mirror of
git://gcc.gnu.org/git/gcc.git
synced 2024-12-19 04:08:59 +08:00
be26865df1
2002-09-10 Gabriel Dos Reis <gdr@soliton.integrable-solutions.net> * include/bits/stl_vector.h (vector<>): Don't use a name with different meanings before and after re-evaluation in the completed scope. * include/bits/basic_string.h (basic_string<>): Likewise. * include/bits/stl_bvector.h (vector<bool>): Likewise. * include/bits/stl_deque.h (std): Likewise. * include/bits/stl_list.h (list<>): Likewise. * include/bits/stl_tree.h (_Rb_tree<>): Likewise. From-SVN: r57014
1600 lines
54 KiB
C++
1600 lines
54 KiB
C++
// Deque implementation -*- C++ -*-
|
|
|
|
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1997
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/** @file stl_deque.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef __GLIBCPP_INTERNAL_DEQUE_H
|
|
#define __GLIBCPP_INTERNAL_DEQUE_H
|
|
|
|
#include <bits/concept_check.h>
|
|
#include <bits/stl_iterator_base_types.h>
|
|
#include <bits/stl_iterator_base_funcs.h>
|
|
|
|
namespace std
|
|
{
|
|
/**
|
|
* @if maint
|
|
* @brief This function controls the size of memory nodes.
|
|
* @param size The size of an element.
|
|
* @return The number (not byte size) of elements per node.
|
|
*
|
|
* This function started off as a compiler kludge from SGI, but seems to
|
|
* be a useful wrapper around a repeated constant expression. The '512' is
|
|
* tuneable (and no other code needs to change), but no investigation has
|
|
* been done since inheriting the SGI code.
|
|
* @endif
|
|
*/
|
|
inline size_t
|
|
__deque_buf_size(size_t __size)
|
|
{ return __size < 512 ? size_t(512 / __size) : size_t(1); }
|
|
|
|
|
|
/**
|
|
* @brief A deque::iterator.
|
|
*
|
|
* Quite a bit of intelligence here. Much of the functionality of deque is
|
|
* actually passed off to this class. A deque holds two of these internally,
|
|
* marking its valid range. Access to elements is done as offsets of either
|
|
* of those two, relying on operator overloading in this class.
|
|
*
|
|
* @if maint
|
|
* All the functions are op overloads except for _M_set_node.
|
|
* @endif
|
|
*/
|
|
template <typename _Tp, typename _Ref, typename _Ptr>
|
|
struct _Deque_iterator
|
|
{
|
|
typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
|
|
typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
|
|
static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
|
|
|
|
typedef random_access_iterator_tag iterator_category;
|
|
typedef _Tp value_type;
|
|
typedef _Ptr pointer;
|
|
typedef _Ref reference;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef _Tp** _Map_pointer;
|
|
typedef _Deque_iterator _Self;
|
|
|
|
_Tp* _M_cur;
|
|
_Tp* _M_first;
|
|
_Tp* _M_last;
|
|
_Map_pointer _M_node;
|
|
|
|
_Deque_iterator(_Tp* __x, _Map_pointer __y)
|
|
: _M_cur(__x), _M_first(*__y),
|
|
_M_last(*__y + _S_buffer_size()), _M_node(__y) {}
|
|
_Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
|
|
_Deque_iterator(const iterator& __x)
|
|
: _M_cur(__x._M_cur), _M_first(__x._M_first),
|
|
_M_last(__x._M_last), _M_node(__x._M_node) {}
|
|
|
|
reference operator*() const { return *_M_cur; }
|
|
pointer operator->() const { return _M_cur; }
|
|
|
|
_Self& operator++() {
|
|
++_M_cur;
|
|
if (_M_cur == _M_last) {
|
|
_M_set_node(_M_node + 1);
|
|
_M_cur = _M_first;
|
|
}
|
|
return *this;
|
|
}
|
|
_Self operator++(int) {
|
|
_Self __tmp = *this;
|
|
++*this;
|
|
return __tmp;
|
|
}
|
|
|
|
_Self& operator--() {
|
|
if (_M_cur == _M_first) {
|
|
_M_set_node(_M_node - 1);
|
|
_M_cur = _M_last;
|
|
}
|
|
--_M_cur;
|
|
return *this;
|
|
}
|
|
_Self operator--(int) {
|
|
_Self __tmp = *this;
|
|
--*this;
|
|
return __tmp;
|
|
}
|
|
|
|
_Self& operator+=(difference_type __n)
|
|
{
|
|
difference_type __offset = __n + (_M_cur - _M_first);
|
|
if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
|
|
_M_cur += __n;
|
|
else {
|
|
difference_type __node_offset =
|
|
__offset > 0 ? __offset / difference_type(_S_buffer_size())
|
|
: -difference_type((-__offset - 1) / _S_buffer_size()) - 1;
|
|
_M_set_node(_M_node + __node_offset);
|
|
_M_cur = _M_first +
|
|
(__offset - __node_offset * difference_type(_S_buffer_size()));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
_Self operator+(difference_type __n) const
|
|
{
|
|
_Self __tmp = *this;
|
|
return __tmp += __n;
|
|
}
|
|
|
|
