mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-26 19:34:24 +08:00
52a11cbfcf
From-SVN: r40924
1385 lines
33 KiB
C
1385 lines
33 KiB
C
/* Basic block reordering routines for the GNU compiler.
|
||
Copyright (C) 2000 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* References:
|
||
|
||
"Profile Guided Code Positioning"
|
||
Pettis and Hanson; PLDI '90.
|
||
|
||
TODO:
|
||
|
||
(1) Consider:
|
||
|
||
if (p) goto A; // predict taken
|
||
foo ();
|
||
A:
|
||
if (q) goto B; // predict taken
|
||
bar ();
|
||
B:
|
||
baz ();
|
||
return;
|
||
|
||
We'll currently reorder this as
|
||
|
||
if (!p) goto C;
|
||
A:
|
||
if (!q) goto D;
|
||
B:
|
||
baz ();
|
||
return;
|
||
D:
|
||
bar ();
|
||
goto B;
|
||
C:
|
||
foo ();
|
||
goto A;
|
||
|
||
A better ordering is
|
||
|
||
if (!p) goto C;
|
||
if (!q) goto D;
|
||
B:
|
||
baz ();
|
||
return;
|
||
C:
|
||
foo ();
|
||
if (q) goto B;
|
||
D:
|
||
bar ();
|
||
goto B;
|
||
|
||
This requires that we be able to duplicate the jump at A, and
|
||
adjust the graph traversal such that greedy placement doesn't
|
||
fix D before C is considered.
|
||
|
||
(2) Coordinate with shorten_branches to minimize the number of
|
||
long branches.
|
||
|
||
(3) Invent a method by which sufficiently non-predicted code can
|
||
be moved to either the end of the section or another section
|
||
entirely. Some sort of NOTE_INSN note would work fine.
|
||
|
||
This completely scroggs all debugging formats, so the user
|
||
would have to explicitly ask for it.
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "insn-config.h"
|
||
#include "regs.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "function.h"
|
||
#include "toplev.h"
|
||
#include "recog.h"
|
||
#include "expr.h"
|
||
#include "obstack.h"
|
||
|
||
|
||
#ifndef HAVE_epilogue
|
||
#define HAVE_epilogue 0
|
||
#endif
|
||
|
||
|
||
/* The contents of the current function definition are allocated
|
||
in this obstack, and all are freed at the end of the function.
|
||
For top-level functions, this is temporary_obstack.
|
||
Separate obstacks are made for nested functions. */
|
||
|
||
extern struct obstack flow_obstack;
|
||
|
||
|
||
/* Structure to hold information about lexical scopes. */
|
||
typedef struct scope_def
|
||
{
|
||
int level;
|
||
|
||
/* The NOTE_INSN_BLOCK_BEG that started this scope. */
|
||
rtx note_beg;
|
||
|
||
/* The NOTE_INSN_BLOCK_END that ended this scope. */
|
||
rtx note_end;
|
||
|
||
/* The bb containing note_beg (if any). */
|
||
basic_block bb_beg;
|
||
|
||
/* The bb containing note_end (if any). */
|
||
basic_block bb_end;
|
||
|
||
/* List of basic blocks contained within this scope. */
|
||
basic_block *bbs;
|
||
|
||
/* Number of blocks contained within this scope. */
|
||
int num_bbs;
|
||
|
||
/* The outer scope or NULL if outermost scope. */
|
||
struct scope_def *outer;
|
||
|
||
/* The first inner scope or NULL if innermost scope. */
|
||
struct scope_def *inner;
|
||
|
||
/* The last inner scope or NULL if innermost scope. */
|
||
struct scope_def *inner_last;
|
||
|
||
/* Link to the next (sibling) scope. */
|
||
struct scope_def *next;
|
||
} *scope;
|
||
|
||
|
||
/* Structure to hold information about the scope forest. */
|
||
typedef struct
|
||
{
|
||
/* Number of trees in forest. */
|
||
int num_trees;
|
||
|
||
/* List of tree roots. */
|
||
scope *trees;
|
||
} scope_forest_info;
|
||
|
||
/* Structure to hold information about the blocks during reordering. */
|
||
typedef struct reorder_block_def
|
||
{
|
||
rtx eff_head;
|
||
rtx eff_end;
|
||
scope scope;
|
||
basic_block next;
|
||
int index;
|
||
int visited;
|
||
} *reorder_block_def;
|
||
|
||
#define RBI(BB) ((reorder_block_def) (BB)->aux)
|
||
|
||
|
||
/* Local function prototypes. */
|
||
static rtx skip_insns_after_block PARAMS ((basic_block));
|
||
static void record_effective_endpoints PARAMS ((void));
|
||
static void make_reorder_chain PARAMS ((void));
|
||
static basic_block make_reorder_chain_1 PARAMS ((basic_block, basic_block));
|
||
static rtx label_for_bb PARAMS ((basic_block));
|
||
static rtx emit_jump_to_block_after PARAMS ((basic_block, rtx));
|
||
static void fixup_reorder_chain PARAMS ((void));
|
||
static void relate_bbs_with_scopes PARAMS ((scope));
|
||
static scope make_new_scope PARAMS ((int, rtx));
|
||
static void build_scope_forest PARAMS ((scope_forest_info *));
|
||
static void remove_scope_notes PARAMS ((void));
|
||
static void insert_intra_1 PARAMS ((scope, rtx *));
|
||
static void insert_intra_bb_scope_notes PARAMS ((basic_block));
|
||
static void insert_inter_bb_scope_notes PARAMS ((basic_block, basic_block));
|
||
static void rebuild_scope_notes PARAMS ((scope_forest_info *));
|
||
static void free_scope_forest_1 PARAMS ((scope));
|
||
static void free_scope_forest PARAMS ((scope_forest_info *));
|
||
void dump_scope_forest PARAMS ((scope_forest_info *));
|
||
static void dump_scope_forest_1 PARAMS ((scope, int));
|
||
static rtx get_next_bb_note PARAMS ((rtx));
|
||
static rtx get_prev_bb_note PARAMS ((rtx));
