->expr->ts.type == BT_UNKNOWN)
|
|
|| (d->expr->expr_type == EXPR_OP && d->expr->ts.type == BT_UNKNOWN))
|
|
rc = ARITH_INVALID_TYPE;
|
|
else
|
|
rc = reduce_binary (eval, c->expr, d->expr, &r);
|
|
|
|
if (rc != ARITH_OK)
|
|
break;
|
|
|
|
gfc_replace_expr (c->expr, r);
|
|
}
|
|
|
|
if (rc == ARITH_OK && (c || d))
|
|
rc = ARITH_INCOMMENSURATE;
|
|
|
|
if (rc != ARITH_OK)
|
|
gfc_constructor_free (head);
|
|
else
|
|
{
|
|
gfc_constructor *c = gfc_constructor_first (head);
|
|
r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
|
|
&op1->where);
|
|
r->shape = gfc_copy_shape (op1->shape, op1->rank);
|
|
r->rank = op1->rank;
|
|
r->value.constructor = head;
|
|
*result = r;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static arith
|
|
reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
|
|
gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
|
|
{
|
|
if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT)
|
|
return eval (op1, op2, result);
|
|
|
|
if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY)
|
|
return reduce_binary_ca (eval, op1, op2, result);
|
|
|
|
if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT)
|
|
return reduce_binary_ac (eval, op1, op2, result);
|
|
|
|
return reduce_binary_aa (eval, op1, op2, result);
|
|
}
|
|
|
|
|
|
typedef union
|
|
{
|
|
arith (*f2)(gfc_expr *, gfc_expr **);
|
|
arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **);
|
|
}
|
|
eval_f;
|
|
|
|
/* High level arithmetic subroutines. These subroutines go into
|
|
eval_intrinsic(), which can do one of several things to its
|
|
operands. If the operands are incompatible with the intrinsic
|
|
operation, we return a node pointing to the operands and hope that
|
|
an operator interface is found during resolution.
|
|
|
|
If the operands are compatible and are constants, then we try doing
|
|
the arithmetic. We also handle the cases where either or both
|
|
operands are array constructors. */
|
|
|
|
static gfc_expr *
|
|
eval_intrinsic (gfc_intrinsic_op op,
|
|
eval_f eval, gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
gfc_expr temp, *result;
|
|
int unary;
|
|
arith rc;
|
|
|
|
if (!op1)
|
|
return NULL;
|
|
|
|
gfc_clear_ts (&temp.ts);
|
|
|
|
switch (op)
|
|
{
|
|
/* Logical unary */
|
|
case INTRINSIC_NOT:
|
|
if (op1->ts.type != BT_LOGICAL)
|
|
goto runtime;
|
|
|
|
temp.ts.type = BT_LOGICAL;
|
|
temp.ts.kind = gfc_default_logical_kind;
|
|
unary = 1;
|
|
break;
|
|
|
|
/* Logical binary operators */
|
|
case INTRINSIC_OR:
|
|
case INTRINSIC_AND:
|
|
case INTRINSIC_NEQV:
|
|
case INTRINSIC_EQV:
|
|
if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL)
|
|
goto runtime;
|
|
|
|
temp.ts.type = BT_LOGICAL;
|
|
temp.ts.kind = gfc_default_logical_kind;
|
|
unary = 0;
|
|
break;
|
|
|
|
/* Numeric unary */
|
|
case INTRINSIC_UPLUS:
|
|
case INTRINSIC_UMINUS:
|
|
if (!gfc_numeric_ts (&op1->ts))
|
|
goto runtime;
|
|
|
|
temp.ts = op1->ts;
|
|
unary = 1;
|
|
break;
|
|
|
|
case INTRINSIC_PARENTHESES:
|
|
temp.ts = op1->ts;
|
|
unary = 1;
|
|
break;
|
|
|
|
/* Additional restrictions for ordering relations. */
|
|
case INTRINSIC_GE:
|
|
case INTRINSIC_GE_OS:
|
|
case INTRINSIC_LT:
|
|
case INTRINSIC_LT_OS:
|
|
case INTRINSIC_LE:
|
|
case INTRINSIC_LE_OS:
|
|
case INTRINSIC_GT:
|
|
case INTRINSIC_GT_OS:
|
|
if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
|
|
{
|
|
temp.ts.type = BT_LOGICAL;
|
|
temp.ts.kind = gfc_default_logical_kind;
|
|
goto runtime;
|
|
}
|
|
|
|
/* Fall through */
|
|
case INTRINSIC_EQ:
|
|
case INTRINSIC_EQ_OS:
|
|
case INTRINSIC_NE:
|
|
case INTRINSIC_NE_OS:
|
|
if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
|
|
{
|
|
unary = 0;
|
|
temp.ts.type = BT_LOGICAL;
|
|
temp.ts.kind = gfc_default_logical_kind;
|
|
|
|
/* If kind mismatch, exit and we'll error out later. */
|
|
if (op1->ts.kind != op2->ts.kind)
|
|
goto runtime;
|
|
|
|
break;
|
|
}
|
|
|
|
gcc_fallthrough ();
|
|
/* Numeric binary */
|
|
