mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-27 06:54:05 +08:00
92e6f3a43e
2014-06-17 Janne Blomqvist <jb@gcc.gnu.org> * libgfortran.h (xmallocarray): New prototype. * runtime/memory.c (xmallocarray): New function. (xcalloc): Check for nonzero separately instead of multiplying. * generated/*.c: Regenerated. * intrinsics/cshift0.c (cshift0): Call xmallocarray instead of xmalloc. * intrinsics/eoshift0.c (eoshift0): Likewise. * intrinsics/eoshift2.c (eoshift2): Likewise. * intrinsics/pack_generic.c (pack_internal): Likewise. (pack_s_internal): Likewise. * intrinsics/reshape_generic.c (reshape_internal): Likewise. * intrinsics/spread_generic.c (spread_internal): Likewise. (spread_internal_scalar): Likewise. * intrinsics/string_intrinsics_inc.c (string_trim): Likewise. (string_minmax): Likewise. * intrinsics/transpose_generic.c (transpose_internal): Likewise. * intrinsics/unpack_generic.c (unpack_internal): Likewise. * io/list_read.c (nml_touch_nodes): Don't cast xmalloc return value. * io/transfer.c (st_set_nml_var): Call xmallocarray instead of xmalloc. * io/unit.c (get_internal_unit): Likewise. (filename_from_unit): Don't cast xmalloc return value. * io/write.c (nml_write_obj): Likewise, formatting. * m4/bessel.m4 (bessel_jn_r'rtype_kind`): Call xmallocarray instead of xmalloc. (besse_yn_r'rtype_kind`): Likewise. * m4/cshift1.m4 (cshift1): Likewise. * m4/eoshift1.m4 (eoshift1): Likewise. * m4/eoshift3.m4 (eoshift3): Likewise. * m4/iforeach.m4: Likewise. * m4/ifunction.m4: Likewise. * m4/ifunction_logical.m4 (name`'rtype_qual`_'atype_code): Likewise. * m4/in_pack.m4 (internal_pack_'rtype_ccode`): Likewise. * m4/matmul.m4 (matmul_'rtype_code`): Likewise. * m4/matmull.m4 (matmul_'rtype_code`): Likewise. * m4/pack.m4 (pack_'rtype_code`): Likewise. * m4/reshape.m4 (reshape_'rtype_ccode`): Likewise. * m4/shape.m4 (shape_'rtype_kind`): Likewise. * m4/spread.m4 (spread_'rtype_code`): Likewise. (spread_scalar_'rtype_code`): Likewise. * m4/transpose.m4 (transpose_'rtype_code`): Likewise. * m4/unpack.m4 (unpack0_'rtype_code`): Likewise. (unpack1_'rtype_code`): Likewise. * runtime/convert_char.c (convert_char1_to_char4): Likewise. (convert_char4_to_char1): Simplify. * runtime/environ.c (init_unformatted): Call xmallocarray instead of xmalloc. * runtime/in_pack_generic.c (internal_pack): Likewise. From-SVN: r211721
208 lines
5.6 KiB
Plaintext
208 lines
5.6 KiB
Plaintext
dnl Support macro file for intrinsic functions.
|
|
dnl Contains the generic sections of the array functions.
|
|
dnl This file is part of the GNU Fortran Runtime Library (libgfortran)
|
|
dnl Distributed under the GNU GPL with exception. See COPYING for details.
|
|
dnl
|
|
dnl Pass the implementation for a single section as the parameter to
|
|
dnl {MASK_}ARRAY_FUNCTION.
|
|
dnl The variables base, delta, and len describe the input section.
|
|
dnl For masked section the mask is described by mbase and mdelta.
|
|
dnl These should not be modified. The result should be stored in *dest.
|
|
dnl The names count, extent, sstride, dstride, base, dest, rank, dim
|
|
dnl retarray, array, pdim and mstride should not be used.