|
||
|
||
void verify_insn_chain PARAMS ((void));
|
||
|
||
/* Skip over inter-block insns occurring after BB which are typically
|
||
associated with BB (e.g., barriers). If there are any such insns,
|
||
we return the last one. Otherwise, we return the end of BB. */
|
||
|
||
static rtx
|
||
skip_insns_after_block (bb)
|
||
basic_block bb;
|
||
{
|
||
rtx insn, last_insn, next_head;
|
||
|
||
next_head = NULL_RTX;
|
||
if (bb->index + 1 != n_basic_blocks)
|
||
next_head = BASIC_BLOCK (bb->index + 1)->head;
|
||
|
||
for (last_insn = bb->end; (insn = NEXT_INSN (last_insn)); last_insn = insn)
|
||
{
|
||
if (insn == next_head)
|
||
break;
|
||
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case BARRIER:
|
||
continue;
|
||
|
||
case NOTE:
|
||
switch (NOTE_LINE_NUMBER (insn))
|
||
{
|
||
case NOTE_INSN_LOOP_END:
|
||
case NOTE_INSN_BLOCK_END:
|
||
case NOTE_INSN_DELETED:
|
||
case NOTE_INSN_DELETED_LABEL:
|
||
continue;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case CODE_LABEL:
|
||
if (NEXT_INSN (insn)
|
||
&& GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
|
||
&& (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
return last_insn;
|
||
}
|
||
|
||
|
||
/* Locate the effective beginning and end of the insn chain for each
|
||
block, as defined by skip_insns_after_block above. */
|
||
|
||
static void
|
||
record_effective_endpoints ()
|
||
{
|
||
rtx next_insn = get_insns ();
|
||
int i;
|
||
|
||
for (i = 0; i < n_basic_blocks; ++i)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (i);
|
||
rtx end;
|
||
|
||
RBI (bb)->eff_head = next_insn;
|
||
end = skip_insns_after_block (bb);
|
||
RBI (bb)->eff_end = end;
|
||
next_insn = NEXT_INSN (end);
|
||
}
|
||
}
|
||
|
||
|
||
/* Compute an ordering for a subgraph beginning with block BB. Record the
|
||
ordering in RBI()->index and chained through RBI()->next. */
|
||
|
||
static void
|
||
make_reorder_chain ()
|
||
{
|
||
basic_block last_block = NULL;
|
||
basic_block prev = NULL;
|
||
int nbb_m1 = n_basic_blocks - 1;
|
||
|
||
/* If we've not got epilogue in RTL, we must fallthru to the exit.
|
||
Force the last block to be at the end. */
|
||
/* ??? Some ABIs (e.g. MIPS) require the return insn to be at the
|
||
end of the function for stack unwinding purposes. */
|
||
if (! HAVE_epilogue)
|
||
{
|
||
last_block = BASIC_BLOCK (nbb_m1);
|
||
RBI (last_block)->visited = 1;
|
||
nbb_m1 -= 1;
|
||
}
|
||
|
||
/* Loop until we've placed every block. */
|
||
do
|
||
{
|
||
int i;
|
||
basic_block next = NULL;
|
||
|
||
/* Find the next unplaced block. */
|
||
/* ??? Get rid of this loop, and track which blocks are not yet
|
||
placed more directly, so as to avoid the O(N^2) worst case.
|
||
Perhaps keep a doubly-linked list of all to-be-placed blocks;
|
||
remove from the list as we place. The head of that list is
|
||
what we're looking for here. */
|
||
|
||
for (i = 0; i <= nbb_m1; ++i)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (i);
|
||
if (! RBI (bb)->visited)
|
||
{
|
||
next = bb;
|
||
break;
|
||
}
|
||
}
|
||
if (! next)
|
||
abort ();
|
||
|
||
prev = make_reorder_chain_1 (next, prev);
|
||
}
|
||
while (RBI (prev)->index < nbb_m1);
|
||
|
||
/* Terminate the chain. */
|
||
if (! HAVE_epilogue)
|
||
{
|
||
RBI (prev)->next = last_block;
|
||
RBI (last_block)->index = RBI (prev)->index + 1;
|
||
prev = last_block;
|
||
}
|
||
RBI (prev)->next = NULL;
|
||
}
|
||
|
||
/* A helper function for make_reorder_chain.
|
||
|
||
We do not follow EH edges, or non-fallthru edges to noreturn blocks.
|
||
These are assumed to be the error condition and we wish to cluster
|
||
all of them at the very end of the function for the benefit of cache
|
||
locality for the rest of the function.
|
||
|
||
??? We could do slightly better by noticing earlier that some subgraph
|
||
has all paths leading to noreturn functions, but for there to be more
|
||
than one block in such a subgraph is rare. */
|
||
|
||
static basic_block
|
||
make_reorder_chain_1 (bb, prev)
|
||
basic_block bb;
|
||
basic_block prev;
|
||
{
|
||
edge e;
|
||
basic_block next;
|
||
rtx note;
|
||
|
||
/* Mark this block visited. */
|
||
if (prev)
|
||
{
|
||
int new_index;
|
||
|
||
restart:
|
||
RBI (prev)->next = bb;
|
||
new_index = RBI (prev)->index + 1;
|
||
RBI (bb)->index = new_index;
|
||
|
||
if (rtl_dump_file && prev->index + 1 != bb->index)
|
||
fprintf (rtl_dump_file, "Reordering block %d (%d) after %d (%d)\n",
|
||
bb->index, RBI (bb)->index, prev->index, RBI (prev)->index);
|
||
}
|
||
else
|
||
RBI (bb)->index = 0;
|
||
RBI (bb)->visited = 1;
|
||
prev = bb;
|
||
|
||
if (bb->succ == NULL)
|
||
return prev;
|
||
|
||
/* Find the most probable block. */
|
||
|
||
next = NULL;
|
||
if (any_condjump_p (bb->end)
|
||
&& (note = find_reg_note (bb->end, REG_BR_PROB, 0)) != NULL)
|
||
{
|
||
int taken, probability;
|
||
edge e_taken, e_fall;
|
||
|
||
probability = INTVAL (XEXP (note, 0));
|
||
taken = probability > REG_BR_PROB_BASE / 2;
|
||
|
||
/* Find the normal taken edge and the normal fallthru edge.