case INTRINSIC_PLUS:
|
|
case INTRINSIC_MINUS:
|
|
case INTRINSIC_TIMES:
|
|
case INTRINSIC_DIVIDE:
|
|
case INTRINSIC_POWER:
|
|
if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts))
|
|
goto runtime;
|
|
|
|
/* Insert any necessary type conversions to make the operands
|
|
compatible. */
|
|
|
|
temp.expr_type = EXPR_OP;
|
|
gfc_clear_ts (&temp.ts);
|
|
temp.value.op.op = op;
|
|
|
|
temp.value.op.op1 = op1;
|
|
temp.value.op.op2 = op2;
|
|
|
|
gfc_type_convert_binary (&temp, warn_conversion || warn_conversion_extra);
|
|
|
|
if (op == INTRINSIC_EQ || op == INTRINSIC_NE
|
|
|| op == INTRINSIC_GE || op == INTRINSIC_GT
|
|
|| op == INTRINSIC_LE || op == INTRINSIC_LT
|
|
|| op == INTRINSIC_EQ_OS || op == INTRINSIC_NE_OS
|
|
|| op == INTRINSIC_GE_OS || op == INTRINSIC_GT_OS
|
|
|| op == INTRINSIC_LE_OS || op == INTRINSIC_LT_OS)
|
|
{
|
|
temp.ts.type = BT_LOGICAL;
|
|
temp.ts.kind = gfc_default_logical_kind;
|
|
}
|
|
|
|
unary = 0;
|
|
break;
|
|
|
|
/* Character binary */
|
|
case INTRINSIC_CONCAT:
|
|
if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER
|
|
|| op1->ts.kind != op2->ts.kind)
|
|
goto runtime;
|
|
|
|
temp.ts.type = BT_CHARACTER;
|
|
temp.ts.kind = op1->ts.kind;
|
|
unary = 0;
|
|
break;
|
|
|
|
case INTRINSIC_USER:
|
|
goto runtime;
|
|
|
|
default:
|
|
gfc_internal_error ("eval_intrinsic(): Bad operator");
|
|
}
|
|
|
|
if (op1->expr_type != EXPR_CONSTANT
|
|
&& (op1->expr_type != EXPR_ARRAY
|
|
|| !gfc_is_constant_expr (op1) || !gfc_expanded_ac (op1)))
|
|
goto runtime;
|
|
|
|
if (op2 != NULL
|
|
&& op2->expr_type != EXPR_CONSTANT
|
|
&& (op2->expr_type != EXPR_ARRAY
|
|
|| !gfc_is_constant_expr (op2) || !gfc_expanded_ac (op2)))
|
|
goto runtime;
|
|
|
|
if (unary)
|
|
rc = reduce_unary (eval.f2, op1, &result);
|
|
else
|
|
rc = reduce_binary (eval.f3, op1, op2, &result);
|
|
|
|
if (rc == ARITH_INVALID_TYPE)
|
|
goto runtime;
|
|
|
|
/* Something went wrong. */
|
|
if (op == INTRINSIC_POWER && rc == ARITH_PROHIBIT)
|
|
return NULL;
|
|
|
|
if (rc != ARITH_OK)
|
|
{
|
|
gfc_error (gfc_arith_error (rc), &op1->where);
|
|
if (rc == ARITH_OVERFLOW)
|
|
goto done;
|
|
|
|
if (rc == ARITH_DIV0 && op2->ts.type == BT_INTEGER)
|
|
gfc_seen_div0 = true;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
done:
|
|
|
|
gfc_free_expr (op1);
|
|
gfc_free_expr (op2);
|
|
return result;
|
|
|
|
runtime:
|
|
/* Create a run-time expression. */
|
|
result = gfc_get_operator_expr (&op1->where, op, op1, op2);
|
|
result->ts = temp.ts;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Modify type of expression for zero size array. */
|
|
|
|
static gfc_expr *
|
|
eval_type_intrinsic0 (gfc_intrinsic_op iop, gfc_expr *op)
|
|
{
|
|
if (op == NULL)
|
|
gfc_internal_error ("eval_type_intrinsic0(): op NULL");
|
|
|
|
switch (iop)
|
|
{
|
|
case INTRINSIC_GE:
|
|
case INTRINSIC_GE_OS:
|
|
case INTRINSIC_LT:
|
|
case INTRINSIC_LT_OS:
|
|
case INTRINSIC_LE:
|
|
case INTRINSIC_LE_OS:
|
|
case INTRINSIC_GT:
|
|
case INTRINSIC_GT_OS:
|
|
case INTRINSIC_EQ:
|
|
case INTRINSIC_EQ_OS:
|
|
case INTRINSIC_NE:
|
|
case INTRINSIC_NE_OS:
|
|
op->ts.type = BT_LOGICAL;
|
|
op->ts.kind = gfc_default_logical_kind;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return op;
|
|
}
|
|
|
|
|
|
/* Return nonzero if the expression is a zero size array. */
|
|
|
|
static bool
|
|
gfc_zero_size_array (gfc_expr *e)
|
|
{
|
|
if (e == NULL || e->expr_type != EXPR_ARRAY)
|
|
return false;
|
|
|
|
return e->value.constructor == NULL;
|
|
}
|
|
|
|
|
|
/* Reduce a binary expression where at least one of the operands
|
|
involves a zero-length array. Returns NULL if neither of the
|
|
operands is a zero-length array. */
|
|
|
|
static gfc_expr *
|
|
reduce_binary0 (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
if (gfc_zero_size_array (op1))
|
|
{
|
|
gfc_free_expr (op2);
|
|
return op1;
|
|
}
|
|
|
|
if (gfc_zero_size_array (op2))
|
|
{
|
|
gfc_free_expr (op1);
|
|