_Self& operator-=(difference_type __n) { return *this += -__n; }
|
|
|
|
_Self operator-(difference_type __n) const {
|
|
_Self __tmp = *this;
|
|
return __tmp -= __n;
|
|
}
|
|
|
|
reference operator[](difference_type __n) const { return *(*this + __n); }
|
|
|
|
/** @if maint
|
|
* Prepares to traverse new_node. Sets everything except _M_cur, which
|
|
* should therefore be set by the caller immediately afterwards, based on
|
|
* _M_first and _M_last.
|
|
* @endif
|
|
*/
|
|
void
|
|
_M_set_node(_Map_pointer __new_node)
|
|
{
|
|
_M_node = __new_node;
|
|
_M_first = *__new_node;
|
|
_M_last = _M_first + difference_type(_S_buffer_size());
|
|
}
|
|
};
|
|
|
|
// Note: we also provide overloads whose operands are of the same type in
|
|
// order to avoid ambiguous overload resolution when std::rel_ops operators
|
|
// are in scope (for additional details, see libstdc++/3628)
|
|
template <typename _Tp, typename _Ref, typename _Ptr>
|
|
inline bool
|
|
operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
|
|
const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
|
|
{
|
|
return __x._M_cur == __y._M_cur;
|
|
}
|
|
|
|
template <typename _Tp, typename _RefL, typename _PtrL,
|
|
typename _RefR, typename _PtrR>
|
|
inline bool
|
|
operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
|
|
const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
|
|
{
|
|
return __x._M_cur == __y._M_cur;
|
|
}
|
|
|
|
template <typename _Tp, typename _Ref, typename _Ptr>
|
|
inline bool
|
|
operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
|
|
const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
|
|
{
|
|
return !(__x == __y);
|
|
}
|
|
|
|
template <typename _Tp, typename _RefL, typename _PtrL,
|
|
typename _RefR, typename _PtrR>
|
|
inline bool
|
|
operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
|
|
const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
|
|
{
|
|
return !(__x == __y);
|
|
}
|
|
|
|
template <typename _Tp, typename _Ref, typename _Ptr>
|
|
inline bool
|
|
operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
|
|
const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
|
|
{
|
|
return (__x._M_node == __y._M_node) ?
|
|
(__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
|
|
}
|
|
|
|
template <typename _Tp, typename _RefL, typename _PtrL,
|
|
typename _RefR, typename _PtrR>
|
|
inline bool
|
|
operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
|
|
const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
|
|
{
|
|
return (__x._M_node == __y._M_node) ?
|
|
(__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
|
|
}
|
|
|
|
template <typename _Tp, typename _Ref, typename _Ptr>
|
|
inline bool
|
|
operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
|
|
const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
|
|
{
|
|
return __y < __x;
|
|
}
|
|
|
|
template <typename _Tp, typename _RefL, typename _PtrL,
|
|
typename _RefR, typename _PtrR>
|
|
inline bool
|
|
operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
|
|
const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
|
|
{
|
|
return __y < __x;
|
|
}
|
|
|
|
template <typename _Tp, typename _Ref, typename _Ptr>
|
|
inline bool
|
|
operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
|
|
const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
|
|
{
|
|
return !(__y < __x);
|
|
}
|
|
|
|
template <typename _Tp, typename _RefL, typename _PtrL,
|
|
typename _RefR, typename _PtrR>
|
|
inline bool
|
|
operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
|
|
const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
|
|
{
|
|
return !(__y < __x);
|
|
}
|
|
|
|
template <typename _Tp, typename _Ref, typename _Ptr>
|
|
inline bool
|
|
operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
|
|
const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
|
|
{
|
|
return !(__x < __y);
|
|
}
|
|
|
|
template <typename _Tp, typename _RefL, typename _PtrL,
|
|
typename _RefR, typename _PtrR>
|
|
inline bool
|
|
operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
|
|
const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
|
|
{
|
|
return !(__x < __y);
|
|
}
|
|
|
|
// _GLIBCPP_RESOLVE_LIB_DEFECTS
|
|
// According to the resolution of DR179 not only the various comparison
|
|
// operators but also operator- must accept mixed iterator/const_iterator
|
|
// parameters.