|
||
|
||
Note, conditional jumps with other side effects may not
|
||
be fully optimized. In this case it is possible for
|
||
the conditional jump to branch to the same location as
|
||
the fallthru path.
|
||
|
||
We should probably work to improve optimization of that
|
||
case; however, it seems silly not to also deal with such
|
||
problems here if they happen to occur. */
|
||
|
||
e_taken = e_fall = NULL;
|
||
for (e = bb->succ; e ; e = e->succ_next)
|
||
{
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
e_fall = e;
|
||
if (! (e->flags & EDGE_EH))
|
||
e_taken = e;
|
||
}
|
||
|
||
next = (taken ? e_taken : e_fall)->dest;
|
||
}
|
||
|
||
/* In the absence of a prediction, disturb things as little as possible
|
||
by selecting the old "next" block from the list of successors. If
|
||
there had been a fallthru edge, that will be the one. */
|
||
if (! next)
|
||
{
|
||
for (e = bb->succ; e ; e = e->succ_next)
|
||
if (e->dest->index == bb->index + 1)
|
||
{
|
||
if ((e->flags & EDGE_FALLTHRU)
|
||
|| (e->dest->succ
|
||
&& ! (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))))
|
||
next = e->dest;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Make sure we didn't select a silly next block. */
|
||
if (! next || next == EXIT_BLOCK_PTR || RBI (next)->visited)
|
||
next = NULL;
|
||
|
||
/* Recurse on the successors. Unroll the last call, as the normal
|
||
case is exactly one or two edges, and we can tail recurse. */
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
if (e->dest != EXIT_BLOCK_PTR
|
||
&& ! RBI (e->dest)->visited
|
||
&& e->dest->succ
|
||
&& ! (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
|
||
{
|
||
if (next)
|
||
{
|
||
prev = make_reorder_chain_1 (next, prev);
|
||
next = RBI (e->dest)->visited ? NULL : e->dest;
|
||
}
|
||
else
|
||
next = e->dest;
|
||
}
|
||
if (next)
|
||
{
|
||
bb = next;
|
||
goto restart;
|
||
}
|
||
|
||
return prev;
|
||
}
|
||
|
||
|
||
/* Locate or create a label for a given basic block. */
|
||
|
||
static rtx
|
||
label_for_bb (bb)
|
||
basic_block bb;
|
||
{
|
||
rtx label = bb->head;
|
||
|
||
if (GET_CODE (label) != CODE_LABEL)
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Emitting label for block %d (%d)\n",
|
||
bb->index, RBI (bb)->index);
|
||
|
||
label = emit_label_before (gen_label_rtx (), label);
|
||
if (bb->head == RBI (bb)->eff_head)
|
||
RBI (bb)->eff_head = label;
|
||
bb->head = label;
|
||
}
|
||
|
||
return label;
|
||
}
|
||
|
||
|
||
/* Emit a jump to BB after insn AFTER. */
|
||
|
||
static rtx
|
||
emit_jump_to_block_after (bb, after)
|
||
basic_block bb;
|
||
rtx after;
|
||
{
|
||
rtx jump;
|
||
|
||
if (bb != EXIT_BLOCK_PTR)
|
||
{
|
||
rtx label = label_for_bb (bb);
|
||
jump = emit_jump_insn_after (gen_jump (label), after);
|
||
JUMP_LABEL (jump) = label;
|
||
LABEL_NUSES (label) += 1;
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Emitting jump to block %d (%d)\n",
|
||
bb->index, RBI (bb)->index);
|
||
}
|
||
else
|
||
{
|
||
#ifdef HAVE_return
|
||
if (! HAVE_return)
|
||
abort ();
|
||
jump = emit_jump_insn_after (gen_return (), after);
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Emitting return\n");
|
||
#else
|
||
abort ();
|
||
#endif
|
||
}
|
||
|
||
return jump;
|
||
}
|
||
|
||
|
||
/* Given a reorder chain, rearrange the code to match. */
|
||
|
||
static void
|
||
fixup_reorder_chain ()
|
||
{
|
||
basic_block bb, last_bb;
|
||
|
||
/* First do the bulk reordering -- rechain the blocks without regard to
|
||
the needed changes to jumps and labels. */
|
||
|
||
last_bb = BASIC_BLOCK (0);
|
||
bb = RBI (last_bb)->next;
|
||
while (bb)
|
||
{
|
||
rtx last_e = RBI (last_bb)->eff_end;
|
||
rtx curr_h = RBI (bb)->eff_head;
|
||
|
||
NEXT_INSN (last_e) = curr_h;
|
||
PREV_INSN (curr_h) = last_e;
|
||
|
||
last_bb = bb;
|
||
bb = RBI (bb)->next;
|
||
}
|
||
NEXT_INSN (RBI (last_bb)->eff_end) = NULL_RTX;
|
||
set_last_insn (RBI (last_bb)->eff_end);
|
||
|
||
/* Now add jumps and labels as needed to match the blocks new
|
||
outgoing edges. */
|
||
|
||
for (bb = BASIC_BLOCK (0); bb ; bb = RBI (bb)->next)
|
||
{
|
||
edge e_fall, e_taken, e;
|
||
rtx jump_insn, barrier_insn, bb_end_insn;
|
||
basic_block nb;
|
||
|
||
if (bb->succ == NULL)
|
||
continue;
|
||
|
||
/* Find the old fallthru edge, and another non-EH edge for
|
||
a taken jump. */
|
||
e_taken = e_fall = NULL;
|
||
for (e = bb->succ; e ; e = e->succ_next)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
e_fall = e;
|
||
else if (! (e->flags & EDGE_EH))
|
||
e_taken = e;
|
||
|
||
bb_end_insn = bb->end;
|
||
if (GET_CODE (bb_end_insn) == JUMP_INSN)
|
||
{
|
||
if (any_uncondjump_p (bb_end_insn))
|
||
{
|
||
/* If the destination is still not next, nothing to do. */
|
||