return op2;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static gfc_expr *
|
|
eval_intrinsic_f2 (gfc_intrinsic_op op,
|
|
arith (*eval) (gfc_expr *, gfc_expr **),
|
|
gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
gfc_expr *result;
|
|
eval_f f;
|
|
|
|
if (op2 == NULL)
|
|
{
|
|
if (gfc_zero_size_array (op1))
|
|
return eval_type_intrinsic0 (op, op1);
|
|
}
|
|
else
|
|
{
|
|
result = reduce_binary0 (op1, op2);
|
|
if (result != NULL)
|
|
return eval_type_intrinsic0 (op, result);
|
|
}
|
|
|
|
f.f2 = eval;
|
|
return eval_intrinsic (op, f, op1, op2);
|
|
}
|
|
|
|
|
|
static gfc_expr *
|
|
eval_intrinsic_f3 (gfc_intrinsic_op op,
|
|
arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
|
|
gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
gfc_expr *result;
|
|
eval_f f;
|
|
|
|
if (!op1 && !op2)
|
|
return NULL;
|
|
|
|
result = reduce_binary0 (op1, op2);
|
|
if (result != NULL)
|
|
return eval_type_intrinsic0(op, result);
|
|
|
|
f.f3 = eval;
|
|
return eval_intrinsic (op, f, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_parentheses (gfc_expr *op)
|
|
{
|
|
if (gfc_is_constant_expr (op))
|
|
return op;
|
|
|
|
return eval_intrinsic_f2 (INTRINSIC_PARENTHESES, gfc_arith_identity,
|
|
op, NULL);
|
|
}
|
|
|
|
gfc_expr *
|
|
gfc_uplus (gfc_expr *op)
|
|
{
|
|
return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_identity, op, NULL);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_uminus (gfc_expr *op)
|
|
{
|
|
return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_add (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_subtract (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_multiply (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_divide (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_power (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_POWER, arith_power, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_concat (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_and (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_or (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_not (gfc_expr *op1)
|
|
{
|
|
return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_eqv (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_neqv (gfc_expr *op1, gfc_expr *op2)
|
|
{
|
|
return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_eq (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
|
|
{
|
|
return eval_intrinsic_f3 (op, gfc_arith_eq, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_ne (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
|
|
{
|
|
return eval_intrinsic_f3 (op, gfc_arith_ne, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_gt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
|
|
{
|
|
return eval_intrinsic_f3 (op, gfc_arith_gt, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_ge (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
|
|
{
|
|
return eval_intrinsic_f3 (op, gfc_arith_ge, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_lt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
|
|
{
|
|
return eval_intrinsic_f3 (op, gfc_arith_lt, op1, op2);
|
|
}
|
|
|
|
|
|
gfc_expr *
|
|
gfc_le (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
|
|
{
|
|
return eval_intrinsic_f3 (op, gfc_arith_le, op1, op2);
|
|
}
|
|
|
|
|
|
/******* Simplification of intrinsic functions with constant arguments *****/
|
|
|
|
|
|
/* Deal with an arithmetic error. */
|
|
|
|
static void
|
|
arith_error (arith rc, gfc_typespec *from, gfc_typespec *to, locus *where)
|
|
{
|
|
switch (rc)
|
|
{
|
|
case ARITH_OK:
|
|
gfc_error ("Arithmetic OK converting %s to %s at %L",
|
|
gfc_typename (from), gfc_typename (to), where);
|
|
break;
|
|
case ARITH_OVERFLOW:
|
|
gfc_error ("Arithmetic overflow converting %s to %s at %L. This check "
|
|
"can be disabled with the option %<-fno-range-check%>",
|
|
gfc_typename (from), gfc_typename (to), where);
|
|
break;
|
|
case ARITH_UNDERFLOW:
|
|
gfc_error ("Arithmetic underflow converting %s to %s at %L. This check "
|
|
"can be disabled with the option %<-fno-range-check%>",
|
|
gfc_typename (from), gfc_typename (to), where);
|
|
break;
|
|
case ARITH_NAN:
|
|
gfc_error ("Arithmetic NaN converting %s to %s at %L. This check "
|
|
"can be disabled with the option %<-fno-range-check%>",
|
|
gfc_typename (from), gfc_typename (to), where);
|
|
break;
|
|
case ARITH_DIV0:
|
|
gfc_error ("Division by zero converting %s to %s at %L",
|
|
gfc_typename (from), gfc_typename (to), where);
|
|
break;
|
|
case ARITH_INCOMMENSURATE:
|
|
gfc_error ("Array operands are incommensurate converting %s to %s at %L",
|
|
gfc_typename (from), gfc_typename (to), where);
|
|
break;
|
|
case ARITH_ASYMMETRIC:
|
|
gfc_error ("Integer outside symmetric range implied by Standard Fortran"
|
|
" converting %s to %s at %L",
|
|
gfc_typename (from), gfc_typename (to), where);
|
|
break;
|
|
default:
|
|
gfc_internal_error ("gfc_arith_error(): Bad error code");
|
|
}
|
|
|
|
/* TODO: Do something about the error, i.e., throw exception, return
|
|
NaN, etc. */
|
|
}
|
|
|
|
/* Returns true if significant bits were lost when converting real
|
|
constant r from from_kind to to_kind. */
|
|
|
|
static bool
|
|
wprecision_real_real (mpfr_t r, int from_kind, int to_kind)
|
|
{
|
|
mpfr_t rv, diff;
|
|
bool ret;
|
|
|
|
gfc_set_model_kind (to_kind);
|
|
mpfr_init (rv);
|
|
gfc_set_model_kind (from_kind);
|
|
mpfr_init (diff);
|
|
|
|
mpfr_set (rv, r, GFC_RND_MODE);
|
|
mpfr_sub (diff, rv, r, GFC_RND_MODE);
|
|
|
|
ret = ! mpfr_zero_p (diff);
|
|
mpfr_clear (rv);
|
|
mpfr_clear (diff);
|
|
return ret;
|
|
}
|
|
|
|
/* Return true if conversion from an integer to a real loses precision. */
|
|
|
|
static bool
|
|
wprecision_int_real (mpz_t n, mpfr_t r)
|
|
{
|
|
bool ret;
|
|
mpz_t i;
|
|
mpz_init (i);
|
|
mpfr_get_z (i, r, GFC_RND_MODE);
|
|
mpz_sub (i, i, n);
|
|
ret = mpz_cmp_si (i, 0) != 0;
|
|
mpz_clear (i);
|
|
return ret;
|
|
}
|
|
|
|
/* Convert integers to integers. */
|
|
|
|
gfc_expr *
|
|
gfc_int2int (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
|
|
result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
|
|
|
|
mpz_set (result->value.integer, src->value.integer);
|
|
|
|
if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
|
|
{
|
|
if (rc == ARITH_ASYMMETRIC)
|
|
{
|
|
gfc_warning (0, gfc_arith_error (rc), &src->where);
|
|
}
|
|
else
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* If we do not trap numeric overflow, we need to convert the number to
|
|
signed, throwing away high-order bits if necessary. */
|
|
if (flag_range_check == 0)
|
|
{
|
|
int k;
|
|
|
|
k = gfc_validate_kind (BT_INTEGER, kind, false);
|
|
gfc_convert_mpz_to_signed (result->value.integer,
|
|
gfc_integer_kinds[k].bit_size);
|
|
|
|
if (warn_conversion && !src->do_not_warn && kind < src->ts.kind)
|
|
gfc_warning_now (OPT_Wconversion, "Conversion from %qs to %qs at %L",
|
|
gfc_typename (&src->ts), gfc_typename (&result->ts),
|
|
&src->where);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert integers to reals. */
|
|
|
|
gfc_expr *
|
|
gfc_int2real (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
|
|
result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
|
|
|
|
mpfr_set_z (result->value.real, src->value.integer, GFC_RND_MODE);
|
|
|
|
if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK)
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
|
|
if (warn_conversion
|
|
&& wprecision_int_real (src->value.integer, result->value.real))
|
|
gfc_warning (OPT_Wconversion, "Change of value in conversion "
|
|
"from %qs to %qs at %L",
|
|
gfc_typename (&src->ts),
|
|
gfc_typename (&result->ts),
|
|
&src->where);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert default integer to default complex. */
|
|
|
|
gfc_expr *
|
|
gfc_int2complex (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
|
|