|
|
template <typename _Tp, typename _RefL, typename _PtrL,
|
|
typename _RefR, typename _PtrR>
|
|
inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
|
|
operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
|
|
const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
|
|
{
|
|
return _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
|
|
(_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) *
|
|
(__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) +
|
|
(__y._M_last - __y._M_cur);
|
|
}
|
|
|
|
template <typename _Tp, typename _Ref, typename _Ptr>
|
|
inline _Deque_iterator<_Tp, _Ref, _Ptr>
|
|
operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
|
|
{
|
|
return __x + __n;
|
|
}
|
|
|
|
|
|
/// @if maint Primary default version. @endif
|
|
/**
|
|
* @if maint
|
|
* Deque base class. It has two purposes. First, its constructor
|
|
* and destructor allocate (but don't initialize) storage. This makes
|
|
* %exception safety easier. Second, the base class encapsulates all of
|
|
* the differences between SGI-style allocators and standard-conforming
|
|
* allocators. (See stl_alloc.h for more on this topic.) There are two
|
|
* versions: this ordinary one, and the space-saving specialization for
|
|
* instanceless allocators.
|
|
* @endif
|
|
*/
|
|
template <typename _Tp, typename _Alloc, bool __is_static>
|
|
class _Deque_alloc_base
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
|
|
allocator_type get_allocator() const { return _M_node_allocator; }
|
|
|
|
_Deque_alloc_base(const allocator_type& __a)
|
|
: _M_node_allocator(__a), _M_map_allocator(__a),
|
|
_M_map(0), _M_map_size(0)
|
|
{}
|
|
|
|
protected:
|
|
typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type
|
|
_Map_allocator_type;
|
|
|
|
_Tp*
|
|
_M_allocate_node()
|
|
{
|
|
return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp)));
|
|
}
|
|
|
|
void
|
|
_M_deallocate_node(_Tp* __p)
|
|
{
|
|
_M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp)));
|
|
}
|
|
|
|
_Tp**
|
|
_M_allocate_map(size_t __n)
|
|
{ return _M_map_allocator.allocate(__n); }
|
|
|
|
void
|
|
_M_deallocate_map(_Tp** __p, size_t __n)
|
|
{ _M_map_allocator.deallocate(__p, __n); }
|
|
|
|
allocator_type _M_node_allocator;
|
|
_Map_allocator_type _M_map_allocator;
|
|
_Tp** _M_map;
|
|
size_t _M_map_size;
|
|
};
|
|
|
|
/// @if maint Specialization for instanceless allocators. @endif
|
|
template <typename _Tp, typename _Alloc>
|
|
class _Deque_alloc_base<_Tp, _Alloc, true>
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
|
|
allocator_type get_allocator() const { return allocator_type(); }
|
|
|
|
_Deque_alloc_base(const allocator_type&)
|
|
: _M_map(0), _M_map_size(0)
|
|
{}
|
|
|
|
protected:
|
|
typedef typename _Alloc_traits<_Tp,_Alloc>::_Alloc_type _Node_alloc_type;
|
|
typedef typename _Alloc_traits<_Tp*,_Alloc>::_Alloc_type _Map_alloc_type;
|
|
|
|
_Tp*
|
|
_M_allocate_node()
|
|
{
|
|
return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
|
|
}
|
|
|
|
void
|
|
_M_deallocate_node(_Tp* __p)
|
|
{
|
|
_Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
|
|
}
|
|
|
|
_Tp**
|
|
_M_allocate_map(size_t __n)
|
|
{ return _Map_alloc_type::allocate(__n); }
|
|
|
|
void
|
|
_M_deallocate_map(_Tp** __p, size_t __n)
|
|
{ _Map_alloc_type::deallocate(__p, __n); }
|
|
|
|
_Tp** _M_map;
|
|
size_t _M_map_size;
|
|
};
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* Deque base class. Using _Alloc_traits in the instantiation of the parent
|
|
* class provides the compile-time dispatching mentioned in the parent's
|
|
* docs. This class provides the unified face for %deque's allocation.