if (RBI (bb)->index + 1 != RBI (e_taken->dest)->index)
|
||
continue;
|
||
|
||
/* Otherwise, we can remove the jump and cleanup the edge. */
|
||
tidy_fallthru_edge (e_taken, bb, e_taken->dest);
|
||
RBI (bb)->eff_end = skip_insns_after_block (bb);
|
||
RBI (e_taken->dest)->eff_head = NEXT_INSN (RBI (bb)->eff_end);
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Removing jump in block %d (%d)\n",
|
||
bb->index, RBI (bb)->index);
|
||
continue;
|
||
}
|
||
else if (any_condjump_p (bb_end_insn))
|
||
{
|
||
/* If the old fallthru is still next, nothing to do. */
|
||
if (RBI (bb)->index + 1 == RBI (e_fall->dest)->index
|
||
|| (RBI (bb)->index == n_basic_blocks - 1
|
||
&& e_fall->dest == EXIT_BLOCK_PTR))
|
||
continue;
|
||
|
||
/* There is one special case: if *neither* block is next,
|
||
such as happens at the very end of a function, then we'll
|
||
need to add a new unconditional jump. Choose the taken
|
||
edge based on known or assumed probability. */
|
||
if (RBI (bb)->index + 1 != RBI (e_taken->dest)->index)
|
||
{
|
||
rtx note = find_reg_note (bb_end_insn, REG_BR_PROB, 0);
|
||
if (note
|
||
&& INTVAL (XEXP (note, 0)) < REG_BR_PROB_BASE / 2
|
||
&& invert_jump (bb_end_insn,
|
||
label_for_bb (e_fall->dest), 0))
|
||
{
|
||
e_fall->flags &= ~EDGE_FALLTHRU;
|
||
e_taken->flags |= EDGE_FALLTHRU;
|
||
e = e_fall, e_fall = e_taken, e_taken = e;
|
||
}
|
||
}
|
||
|
||
/* Otherwise we can try to invert the jump. This will
|
||
basically never fail, however, keep up the pretense. */
|
||
else if (invert_jump (bb_end_insn,
|
||
label_for_bb (e_fall->dest), 0))
|
||
{
|
||
e_fall->flags &= ~EDGE_FALLTHRU;
|
||
e_taken->flags |= EDGE_FALLTHRU;
|
||
continue;
|
||
}
|
||
}
|
||
else if (returnjump_p (bb_end_insn))
|
||
continue;
|
||
else
|
||
{
|
||
/* Otherwise we have some switch or computed jump. In the
|
||
99% case, there should not have been a fallthru edge. */
|
||
if (! e_fall)
|
||
continue;
|
||
#ifdef CASE_DROPS_THROUGH
|
||
/* Except for VAX. Since we didn't have predication for the
|
||
tablejump, the fallthru block should not have moved. */
|
||
if (RBI (bb)->index + 1 == RBI (e_fall->dest)->index)
|
||
continue;
|
||
bb_end_insn = skip_insns_after_block (bb);
|
||
#else
|
||
abort ();
|
||
#endif
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* No fallthru implies a noreturn function with EH edges, or
|
||
something similarly bizarre. In any case, we don't need to
|
||
do anything. */
|
||
if (! e_fall)
|
||
continue;
|
||
|
||
/* If the fallthru block is still next, nothing to do. */
|
||
if (RBI (bb)->index + 1 == RBI (e_fall->dest)->index
|
||
|| (RBI (bb)->index == n_basic_blocks - 1
|
||
&& e_fall->dest == EXIT_BLOCK_PTR))
|
||
continue;
|
||
|
||
/* We need a new jump insn. If the block has only one outgoing
|
||
edge, then we can stuff the new jump insn in directly. */
|
||
if (bb->succ->succ_next == NULL)
|
||
{
|
||
e_fall->flags &= ~EDGE_FALLTHRU;
|
||
|
||
jump_insn = emit_jump_to_block_after (e_fall->dest, bb_end_insn);
|
||
bb->end = jump_insn;
|
||
barrier_insn = emit_barrier_after (jump_insn);
|
||
RBI (bb)->eff_end = barrier_insn;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* We got here if we need to add a new jump insn in a new block
|
||
across the edge e_fall. */
|
||
|
||
jump_insn = emit_jump_to_block_after (e_fall->dest, bb_end_insn);
|
||
barrier_insn = emit_barrier_after (jump_insn);
|
||
|
||
VARRAY_GROW (basic_block_info, ++n_basic_blocks);
|
||
create_basic_block (n_basic_blocks - 1, jump_insn, jump_insn, NULL);
|
||
|
||
nb = BASIC_BLOCK (n_basic_blocks - 1);
|
||
nb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
|
||
nb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
|
||
nb->local_set = 0;
|
||
|
||
COPY_REG_SET (nb->global_live_at_start, bb->global_live_at_start);
|
||
COPY_REG_SET (nb->global_live_at_end, bb->global_live_at_start);
|
||
|
||
nb->aux = xmalloc (sizeof (struct reorder_block_def));
|
||
RBI (nb)->eff_head = nb->head;
|
||
RBI (nb)->eff_end = barrier_insn;
|
||
RBI (nb)->scope = RBI (bb)->scope;
|
||
RBI (nb)->index = RBI (bb)->index + 1;
|
||
RBI (nb)->visited = 1;
|
||
RBI (nb)->next = RBI (bb)->next;
|
||
RBI (bb)->next = nb;
|
||
|
||
/* Link to new block. */
|
||
make_edge (NULL, nb, e_fall->dest, 0);
|
||
redirect_edge_succ (e_fall, nb);
|
||
|
||
/* Don't process this new block. */
|
||
bb = nb;
|
||
|
||
/* Fix subsequent reorder block indices to reflect new block. */
|
||
while ((nb = RBI (nb)->next) != NULL)
|
||
RBI (nb)->index += 1;
|
||
}
|
||
|
||
/* Put basic_block_info in the new order. */
|
||
for (bb = BASIC_BLOCK (0); bb ; bb = RBI (bb)->next)
|
||
{
|
||
bb->index = RBI (bb)->index;
|
||
BASIC_BLOCK (bb->index) = bb;
|
||
}
|
||
}
|
||
|
||
|
||
/* Perform sanity checks on the insn chain.