result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
|
|
|
|
mpc_set_z (result->value.complex, src->value.integer, GFC_MPC_RND_MODE);
|
|
|
|
if ((rc = gfc_check_real_range (mpc_realref (result->value.complex), kind))
|
|
!= ARITH_OK)
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
|
|
if (warn_conversion
|
|
&& wprecision_int_real (src->value.integer,
|
|
mpc_realref (result->value.complex)))
|
|
gfc_warning_now (OPT_Wconversion, "Change of value in conversion "
|
|
"from %qs to %qs at %L",
|
|
gfc_typename (&src->ts),
|
|
gfc_typename (&result->ts),
|
|
&src->where);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert default real to default integer. */
|
|
|
|
gfc_expr *
|
|
gfc_real2int (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
bool did_warn = false;
|
|
|
|
result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
|
|
|
|
gfc_mpfr_to_mpz (result->value.integer, src->value.real, &src->where);
|
|
|
|
if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
|
|
/* If there was a fractional part, warn about this. */
|
|
|
|
if (warn_conversion)
|
|
{
|
|
mpfr_t f;
|
|
mpfr_init (f);
|
|
mpfr_frac (f, src->value.real, GFC_RND_MODE);
|
|
if (mpfr_cmp_si (f, 0) != 0)
|
|
{
|
|
gfc_warning_now (OPT_Wconversion, "Change of value in conversion "
|
|
"from %qs to %qs at %L", gfc_typename (&src->ts),
|
|
gfc_typename (&result->ts), &src->where);
|
|
did_warn = true;
|
|
}
|
|
}
|
|
if (!did_warn && warn_conversion_extra)
|
|
{
|
|
gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
|
|
"at %L", gfc_typename (&src->ts),
|
|
gfc_typename (&result->ts), &src->where);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert real to real. */
|
|
|
|
gfc_expr *
|
|
gfc_real2real (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
bool did_warn = false;
|
|
|
|
result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
|
|
|
|
mpfr_set (result->value.real, src->value.real, GFC_RND_MODE);
|
|
|
|
rc = gfc_check_real_range (result->value.real, kind);
|
|
|
|
if (rc == ARITH_UNDERFLOW)
|
|
{
|
|
if (warn_underflow)
|
|
gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
|
|
mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
|
|
}
|
|
else if (rc != ARITH_OK)
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
|
|
/* As a special bonus, don't warn about REAL values which are not changed by
|
|
the conversion if -Wconversion is specified and -Wconversion-extra is
|
|
not. */
|
|
|
|
if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind)
|
|
{
|
|
int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
|
|
|
|
/* Calculate the difference between the constant and the rounded
|
|
value and check it against zero. */
|
|
|
|
if (wprecision_real_real (src->value.real, src->ts.kind, kind))
|
|
{
|
|
gfc_warning_now (w, "Change of value in conversion from "
|
|
"%qs to %qs at %L",
|
|
gfc_typename (&src->ts), gfc_typename (&result->ts),
|
|
&src->where);
|
|
/* Make sure the conversion warning is not emitted again. */
|
|
did_warn = true;
|
|
}
|
|
}
|
|
|
|
if (!did_warn && warn_conversion_extra)
|
|
gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
|
|
"at %L", gfc_typename(&src->ts),
|
|
gfc_typename(&result->ts), &src->where);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert real to complex. */
|
|
|
|
gfc_expr *
|
|
gfc_real2complex (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
bool did_warn = false;
|
|
|
|
if (src->ts.type != BT_REAL)
|
|
return NULL;
|
|
|
|
result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
|
|
|
|
mpc_set_fr (result->value.complex, src->value.real, GFC_MPC_RND_MODE);
|
|
|
|
rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
|
|
|
|
if (rc == ARITH_UNDERFLOW)
|
|
{
|
|
if (warn_underflow)
|
|
gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
|
|
mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
|
|
}
|
|
else if (rc != ARITH_OK)
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
|
|
