mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-10 10:24:54 +08:00
9efc7479a2
2002-01-06 Paolo Carlini <pcarlini@unitus.it> * include/bits/stl_function.h: Remove two lines of comments; adjust copyright years. From-SVN: r48579
737 lines
26 KiB
C++
737 lines
26 KiB
C++
// Functor implementations -*- C++ -*-
|
|
|
|
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1996-1998
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/** @file stl_function.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef __GLIBCPP_INTERNAL_FUNCTION_H
|
|
#define __GLIBCPP_INTERNAL_FUNCTION_H
|
|
|
|
namespace std
|
|
{
|
|
// 20.3.1 base classes
|
|
/** @defgroup s20_3_1_base Functor Base Classes
|
|
* Function objects, or @e functors, are objects with an @c operator()
|
|
* defined and accessible. They can be passed as arguments to algorithm
|
|
* templates and used in place of a function pointer. Not only is the
|
|
* resulting expressiveness of the library increased, but the generated
|
|
* code can be more efficient than what you might write by hand. When we
|
|
* refer to "functors," then, generally we include function pointers in
|
|
* the description as well.
|
|
*
|
|
* Often, functors are only created as temporaries passed to algorithm
|
|
* calls, rather than being created as named variables.
|
|
*
|
|
* Two examples taken from the standard itself follow. To perform a
|
|
* by-element addition of two vectors @c a and @c b containing @c double,
|
|
* and put the result in @c a, use
|
|
* \code
|
|
* transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
|
|
* \endcode
|
|
* To negate every element in @c a, use
|
|
* \code
|
|
* transform(a.begin(), a.end(), a.begin(), negate<double>());
|
|
* \endcode
|
|
* The addition and negation functions will be inlined directly.
|
|
*
|
|
* The standard functiors are derived from structs named @c unary_function
|
|
* and @c binary_function. These two classes contain nothing but typedefs,
|
|
* to aid in generic (template) programming. If you write your own
|
|
* functors, you might consider doing the same.
|
|
*
|
|
* @{
|
|
*/
|
|
/**
|
|
* This is one of the @link s20_3_1_base functor base classes@endlink.
|
|
*/
|
|
template <class _Arg, class _Result>
|
|
struct unary_function {
|
|
typedef _Arg argument_type; ///< @c argument_type is the type of the argument (no surprises here)
|
|
typedef _Result result_type; ///< @c result_type is the return type
|
|
};
|
|
|
|
/**
|
|
* This is one of the @link s20_3_1_base functor base classes@endlink.
|
|
*/
|
|
template <class _Arg1, class _Arg2, class _Result>
|
|
struct binary_function {
|
|
typedef _Arg1 first_argument_type; ///< the type of the first argument (no surprises here)
|
|
typedef _Arg2 second_argument_type; ///< the type of the second argument
|
|
typedef _Result result_type; ///< type of the return type
|
|
};
|
|
/** @} */
|
|
|
|
// 20.3.2 arithmetic
|
|
/** @defgroup s20_3_2_arithmetic Arithmetic Classes
|
|
* Because basic math often needs to be done during an algorithm, the library
|
|
* provides functors for those operations. See the documentation for
|
|
* @link s20_3_1_base the base classes@endlink for examples of their use.
|
|
*
|
|
* @{
|
|
*/
|
|
/// One of the @link s20_3_2_arithmetic math functors@endlink.
|
|
template <class _Tp>
|
|
struct plus : public binary_function<_Tp,_Tp,_Tp> {
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_2_arithmetic math functors@endlink.
|
|
template <class _Tp>
|
|
struct minus : public binary_function<_Tp,_Tp,_Tp> {
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_2_arithmetic math functors@endlink.
|
|
template <class _Tp>
|
|
struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_2_arithmetic math functors@endlink.
|
|
template <class _Tp>
|
|
struct divides : public binary_function<_Tp,_Tp,_Tp> {
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_2_arithmetic math functors@endlink.
|
|
template <class _Tp>
|
|
struct modulus : public binary_function<_Tp,_Tp,_Tp>
|
|
{
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_2_arithmetic math functors@endlink.
|
|
template <class _Tp>
|
|
struct negate : public unary_function<_Tp,_Tp>
|
|
{
|
|
_Tp operator()(const _Tp& __x) const { return -__x; }
|
|
};
|
|
/** @} */
|
|
|
|
// 20.3.3 comparisons
|
|
/** @defgroup s20_3_3_comparisons Comparison Classes
|
|
* The library provides six wrapper functors for all the basic comparisons
|
|
* in C++, like @c <.