|
||
1. Check that next/prev pointers are consistent in both the forward and
|
||
reverse direction.
|
||
2. Count insns in chain, going both directions, and check if equal.
|
||
3. Check that get_last_insn () returns the actual end of chain. */
|
||
|
||
void
|
||
verify_insn_chain ()
|
||
{
|
||
rtx x,
|
||
prevx,
|
||
nextx;
|
||
int insn_cnt1,
|
||
insn_cnt2;
|
||
|
||
prevx = NULL;
|
||
insn_cnt1 = 1;
|
||
for (x = get_insns (); x; x = NEXT_INSN (x))
|
||
{
|
||
if (PREV_INSN (x) != prevx)
|
||
{
|
||
fprintf (stderr, "Forward traversal: insn chain corrupt.\n");
|
||
fprintf (stderr, "previous insn:\n");
|
||
debug_rtx (prevx);
|
||
fprintf (stderr, "current insn:\n");
|
||
debug_rtx (x);
|
||
abort ();
|
||
}
|
||
++insn_cnt1;
|
||
prevx = x;
|
||
}
|
||
|
||
if (prevx != get_last_insn ())
|
||
{
|
||
fprintf (stderr, "last_insn corrupt.\n");
|
||
abort ();
|
||
}
|
||
|
||
nextx = NULL;
|
||
insn_cnt2 = 1;
|
||
for (x = get_last_insn (); x; x = PREV_INSN (x))
|
||
{
|
||
if (NEXT_INSN (x) != nextx)
|
||
{
|
||
fprintf (stderr, "Reverse traversal: insn chain corrupt.\n");
|
||
fprintf (stderr, "current insn:\n");
|
||
debug_rtx (x);
|
||
fprintf (stderr, "next insn:\n");
|
||
debug_rtx (nextx);
|
||
abort ();
|
||
}
|
||
++insn_cnt2;
|
||
nextx = x;
|
||
}
|
||
|
||
if (insn_cnt1 != insn_cnt2)
|
||
{
|
||
fprintf (stderr, "insn_cnt1 (%d) not equal to insn_cnt2 (%d).\n",
|
||
insn_cnt1, insn_cnt2);
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static rtx
|
||
get_next_bb_note (x)
|
||
rtx x;
|
||
{
|
||
while (x)
|
||
{
|
||
if (NOTE_INSN_BASIC_BLOCK_P (x))
|
||
return x;
|
||
x = NEXT_INSN (x);
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static rtx
|
||
get_prev_bb_note (x)
|
||
rtx x;
|
||
{
|
||
while (x)
|
||
{
|
||
if (NOTE_INSN_BASIC_BLOCK_P (x))
|
||
return x;
|
||
x = PREV_INSN (x);
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Determine and record the relationships between basic blocks and
|
||
scopes in scope tree S. */
|
||
|
||
static void
|
||
relate_bbs_with_scopes (s)
|
||
scope s;
|
||
{
|
||
scope p;
|
||
int i, bbi1, bbi2, bbs_spanned;
|
||
rtx bbnote;
|
||
|
||
for (p = s->inner; p; p = p->next)
|
||
relate_bbs_with_scopes (p);
|
||
|
||
bbi1 = bbi2 = -1;
|
||
bbs_spanned = 0;
|
||
|
||
/* If the begin and end notes are both inside the same basic block,
|
||
or if they are both outside of basic blocks, then we know immediately
|
||
how they are related. Otherwise, we need to poke around to make the
|
||
determination. */
|
||
if (s->bb_beg != s->bb_end)
|
||
{
|
||
if (s->bb_beg && s->bb_end)
|
||
{
|
||
/* Both notes are in different bbs. This implies that all the
|
||
basic blocks spanned by the pair of notes are contained in
|
||
this scope. */
|
||
bbi1 = s->bb_beg->index;
|
||
bbi2 = s->bb_end->index;
|
||
bbs_spanned = 1;
|
||
}
|
||
else if (! s->bb_beg)
|
||
{
|
||
/* First note is outside of a bb. If the scope spans more than
|
||
one basic block, then they all are contained within this
|
||
scope. Otherwise, this scope is contained within the basic
|
||
block. */
|
||
bbnote = get_next_bb_note (s->note_beg);
|
||
if (! bbnote)
|
||
abort ();
|
||
if (NOTE_BASIC_BLOCK (bbnote) == s->bb_end)
|
||
{
|
||
bbs_spanned = 0;
|
||
s->bb_beg = NOTE_BASIC_BLOCK (bbnote);
|
||
}
|
||
else
|
||
{
|
||
bbi1 = NOTE_BASIC_BLOCK (bbnote)->index;
|
||
bbi2 = s->bb_end->index;
|
||
s->bb_end = NULL;
|
||
bbs_spanned = 1;
|
||
}
|
||
}
|
||
else /* ! s->bb_end */
|
||
{
|
||
/* Second note is outside of a bb. If the scope spans more than
|
||
one basic block, then they all are contained within this
|
||
scope. Otherwise, this scope is contained within the basic
|
||
block. */
|
||
bbnote = get_prev_bb_note (s->note_end);
|
||
if (! bbnote)
|
||
abort ();
|
||
if (NOTE_BASIC_BLOCK (bbnote) == s->bb_beg)
|
||
{
|
||
bbs_spanned = 0;
|
||
s->bb_end = NOTE_BASIC_BLOCK (bbnote);
|
||
}
|
||
else
|
||
{
|
||
bbi1 = s->bb_beg->index;
|
||
bbi2 = NOTE_BASIC_BLOCK (bbnote)->index;
|
||
s->bb_beg = NULL;
|
||
bbs_spanned = 1;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (s->bb_beg)
|
||
/* Both notes are in the same bb, which implies the block
|
||
contains this scope. */
|
||
bbs_spanned = 0;
|
||
else
|
||
{
|
||
rtx x1, x2;
|
||
/* Both notes are outside of any bbs. This implies that all the
|
||
basic blocks spanned by the pair of notes are contained in
|
||
this scope.