|
|
dnl The variable n is declared as index_type and may be used.
|
|
dnl Other variable declarations may be placed at the start of the code,
|
|
dnl The types of the array parameter and the return value are
|
|
dnl atype_name and rtype_name respectively.
|
|
dnl Execution should be allowed to continue to the end of the block.
|
|
dnl You should not return or break from the inner loop of the implementation.
|
|
dnl Care should also be taken to avoid using the names defined in iparm.m4
|
|
define(START_ARRAY_FUNCTION,
|
|
`
|
|
extern void name`'rtype_qual`_'atype_code (rtype * const restrict,
|
|
gfc_array_l1 * const restrict, const index_type * const restrict);
|
|
export_proto(name`'rtype_qual`_'atype_code);
|
|
|
|
void
|
|
name`'rtype_qual`_'atype_code (rtype * const restrict retarray,
|
|
gfc_array_l1 * const restrict array,
|
|
const index_type * const restrict pdim)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
const GFC_LOGICAL_1 * restrict base;
|
|
rtype_name * restrict dest;
|
|
index_type rank;
|
|
index_type n;
|
|
index_type len;
|
|
index_type delta;
|
|
index_type dim;
|
|
int src_kind;
|
|
int continue_loop;
|
|
|
|
/* Make dim zero based to avoid confusion. */
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
src_kind = GFC_DESCRIPTOR_SIZE (array);
|
|
|
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
|
if (len < 0)
|
|
len = 0;
|
|
|
|
delta = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim);
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n + 1);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
retarray->offset = 0;
|
|
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
|
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
|
|
|
if (alloc_size == 0)
|
|
{
|
|
/* Make sure we have a zero-sized array. */
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
return;
|
|
}
|
|
else
|
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in"
|
|
" u_name intrinsic: is %ld, should be %ld",
|
|
(long int) GFC_DESCRIPTOR_RANK (retarray),
|
|
(long int) rank);
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
{
|
|
for (n=0; n < rank; n++)
|
|
{
|
|
index_type ret_extent;
|
|
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
|
|
if (extent[n] != ret_extent)
|
|
runtime_error ("Incorrect extent in return value of"
|
|
" u_name intrinsic in dimension %d:"
|
|
" is %ld, should be %ld", (int) n + 1,
|
|
(long int) ret_extent, (long int) extent[n]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
base = array->base_addr;
|
|
|
|
if (src_kind == 1 || src_kind == 2 || src_kind == 4 || src_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| src_kind == 16
|
|
#endif
|
|
)
|
|
{
|
|
if (base)
|
|
base = GFOR_POINTER_TO_L1 (base, src_kind);
|
|
}
|
|
else
|
|
internal_error (NULL, "Funny sized logical array in u_name intrinsic");
|
|
|
|
dest = retarray->base_addr;
|
|
|
|
continue_loop = 1;
|
|
while (continue_loop)
|
|
{
|
|
const GFC_LOGICAL_1 * restrict src;
|
|
rtype_name result;
|
|
src = base;
|
|
{
|
|
')dnl
|
|
define(START_ARRAY_BLOCK,
|
|
` if (len <= 0)
|
|
*dest = '$1`;
|
|
else
|
|
{
|
|
for (n = 0; n < len; n++, src += delta)
|
|
{
|
|
')dnl
|
|
define(FINISH_ARRAY_FUNCTION,
|
|
` }
|
|
*dest = result;
|
|
}
|
|
}
|
|
/* Advance to the next element. */
|
|
count[0]++;
|
|
base += sstride[0];
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n == rank)
|
|
{
|
|
/* Break out of the look. */
|
|
continue_loop = 0;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}')dnl
|
|
define(ARRAY_FUNCTION,
|
|
`START_ARRAY_FUNCTION
|
|
$2
|
|
START_ARRAY_BLOCK($1)
|
|
$3
|
|
FINISH_ARRAY_FUNCTION')dnl
|