if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind)
|
|
{
|
|
int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
|
|
|
|
if (wprecision_real_real (src->value.real, src->ts.kind, kind))
|
|
{
|
|
gfc_warning_now (w, "Change of value in conversion from "
|
|
"%qs to %qs at %L",
|
|
gfc_typename (&src->ts), gfc_typename (&result->ts),
|
|
&src->where);
|
|
/* Make sure the conversion warning is not emitted again. */
|
|
did_warn = true;
|
|
}
|
|
}
|
|
|
|
if (!did_warn && warn_conversion_extra)
|
|
gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
|
|
"at %L", gfc_typename(&src->ts),
|
|
gfc_typename(&result->ts), &src->where);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert complex to integer. */
|
|
|
|
gfc_expr *
|
|
gfc_complex2int (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
bool did_warn = false;
|
|
|
|
result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
|
|
|
|
gfc_mpfr_to_mpz (result->value.integer, mpc_realref (src->value.complex),
|
|
&src->where);
|
|
|
|
if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
|
|
if (warn_conversion || warn_conversion_extra)
|
|
{
|
|
int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
|
|
|
|
/* See if we discarded an imaginary part. */
|
|
if (mpfr_cmp_si (mpc_imagref (src->value.complex), 0) != 0)
|
|
{
|
|
gfc_warning_now (w, "Non-zero imaginary part discarded "
|
|
"in conversion from %qs to %qs at %L",
|
|
gfc_typename(&src->ts), gfc_typename (&result->ts),
|
|
&src->where);
|
|
did_warn = true;
|
|
}
|
|
|
|
else {
|
|
mpfr_t f;
|
|
|
|
mpfr_init (f);
|
|
mpfr_frac (f, src->value.real, GFC_RND_MODE);
|
|
if (mpfr_cmp_si (f, 0) != 0)
|
|
{
|
|
gfc_warning_now (w, "Change of value in conversion from "
|
|
"%qs to %qs at %L", gfc_typename (&src->ts),
|
|
gfc_typename (&result->ts), &src->where);
|
|
did_warn = true;
|
|
}
|
|
mpfr_clear (f);
|
|
}
|
|
|
|
if (!did_warn && warn_conversion_extra)
|
|
{
|
|
gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
|
|
"at %L", gfc_typename (&src->ts),
|
|
gfc_typename (&result->ts), &src->where);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert complex to real. */
|
|
|
|
gfc_expr *
|
|
gfc_complex2real (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
bool did_warn = false;
|
|
|
|
result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
|
|
|
|
mpc_real (result->value.real, src->value.complex, GFC_RND_MODE);
|
|
|
|
rc = gfc_check_real_range (result->value.real, kind);
|
|
|
|
if (rc == ARITH_UNDERFLOW)
|
|
{
|
|
if (warn_underflow)
|
|
gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
|
|
mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
|
|
}
|
|
if (rc != ARITH_OK)
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
|
|
if (warn_conversion || warn_conversion_extra)
|
|
{
|
|
int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
|
|
|
|
/* See if we discarded an imaginary part. */
|
|
if (mpfr_cmp_si (mpc_imagref (src->value.complex), 0) != 0)
|
|
{
|
|
gfc_warning (w, "Non-zero imaginary part discarded "
|
|
"in conversion from %qs to %qs at %L",
|
|
gfc_typename(&src->ts), gfc_typename (&result->ts),
|
|
&src->where);
|
|
did_warn = true;
|
|
}
|
|
|
|
/* Calculate the difference between the real constant and the rounded
|
|
value and check it against zero. */
|
|
|
|
if (kind > src->ts.kind
|
|
&& wprecision_real_real (mpc_realref (src->value.complex),
|
|
src->ts.kind, kind))
|
|
{
|
|
gfc_warning_now (w, "Change of value in conversion from "
|
|
"%qs to %qs at %L",
|
|
gfc_typename (&src->ts), gfc_typename (&result->ts),
|
|
&src->where);
|
|
/* Make sure the conversion warning is not emitted again. */
|
|
did_warn = true;
|
|
}
|
|
}
|
|
|
|
if (!did_warn && warn_conversion_extra)
|
|
gfc_warning_now (OPT_Wconversion, "Conversion from %qs to %qs at %L",
|
|
gfc_typename(&src->ts), gfc_typename (&result->ts),
|
|
&src->where);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert complex to complex. */