|
||
There is a degenerate case to consider. If the notes do not
|
||
span any basic blocks, then it is an empty scope that can
|
||
safely be deleted or ignored. Mark these with level = -1. */
|
||
|
||
x1 = get_next_bb_note (s->note_beg);
|
||
x2 = get_prev_bb_note (s->note_end);
|
||
if (! (x1 && x2))
|
||
{
|
||
s->level = -1;
|
||
bbs_spanned = 0;
|
||
}
|
||
else
|
||
{
|
||
bbi1 = NOTE_BASIC_BLOCK (x1)->index;
|
||
bbi2 = NOTE_BASIC_BLOCK (x2)->index;
|
||
bbs_spanned = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If the scope spans one or more basic blocks, we record them. We
|
||
only record the bbs that are immediately contained within this
|
||
scope. Note that if a scope is contained within a bb, we can tell
|
||
by checking that bb_beg = bb_end and that they are non-null. */
|
||
if (bbs_spanned)
|
||
{
|
||
int j = 0;
|
||
|
||
s->num_bbs = 0;
|
||
for (i = bbi1; i <= bbi2; i++)
|
||
if (! RBI (BASIC_BLOCK (i))->scope)
|
||
s->num_bbs++;
|
||
|
||
s->bbs = xmalloc (s->num_bbs * sizeof (basic_block));
|
||
for (i = bbi1; i <= bbi2; i++)
|
||
{
|
||
basic_block curr_bb = BASIC_BLOCK (i);
|
||
if (! RBI (curr_bb)->scope)
|
||
{
|
||
s->bbs[j++] = curr_bb;
|
||
RBI (curr_bb)->scope = s;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
s->num_bbs = 0;
|
||
}
|
||
|
||
|
||
/* Allocate and initialize a new scope structure with scope level LEVEL,
|
||
and record the NOTE beginning the scope. */
|
||
|
||
static scope
|
||
make_new_scope (level, note)
|
||
int level;
|
||
rtx note;
|
||
{
|
||
scope new_scope = xcalloc (1, sizeof (struct scope_def));
|
||
new_scope->level = level;
|
||
new_scope->note_beg = note;
|
||
return new_scope;
|
||
}
|
||
|
||
|
||
/* Build a forest representing the scope structure of the function.
|
||
Return a pointer to a structure describing the forest. */
|
||
|
||
static void
|
||
build_scope_forest (forest)
|
||
scope_forest_info *forest;
|
||
{
|
||
rtx x;
|
||
int level, bbi, i;
|
||
basic_block curr_bb;
|
||
scope root, curr_scope = 0;
|
||
|
||
forest->num_trees = 0;
|
||
forest->trees = NULL;
|
||
level = -1;
|
||
root = NULL;
|
||
curr_bb = NULL;
|
||
bbi = 0;
|
||
for (x = get_insns (); x; x = NEXT_INSN (x))
|
||
{
|
||
if (bbi < n_basic_blocks && x == BASIC_BLOCK (bbi)->head)
|
||
curr_bb = BASIC_BLOCK (bbi);
|
||
|
||
if (GET_CODE (x) == NOTE)
|
||
{
|
||
if (NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_BEG)
|
||
{
|
||
if (root)
|
||
{
|
||
scope new_scope;
|
||
if (! curr_scope)
|
||
abort();
|
||
level++;
|
||
new_scope = make_new_scope (level, x);
|
||
new_scope->outer = curr_scope;
|
||
new_scope->next = NULL;
|
||
if (! curr_scope->inner)
|
||
{
|
||
curr_scope->inner = new_scope;
|
||
curr_scope->inner_last = new_scope;
|
||
}
|
||
else
|
||
{
|
||
curr_scope->inner_last->next = new_scope;
|
||
curr_scope->inner_last = new_scope;
|
||
}
|
||
curr_scope = curr_scope->inner_last;
|
||
}
|
||
else
|
||
{
|
||
int ntrees = forest->num_trees;
|
||
level++;
|
||
curr_scope = make_new_scope (level, x);
|
||
root = curr_scope;
|
||
forest->trees = xrealloc (forest->trees,
|
||
sizeof (scope) * (ntrees + 1));
|
||
forest->trees[forest->num_trees++] = root;
|
||
}
|
||