|
|
*
|
|
* @{
|
|
*/
|
|
/// One of the @link s20_3_3_comparisons comparison functors@endlink.
|
|
template <class _Tp>
|
|
struct equal_to : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_3_comparisons comparison functors@endlink.
|
|
template <class _Tp>
|
|
struct not_equal_to : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_3_comparisons comparison functors@endlink.
|
|
template <class _Tp>
|
|
struct greater : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_3_comparisons comparison functors@endlink.
|
|
template <class _Tp>
|
|
struct less : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_3_comparisons comparison functors@endlink.
|
|
template <class _Tp>
|
|
struct greater_equal : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_3_comparisons comparison functors@endlink.
|
|
template <class _Tp>
|
|
struct less_equal : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
|
|
};
|
|
/** @} */
|
|
|
|
// 20.3.4 logical operations
|
|
/** @defgroup s20_3_4_logical Boolean Operations Classes
|
|
* Here are wrapper functors for Boolean operations: @c &&, @c ||, and @c !.
|
|
*
|
|
* @{
|
|
*/
|
|
/// One of the @link s20_3_4_logical Boolean operations functors@endlink.
|
|
template <class _Tp>
|
|
struct logical_and : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_4_logical Boolean operations functors@endlink.
|
|
template <class _Tp>
|
|
struct logical_or : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
|
|
};
|
|
|
|
/// One of the @link s20_3_4_logical Boolean operations functors@endlink.
|
|
template <class _Tp>
|
|
struct logical_not : public unary_function<_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x) const { return !__x; }
|
|
};
|
|
/** @} */
|
|
|
|
// 20.3.5 negators
|
|
/** @defgroup s20_3_5_negators Negators
|
|
* The functions @c not1 and @c not2 each take a predicate functor
|
|
* and return an instance of @c unary_negate or
|
|
* @c binary_negate, respectively. These classes are functors whose
|
|
* @c operator() performs the stored predicate function and then returns
|
|
* the negation of the result.
|
|
*
|
|
* For example, given a vector of integers and a trivial predicate,
|
|
* \code
|
|
* struct IntGreaterThanThree
|
|
* : public std::unary_function<int, bool>
|
|
* {
|
|
* bool operator() (int x) { return x > 3; }
|
|
* };
|
|
*
|
|
* std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
|
|
* \endcode
|
|
* The call to @c find_if will locate the first index (i) of @c v for which
|
|
* "!(v[i] > 3)" is true.
|
|
*
|
|
* The not1/unary_negate combination works on predicates taking a single
|
|
* argument. The not2/binary_negate combination works on predicates which
|
|
* take two arguments.
|
|
*
|
|
* @{
|
|
*/
|
|
/// One of the @link s20_3_5_negators negation functors@endlink.
|
|
template <class _Predicate>
|
|
class unary_negate
|
|
: public unary_function<typename _Predicate::argument_type, bool> {
|
|
protected:
|
|
_Predicate _M_pred;
|
|
public:
|
|
explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
|
|
bool operator()(const typename _Predicate::argument_type& __x) const {
|
|
return !_M_pred(__x);
|
|
}
|
|
};
|
|
|
|
/// One of the @link s20_3_5_negators negation functors@endlink.
|
|
template <class _Predicate>
|
|
inline unary_negate<_Predicate>
|
|
not1(const _Predicate& __pred)
|
|
{
|
|
return unary_negate<_Predicate>(__pred);
|
|
}
|
|
|
|
/// One of the @link s20_3_5_negators negation functors@endlink.
|
|
template <class _Predicate>
|
|
class binary_negate
|
|
: public binary_function<typename _Predicate::first_argument_type,
|
|
typename _Predicate::second_argument_type,
|
|
bool> {
|
|
protected:
|
|
_Predicate _M_pred;
|
|
public:
|
|
explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
|
|
bool operator()(const typename _Predicate::first_argument_type& __x,
|
|
const typename _Predicate::second_argument_type& __y) const
|
|
{
|
|
return !_M_pred(__x, __y);
|
|
}
|
|
};
|
|
|
|
/// One of the @link s20_3_5_negators negation functors@endlink.