|
|
|
|
gfc_expr *
|
|
gfc_complex2complex (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
arith rc;
|
|
bool did_warn = false;
|
|
|
|
result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
|
|
|
|
mpc_set (result->value.complex, src->value.complex, GFC_MPC_RND_MODE);
|
|
|
|
rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
|
|
|
|
if (rc == ARITH_UNDERFLOW)
|
|
{
|
|
if (warn_underflow)
|
|
gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
|
|
mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
|
|
}
|
|
else if (rc != ARITH_OK)
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
|
|
rc = gfc_check_real_range (mpc_imagref (result->value.complex), kind);
|
|
|
|
if (rc == ARITH_UNDERFLOW)
|
|
{
|
|
if (warn_underflow)
|
|
gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where);
|
|
mpfr_set_ui (mpc_imagref (result->value.complex), 0, GFC_RND_MODE);
|
|
}
|
|
else if (rc != ARITH_OK)
|
|
{
|
|
arith_error (rc, &src->ts, &result->ts, &src->where);
|
|
gfc_free_expr (result);
|
|
return NULL;
|
|
}
|
|
|
|
if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind
|
|
&& (wprecision_real_real (mpc_realref (src->value.complex),
|
|
src->ts.kind, kind)
|
|
|| wprecision_real_real (mpc_imagref (src->value.complex),
|
|
src->ts.kind, kind)))
|
|
{
|
|
int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra;
|
|
|
|
gfc_warning_now (w, "Change of value in conversion from "
|
|
"%qs to %qs at %L",
|
|
gfc_typename (&src->ts), gfc_typename (&result->ts),
|
|
&src->where);
|
|
did_warn = true;
|
|
}
|
|
|
|
if (!did_warn && warn_conversion_extra && src->ts.kind != kind)
|
|
gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs "
|
|
"at %L", gfc_typename(&src->ts),
|
|
gfc_typename (&result->ts), &src->where);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Logical kind conversion. */
|
|
|
|
gfc_expr *
|
|
gfc_log2log (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
|
|
result->value.logical = src->value.logical;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert logical to integer. */
|
|
|
|
gfc_expr *
|
|
gfc_log2int (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
|
|
mpz_set_si (result->value.integer, src->value.logical);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert integer to logical. */
|
|
|
|
gfc_expr *
|
|
gfc_int2log (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
|
|
result->value.logical = (mpz_cmp_si (src->value.integer, 0) != 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Convert character to character. We only use wide strings internally,
|
|
so we only set the kind. */
|
|
|
|
gfc_expr *
|
|
gfc_character2character (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
result = gfc_copy_expr (src);
|
|
result->ts.kind = kind;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Helper function to set the representation in a Hollerith conversion.
|
|
This assumes that the ts.type and ts.kind of the result have already
|
|
been set. */
|
|
|
|
static void
|
|
hollerith2representation (gfc_expr *result, gfc_expr *src)
|
|
{
|
|
size_t src_len, result_len;
|
|
|
|
src_len = src->representation.length - src->ts.u.pad;
|
|
gfc_target_expr_size (result, &result_len);
|
|
|
|
if (src_len > result_len)
|
|
{
|
|
gfc_warning (OPT_Wcharacter_truncation, "The Hollerith constant at %L "
|
|
"is truncated in conversion to %qs", &src->where,
|
|
gfc_typename(&result->ts));
|
|
}
|
|
|
|
result->representation.string = XCNEWVEC (char, result_len + 1);
|
|
memcpy (result->representation.string, src->representation.string,
|
|
MIN (result_len, src_len));
|
|
|
|
if (src_len < result_len)
|
|
memset (&result->representation.string[src_len], ' ', result_len - src_len);
|
|
|
|
result->representation.string[result_len] = '\0'; /* For debugger */
|
|
result->representation.length = result_len;
|
|
}
|
|
|
|
|
|
/* Helper function to set the representation in a character conversion.