curr_scope->bb_beg = curr_bb;
|
||
}
|
||
else if (NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_END)
|
||
{
|
||
curr_scope->bb_end = curr_bb;
|
||
curr_scope->note_end = x;
|
||
level--;
|
||
curr_scope = curr_scope->outer;
|
||
if (level == -1)
|
||
root = NULL;
|
||
}
|
||
} /* if note */
|
||
|
||
if (curr_bb && curr_bb->end == x)
|
||
{
|
||
curr_bb = NULL;
|
||
bbi++;
|
||
}
|
||
|
||
} /* for */
|
||
|
||
for (i = 0; i < forest->num_trees; i++)
|
||
relate_bbs_with_scopes (forest->trees[i]);
|
||
}
|
||
|
||
|
||
/* Remove all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes from
|
||
the insn chain. */
|
||
|
||
static void
|
||
remove_scope_notes ()
|
||
{
|
||
rtx x, next;
|
||
basic_block currbb = NULL;
|
||
|
||
for (x = get_insns (); x; x = next)
|
||
{
|
||
next = NEXT_INSN (x);
|
||
if (NOTE_INSN_BASIC_BLOCK_P (x))
|
||
currbb = NOTE_BASIC_BLOCK (x);
|
||
|
||
if (GET_CODE (x) == NOTE
|
||
&& (NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_BEG
|
||
|| NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_END))
|
||
{
|
||
/* Check if the scope note happens to be the end of a bb. */
|
||
if (currbb && x == currbb->end)
|
||
currbb->end = PREV_INSN (x);
|
||
if (currbb && x == currbb->head)
|
||
abort ();
|
||
|
||
if (PREV_INSN (x))
|
||
{
|
||
NEXT_INSN (PREV_INSN (x)) = next;
|
||
PREV_INSN (next) = PREV_INSN (x);
|
||
|
||
NEXT_INSN (x) = NULL;
|
||
PREV_INSN (x) = NULL;
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Insert scope note pairs for a contained scope tree S after insn IP. */
|
||
|
||
static void
|
||
insert_intra_1 (s, ip)
|
||
scope s;
|
||
rtx *ip;
|
||
{
|
||
scope p;
|
||
|
||
if (NOTE_BLOCK (s->note_beg))
|
||
{
|
||
*ip = emit_note_after (NOTE_INSN_BLOCK_BEG, *ip);
|
||
NOTE_BLOCK (*ip) = NOTE_BLOCK (s->note_beg);
|
||
}
|
||
|
||
for (p = s->inner; p; p = p->next)
|
||
insert_intra_1 (p, ip);
|
||
|
||
if (NOTE_BLOCK (s->note_beg))
|
||
{
|
||
*ip = emit_note_after (NOTE_INSN_BLOCK_END, *ip);
|
||
NOTE_BLOCK (*ip) = NOTE_BLOCK (s->note_end);
|
||
}
|
||
}
|
||
|
||
|
||
/* Insert NOTE_INSN_BLOCK_END notes and NOTE_INSN_BLOCK_BEG notes for
|
||
scopes that are contained within BB. */
|
||
|
||
static void
|
||
insert_intra_bb_scope_notes (bb)
|
||
basic_block bb;
|
||
{
|
||
scope s = RBI (bb)->scope;
|
||
scope p;
|
||
rtx ip;
|
||
|
||
if (! s)
|
||
return;
|
||
|
||
ip = bb->head;
|
||
if (GET_CODE (ip) == CODE_LABEL)
|
||
ip = NEXT_INSN (ip);
|
||
|
||
for (p = s->inner; p; p = p->next)
|
||
{
|
||
if (p->bb_beg != NULL && p->bb_beg == p->bb_end && p->bb_beg == bb)
|
||
insert_intra_1 (p, &ip);
|
||
}
|
||
}
|
||
|
||
|
||
/* Given two consecutive basic blocks BB1 and BB2 with different scopes,
|
||
insert NOTE_INSN_BLOCK_END notes after BB1 and NOTE_INSN_BLOCK_BEG
|
||
notes before BB2 such that the notes are correctly balanced. If BB1 or
|
||
BB2 is NULL, we are inserting scope notes for the first and last basic
|
||
blocks, respectively. */
|
||
|
||
static void
|
||
insert_inter_bb_scope_notes (bb1, bb2)
|
||
basic_block bb1;
|
||
basic_block bb2;
|
||
{
|
||
rtx ip;
|
||
scope com;
|
||
|
||
/* It is possible that a basic block is not contained in any scope.