|
|
template <class _Predicate>
|
|
inline binary_negate<_Predicate>
|
|
not2(const _Predicate& __pred)
|
|
{
|
|
return binary_negate<_Predicate>(__pred);
|
|
}
|
|
/** @} */
|
|
|
|
// 20.3.6 binders
|
|
/** @defgroup s20_3_6_binder Binder Classes
|
|
* Binders turn functions/functors with two arguments into functors with
|
|
* a single argument, storing an argument to be applied later. For
|
|
* example, an variable @c B of type @c binder1st is constructed from a functor
|
|
* @c f and an argument @c x. Later, B's @c operator() is called with a
|
|
* single argument @c y. The return value is the value of @c f(x,y).
|
|
* @c B can be "called" with various arguments (y1, y2, ...) and will in
|
|
* turn call @c f(x,y1), @c f(x,y2), ...
|
|
*
|
|
* The function @c bind1st is provided to save some typing. It takes the
|
|
* function and an argument as parameters, and returns an instance of
|
|
* @c binder1st.
|
|
*
|
|
* The type @c binder2nd and its creator function @c bind2nd do the same
|
|
* thing, but the stored argument is passed as the second parameter instead
|
|
* of the first, e.g., @c bind2nd(std::minus<float>,1.3) will create a
|
|
* functor whose @c operator() accepts a floating-point number, subtracts
|
|
* 1.3 from it, and returns the result. (If @c bind1st had been used,
|
|
* the functor would perform "1.3 - x" instead.
|
|
*
|
|
* Creator-wrapper functions like @c bind1st are intended to be used in
|
|
* calling algorithms. Their return values will be temporary objects.
|
|
* (The goal is to not require you to type names like
|
|
* @c std::binder1st<std::plus<int>> for declaring a variable to hold the
|
|
* return value from @c bind1st(std::plus<int>,5).
|
|
*
|
|
* These become more useful when combined with the composition functions.
|
|
*
|
|
* @{
|
|
*/
|
|
/// One of the @link s20_3_6_binder binder functors@endlink.
|
|
template <class _Operation>
|
|
class binder1st
|
|
: public unary_function<typename _Operation::second_argument_type,
|
|
typename _Operation::result_type> {
|
|
protected:
|
|
_Operation op;
|
|
typename _Operation::first_argument_type value;
|
|
public:
|
|
binder1st(const _Operation& __x,
|
|
const typename _Operation::first_argument_type& __y)
|
|
: op(__x), value(__y) {}
|
|
typename _Operation::result_type
|
|
operator()(const typename _Operation::second_argument_type& __x) const {
|
|
return op(value, __x);
|
|
}
|
|
#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
|
|
//109. Missing binders for non-const sequence elements
|
|
typename _Operation::result_type
|
|
operator()(typename _Operation::second_argument_type& __x) const {
|
|
return op(value, __x);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
/// One of the @link s20_3_6_binder binder functors@endlink.
|
|
template <class _Operation, class _Tp>
|
|
inline binder1st<_Operation>
|
|
bind1st(const _Operation& __fn, const _Tp& __x)
|
|
{
|
|
typedef typename _Operation::first_argument_type _Arg1_type;
|
|
return binder1st<_Operation>(__fn, _Arg1_type(__x));
|
|
}
|
|
|
|
/// One of the @link s20_3_6_binder binder functors@endlink.
|
|
template <class _Operation>
|
|
class binder2nd
|
|
: public unary_function<typename _Operation::first_argument_type,
|
|
typename _Operation::result_type> {
|
|
protected:
|
|
_Operation op;
|
|
typename _Operation::second_argument_type value;
|
|
public:
|
|
binder2nd(const _Operation& __x,
|
|
const typename _Operation::second_argument_type& __y)
|
|
: op(__x), value(__y) {}
|
|
typename _Operation::result_type
|
|
operator()(const typename _Operation::first_argument_type& __x) const {
|
|
return op(__x, value);
|
|
}
|
|
#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
|
|
//109. Missing binders for non-const sequence elements
|
|
typename _Operation::result_type
|
|
operator()(typename _Operation::first_argument_type& __x) const {
|
|
return op(__x, value);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
/// One of the @link s20_3_6_binder binder functors@endlink.