|
|
This assumes that the ts.type and ts.kind of the result have already
|
|
been set. */
|
|
|
|
static void
|
|
character2representation (gfc_expr *result, gfc_expr *src)
|
|
{
|
|
size_t src_len, result_len, i;
|
|
src_len = src->value.character.length;
|
|
gfc_target_expr_size (result, &result_len);
|
|
|
|
if (src_len > result_len)
|
|
gfc_warning (OPT_Wcharacter_truncation, "The character constant at %L is "
|
|
"truncated in conversion to %s", &src->where,
|
|
gfc_typename(&result->ts));
|
|
|
|
result->representation.string = XCNEWVEC (char, result_len + 1);
|
|
|
|
for (i = 0; i < MIN (result_len, src_len); i++)
|
|
result->representation.string[i] = (char) src->value.character.string[i];
|
|
|
|
if (src_len < result_len)
|
|
memset (&result->representation.string[src_len], ' ',
|
|
result_len - src_len);
|
|
|
|
result->representation.string[result_len] = '\0'; /* For debugger. */
|
|
result->representation.length = result_len;
|
|
}
|
|
|
|
/* Convert Hollerith to integer. The constant will be padded or truncated. */
|
|
|
|
gfc_expr *
|
|
gfc_hollerith2int (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
|
|
|
|
hollerith2representation (result, src);
|
|
gfc_interpret_integer (kind, (unsigned char *) result->representation.string,
|
|
result->representation.length, result->value.integer);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Convert character to integer. The constant will be padded or truncated. */
|
|
|
|
gfc_expr *
|
|
gfc_character2int (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
|
|
|
|
character2representation (result, src);
|
|
gfc_interpret_integer (kind, (unsigned char *) result->representation.string,
|
|
result->representation.length, result->value.integer);
|
|
return result;
|
|
}
|
|
|
|
/* Convert Hollerith to real. The constant will be padded or truncated. */
|
|
|
|
gfc_expr *
|
|
gfc_hollerith2real (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
|
|
|
|
hollerith2representation (result, src);
|
|
gfc_interpret_float (kind, (unsigned char *) result->representation.string,
|
|
result->representation.length, result->value.real);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Convert character to real. The constant will be padded or truncated. */
|
|
|
|
gfc_expr *
|
|
gfc_character2real (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
|
|
|
|
character2representation (result, src);
|
|
gfc_interpret_float (kind, (unsigned char *) result->representation.string,
|
|
result->representation.length, result->value.real);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert Hollerith to complex. The constant will be padded or truncated. */
|
|
|
|
gfc_expr *
|
|
gfc_hollerith2complex (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
|
|
|
|
hollerith2representation (result, src);
|
|
gfc_interpret_complex (kind, (unsigned char *) result->representation.string,
|
|
result->representation.length, result->value.complex);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Convert character to complex. The constant will be padded or truncated. */
|
|
|
|
gfc_expr *
|
|
gfc_character2complex (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
|
|
|
|
character2representation (result, src);
|
|
gfc_interpret_complex (kind, (unsigned char *) result->representation.string,
|
|
result->representation.length, result->value.complex);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert Hollerith to character. */
|
|
|
|
gfc_expr *
|
|
gfc_hollerith2character (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
|
|
result = gfc_copy_expr (src);
|
|
result->ts.type = BT_CHARACTER;
|
|
result->ts.kind = kind;
|
|
result->ts.u.pad = 0;
|
|
|
|
result->value.character.length = result->representation.length;
|
|
result->value.character.string
|
|
= gfc_char_to_widechar (result->representation.string);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Convert Hollerith to logical. The constant will be padded or truncated. */
|
|
|
|
gfc_expr *
|
|
gfc_hollerith2logical (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
|
|
|
|
hollerith2representation (result, src);
|
|
gfc_interpret_logical (kind, (unsigned char *) result->representation.string,
|
|
result->representation.length, &result->value.logical);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Convert character to logical. The constant will be padded or truncated. */
|
|
|
|
gfc_expr *
|
|
gfc_character2logical (gfc_expr *src, int kind)
|
|
{
|
|
gfc_expr *result;
|
|
result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
|
|
|
|
character2representation (result, src);
|
|
gfc_interpret_logical (kind, (unsigned char *) result->representation.string,
|
|
result->representation.length, &result->value.logical);
|
|
|
|
return result;
|
|
}
|