|
||
In that case, we either open or close a scope but not both. */
|
||
if (bb1 && bb2)
|
||
{
|
||
scope s1 = RBI (bb1)->scope;
|
||
scope s2 = RBI (bb2)->scope;
|
||
if (! s1 && ! s2)
|
||
return;
|
||
if (! s1)
|
||
bb1 = NULL;
|
||
else if (! s2)
|
||
bb2 = NULL;
|
||
}
|
||
|
||
/* Find common ancestor scope. */
|
||
if (bb1 && bb2)
|
||
{
|
||
scope s1 = RBI (bb1)->scope;
|
||
scope s2 = RBI (bb2)->scope;
|
||
while (s1 != s2)
|
||
{
|
||
if (! (s1 && s2))
|
||
abort ();
|
||
if (s1->level > s2->level)
|
||
s1 = s1->outer;
|
||
else if (s2->level > s1->level)
|
||
s2 = s2->outer;
|
||
else
|
||
{
|
||
s1 = s1->outer;
|
||
s2 = s2->outer;
|
||
}
|
||
}
|
||
com = s1;
|
||
}
|
||
else
|
||
com = NULL;
|
||
|
||
/* Close scopes. */
|
||
if (bb1)
|
||
{
|
||
scope s = RBI (bb1)->scope;
|
||
ip = RBI (bb1)->eff_end;
|
||
while (s != com)
|
||
{
|
||
if (NOTE_BLOCK (s->note_beg))
|
||
{
|
||
ip = emit_note_after (NOTE_INSN_BLOCK_END, ip);
|
||
NOTE_BLOCK (ip) = NOTE_BLOCK (s->note_end);
|
||
}
|
||
s = s->outer;
|
||
}
|
||
}
|
||
|
||
/* Open scopes. */
|
||
if (bb2)
|
||
{
|
||
scope s = RBI (bb2)->scope;
|
||
ip = bb2->head;
|
||
while (s != com)
|
||
{
|
||
if (NOTE_BLOCK (s->note_beg))
|
||
{
|
||
ip = emit_note_before (NOTE_INSN_BLOCK_BEG, ip);
|
||
NOTE_BLOCK (ip) = NOTE_BLOCK (s->note_beg);
|
||
}
|
||
s = s->outer;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
|
||
on the scope forest and the newly reordered basic blocks. */
|
||
|
||
static void
|
||
rebuild_scope_notes (forest)
|
||
scope_forest_info *forest;
|
||
{
|
||
int i;
|
||
|
||
if (forest->num_trees == 0)
|
||
return;
|
||
|
||
/* Start by opening the scopes before the first basic block. */
|
||
insert_inter_bb_scope_notes (NULL, BASIC_BLOCK (0));
|
||
|
||
/* Then, open and close scopes as needed between blocks. */
|
||
for (i = 0; i < n_basic_blocks - 1; i++)
|
||
{
|
||
basic_block bb1 = BASIC_BLOCK (i);
|
||
basic_block bb2 = BASIC_BLOCK (i + 1);
|
||
if (RBI (bb1)->scope != RBI (bb2)->scope)
|
||
insert_inter_bb_scope_notes (bb1, bb2);
|
||
insert_intra_bb_scope_notes (bb1);
|
||
}
|
||
|
||
/* Finally, close the scopes after the last basic block. */
|
||
insert_inter_bb_scope_notes (BASIC_BLOCK (n_basic_blocks - 1), NULL);
|
||
insert_intra_bb_scope_notes (BASIC_BLOCK (n_basic_blocks - 1));
|
||
}
|
||
|
||
|
||
/* Free the storage associated with the scope tree at S. */
|
||
|
||
static void
|
||
free_scope_forest_1 (s)
|
||
scope s;
|
||
{
|
||
scope p, next;
|
||
|
||
for (p = s->inner; p; p = next)
|
||
{
|
||
next = p->next;
|
||
free_scope_forest_1 (p);
|
||
}
|
||
|
||
if (s->bbs)
|
||
free (s->bbs);
|
||
free (s);
|
||
}
|
||
|
||
|
||
/* Free the storage associated with the scope forest. */
|
||
|
||
static void
|
||
free_scope_forest (forest)
|
||
scope_forest_info *forest;
|
||
{
|
||
int i;
|
||
for (i = 0; i < forest->num_trees; i++)
|
||
free_scope_forest_1 (forest->trees[i]);
|
||
}
|
||
|
||
|
||
/* Visualize the scope forest. */
|
||
|
||
void
|
||
dump_scope_forest (forest)
|
||
scope_forest_info *forest;
|
||
{
|
||
if (forest->num_trees == 0)
|
||
fprintf (stderr, "\n< Empty scope forest >\n");
|
||
else
|
||
{
|
||
int i;
|
||
fprintf (stderr, "\n< Scope forest >\n");
|
||
for (i = 0; i < forest->num_trees; i++)
|
||
dump_scope_forest_1 (forest->trees[i], 0);
|
||
}
|
||
}
|
||
|
||
|
||
/* Recursive portion of dump_scope_forest. */
|
||
|
||
static void
|
||
dump_scope_forest_1 (s, indent)
|
||
scope s;
|
||
int indent;
|
||
{
|
||
scope p;
|
||
int i;
|
||
|
||
if (s->bb_beg != NULL && s->bb_beg == s->bb_end
|
||
&& RBI (s->bb_beg)->scope
|
||
&& RBI (s->bb_beg)->scope->level + 1 == s->level)
|
||
{
|
||
fprintf (stderr, "%*s", indent, "");
|
||
fprintf (stderr, "BB%d:\n", s->bb_beg->index);
|
||
}
|
||
|
||
fprintf (stderr, "%*s", indent, "");
|
||
fprintf (stderr, "{ level %d (block %p)\n", s->level,
|
||
(PTR) NOTE_BLOCK (s->note_beg));
|
||
|
||
fprintf (stderr, "%*s%s", indent, "", "bbs:");
|
||
for (i = 0; i < s->num_bbs; i++)
|
||
fprintf (stderr, " %d", s->bbs[i]->index);
|
||
fprintf (stderr, "\n");
|
||
|
||
for (p = s->inner; p; p = p->next)
|
||
dump_scope_forest_1 (p, indent + 2);
|
||
|
||
fprintf (stderr, "%*s", indent, "");
|
||
fprintf (stderr, "}\n");
|
||
}
|
||
|
||
|
||
/* Reorder basic blocks. The main entry point to this file. */
|
||
|
||
void
|
||
reorder_basic_blocks ()
|
||
{
|
||
scope_forest_info forest;
|
||
int i;
|
||
|
||
if (n_basic_blocks <= 1)
|
||
return;
|
||
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
BASIC_BLOCK (i)->aux = xcalloc (1, sizeof (struct reorder_block_def));
|
||
|
||
EXIT_BLOCK_PTR->aux = xcalloc (1, sizeof (struct reorder_block_def));
|
||
|
||
build_scope_forest (&forest);
|
||
remove_scope_notes ();
|
||
|
||
record_effective_endpoints ();
|
||
make_reorder_chain ();
|
||
fixup_reorder_chain ();
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
verify_insn_chain ();
|
||
#endif
|
||
|
||
rebuild_scope_notes (&forest);
|
||
free_scope_forest (&forest);
|
||
reorder_blocks ();
|
||
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
free (BASIC_BLOCK (i)->aux);
|
||
|
||
free (EXIT_BLOCK_PTR->aux);
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
verify_flow_info ();
|
||
#endif
|
||
}
|