|
|
template <class _Operation, class _Tp>
|
|
inline binder2nd<_Operation>
|
|
bind2nd(const _Operation& __fn, const _Tp& __x)
|
|
{
|
|
typedef typename _Operation::second_argument_type _Arg2_type;
|
|
return binder2nd<_Operation>(__fn, _Arg2_type(__x));
|
|
}
|
|
/** @} */
|
|
|
|
// 20.3.7 adaptors pointers functions
|
|
/** @defgroup s20_3_7_adaptors Adaptors for pointers to functions
|
|
* The advantage of function objects over pointers to functions is that
|
|
* the objects in the standard library declare nested typedefs describing
|
|
* their argument and result types with uniform names (e.g., @c result_type
|
|
* from the base classes @c unary_function and @c binary_function).
|
|
* Sometimes those typedefs are required, not just optional.
|
|
*
|
|
* Adaptors are provided to turn pointers to unary (single-argument) and
|
|
* binary (double-argument) functions into function objects. The long-winded
|
|
* functor @c pointer_to_unary_function is constructed with a function
|
|
* pointer @c f, and its @c operator() called with argument @c x returns
|
|
* @c f(x). The functor @c pointer_to_binary_function does the same thing,
|
|
* but with a double-argument @c f and @c operator().
|
|
*
|
|
* The function @c ptr_fun takes a pointer-to-function @c f and constructs
|
|
* an instance of the appropriate functor.
|
|
*
|
|
* @{
|
|
*/
|
|
/// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
|
|
template <class _Arg, class _Result>
|
|
class pointer_to_unary_function : public unary_function<_Arg, _Result> {
|
|
protected:
|
|
_Result (*_M_ptr)(_Arg);
|
|
public:
|
|
pointer_to_unary_function() {}
|
|
explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
|
|
_Result operator()(_Arg __x) const { return _M_ptr(__x); }
|
|
};
|
|
|
|
/// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
|
|
template <class _Arg, class _Result>
|
|
inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
|
|
{
|
|
return pointer_to_unary_function<_Arg, _Result>(__x);
|
|
}
|
|
|
|
/// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
|
|
template <class _Arg1, class _Arg2, class _Result>
|
|
class pointer_to_binary_function :
|
|
public binary_function<_Arg1,_Arg2,_Result> {
|
|
protected:
|
|
_Result (*_M_ptr)(_Arg1, _Arg2);
|
|
public:
|
|
pointer_to_binary_function() {}
|
|
explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
|
|
: _M_ptr(__x) {}
|
|
_Result operator()(_Arg1 __x, _Arg2 __y) const {
|
|
return _M_ptr(__x, __y);
|
|
}
|
|
};
|
|
|
|
/// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
|
|
template <class _Arg1, class _Arg2, class _Result>
|
|
inline pointer_to_binary_function<_Arg1,_Arg2,_Result>
|
|
ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
|
|
return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
|
|
}
|
|
/** @} */
|
|
|
|
template <class _Tp>
|
|
struct _Identity : public unary_function<_Tp,_Tp> {
|
|
_Tp& operator()(_Tp& __x) const { return __x; }
|
|
const _Tp& operator()(const _Tp& __x) const { return __x; }
|
|
};
|
|
|
|
template <class _Pair>
|
|
struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
|
|
typename _Pair::first_type& operator()(_Pair& __x) const {
|
|
return __x.first;
|
|
}
|
|
const typename _Pair::first_type& operator()(const _Pair& __x) const {
|
|
return __x.first;
|
|
}
|
|
};
|
|
|
|
template <class _Pair>
|
|
struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
|
|
{
|
|
typename _Pair::second_type& operator()(_Pair& __x) const {
|
|
return __x.second;
|
|
}
|
|
const typename _Pair::second_type& operator()(const _Pair& __x) const {
|
|
return __x.second;
|
|
}
|
|
};
|
|
|
|
// 20.3.8 adaptors pointers members
|
|
/** @defgroup s20_3_8_memadaptors Adaptors for pointers to members
|
|
* There are a total of 16 = 2^4 function objects in this family.
|
|
* (1) Member functions taking no arguments vs member functions taking
|
|
* one argument.
|
|
* (2) Call through pointer vs call through reference.
|
|
* (3) Member function with void return type vs member function with
|
|
* non-void return type.
|
|
* (4) Const vs non-const member function.
|
|
*
|
|
* Note that choice (3) is nothing more than a workaround: according
|
|
* to the draft, compilers should handle void and non-void the same way.
|
|
* This feature is not yet widely implemented, though. You can only use
|
|
* member functions returning void if your compiler supports partial
|
|
* specialization.
|
|
*
|
|
* All of this complexity is in the function objects themselves. You can
|
|
* ignore it by using the helper function mem_fun and mem_fun_ref,
|
|
* which create whichever type of adaptor is appropriate.
|
|
*
|
|
* @{
|
|
*/
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Ret, class _Tp>
|
|
class mem_fun_t : public unary_function<_Tp*,_Ret> {
|
|
public:
|
|
explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
|
|
_Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)();
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Ret, class _Tp>
|
|
class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
|
|
public:
|
|
explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
|
|
_Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)() const;
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Ret, class _Tp>
|
|
class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
|
|
public:
|
|
explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
|
|
_Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)();
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Ret, class _Tp>
|
|
class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
|
|
public:
|
|
explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
|
|
_Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)() const;
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
|
|
public:
|
|
explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
|
|
_Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)(_Arg);
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
|
|
public:
|
|
explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
|
|
_Ret operator()(const _Tp* __p, _Arg __x) const
|
|
{ return (__p->*_M_f)(__x); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)(_Arg) const;
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
|
|
public:
|
|
explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
|
|
_Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)(_Arg);
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
|
|
public:
|
|
explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
|
|
_Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)(_Arg) const;
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Tp>
|
|
class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
|
|
public:
|
|
explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
|
|
void operator()(_Tp* __p) const { (__p->*_M_f)(); }
|
|
private:
|
|
void (_Tp::*_M_f)();
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Tp>
|
|
class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
|
|
public:
|
|
explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
|
|
void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
|
|
private:
|
|
void (_Tp::*_M_f)() const;
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Tp>
|
|
class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
|
|
public:
|
|
explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
|
|
void operator()(_Tp& __r) const { (__r.*_M_f)(); }
|
|
private:
|
|
void (_Tp::*_M_f)();
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Tp>
|
|
class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
|
|
public:
|
|
explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
|
|
void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
|
|
private:
|
|
void (_Tp::*_M_f)() const;
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Tp, class _Arg>
|
|
class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
|
|
public:
|
|
explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
|
|
void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
|
|
private:
|
|
void (_Tp::*_M_f)(_Arg);
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Tp, class _Arg>
|
|
class const_mem_fun1_t<void, _Tp, _Arg>
|
|
: public binary_function<const _Tp*,_Arg,void> {
|
|
public:
|
|
explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
|
|
void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
|
|
private:
|
|
void (_Tp::*_M_f)(_Arg) const;
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Tp, class _Arg>
|
|
class mem_fun1_ref_t<void, _Tp, _Arg>
|
|
: public binary_function<_Tp,_Arg,void> {
|
|
public:
|
|
explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
|
|
void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
|
|
private:
|
|
void (_Tp::*_M_f)(_Arg);
|
|
};
|
|
|
|
/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
|
|
template <class _Tp, class _Arg>
|
|
class const_mem_fun1_ref_t<void, _Tp, _Arg>
|
|
: public binary_function<_Tp,_Arg,void> {
|
|
public:
|
|
explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
|
|
void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
|
|
private:
|
|
void (_Tp::*_M_f)(_Arg) const;
|
|
};
|
|
|
|
|
|
// Mem_fun adaptor helper functions. There are only two:
|
|
// mem_fun and mem_fun_ref.
|
|
|
|
template <class _Ret, class _Tp>
|
|
inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
|
|
{ return mem_fun_t<_Ret,_Tp>(__f); }
|
|
|
|
template <class _Ret, class _Tp>
|
|
inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
|
|
{ return const_mem_fun_t<_Ret,_Tp>(__f); }
|
|
|
|
template <class _Ret, class _Tp>
|
|
inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)())
|
|
{ return mem_fun_ref_t<_Ret,_Tp>(__f); }
|
|
|
|
template <class _Ret, class _Tp>
|
|
inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
|
|
{ return const_mem_fun_ref_t<_Ret,_Tp>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
|
|
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
|
|
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
|
|
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
|
|
mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
|
|
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
/** @} */
|
|
|
|
} // namespace std
|
|
|
|
#endif /* __GLIBCPP_INTERNAL_FUNCTION_H */
|
|
|
|
// Local Variables:
|
|
// mode:C++
|
|
// End:
|