|
|
*
|
|
* Nothing in this class ever constructs or destroys an actual Tp element.
|
|
* (Deque handles that itself.) Only/All memory management is performed
|
|
* here.
|
|
* @endif
|
|
*/
|
|
template <typename _Tp, typename _Alloc>
|
|
class _Deque_base
|
|
: public _Deque_alloc_base<_Tp,_Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
{
|
|
public:
|
|
typedef _Deque_alloc_base<_Tp,_Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
_Base;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator;
|
|
typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
|
|
|
|
_Deque_base(const allocator_type& __a, size_t __num_elements)
|
|
: _Base(__a), _M_start(), _M_finish()
|
|
{ _M_initialize_map(__num_elements); }
|
|
_Deque_base(const allocator_type& __a)
|
|
: _Base(__a), _M_start(), _M_finish() {}
|
|
~_Deque_base();
|
|
|
|
protected:
|
|
void _M_initialize_map(size_t);
|
|
void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
|
|
void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
|
|
enum { _S_initial_map_size = 8 };
|
|
|
|
iterator _M_start;
|
|
iterator _M_finish;
|
|
};
|
|
|
|
|
|
template <typename _Tp, typename _Alloc>
|
|
_Deque_base<_Tp,_Alloc>::~_Deque_base()
|
|
{
|
|
if (_M_map)
|
|
{
|
|
_M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1);
|
|
_M_deallocate_map(_M_map, _M_map_size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @if maint
|
|
* @brief Layout storage.
|
|
* @param num_elements The count of T's for which to allocate space
|
|
* at first.
|
|
* @return Nothing.
|
|
*
|
|
* The initial underlying memory layout is a bit complicated...
|
|
* @endif
|
|
*/
|
|
template <typename _Tp, typename _Alloc>
|
|
void
|
|
_Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
|
|
{
|
|
size_t __num_nodes =
|
|
__num_elements / __deque_buf_size(sizeof(_Tp)) + 1;
|
|
|
|
_M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2);
|
|
_M_map = _M_allocate_map(_M_map_size);
|
|
|
|
// For "small" maps (needing less than _M_map_size nodes), allocation
|
|
// starts in the middle elements and grows outwards. So nstart may be the
|
|
// beginning of _M_map, but for small maps it may be as far in as _M_map+3.
|
|
|
|
_Tp** __nstart = _M_map + (_M_map_size - __num_nodes) / 2;
|
|
_Tp** __nfinish = __nstart + __num_nodes;
|
|
|
|
try
|
|
{ _M_create_nodes(__nstart, __nfinish); }
|
|
catch(...)
|
|
{
|
|
_M_deallocate_map(_M_map, _M_map_size);
|
|
_M_map = 0;
|
|
_M_map_size = 0;
|
|
__throw_exception_again;
|
|
}
|
|
|
|
_M_start._M_set_node(__nstart);
|
|
_M_finish._M_set_node(__nfinish - 1);
|
|
_M_start._M_cur = _M_start._M_first;
|
|
_M_finish._M_cur = _M_finish._M_first +
|
|
__num_elements % __deque_buf_size(sizeof(_Tp));
|
|
}
|
|
|
|
template <typename _Tp, typename _Alloc>
|
|
void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
|
|
{
|
|
_Tp** __cur;
|
|
try
|
|
{
|
|
for (__cur = __nstart; __cur < __nfinish; ++__cur)
|
|
*__cur = _M_allocate_node();
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_destroy_nodes(__nstart, __cur);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template <typename _Tp, typename _Alloc>
|
|
void
|
|
_Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
|
|
{
|
|
for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
|
|
_M_deallocate_node(*__n);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief A standard container using fixed-size memory allocation and
|
|
* constant-time manipulation of elements at either end.
|
|
*
|
|
* @ingroup Containers
|
|
* @ingroup Sequences
|
|
*
|
|
* Meets the requirements of a <a href="tables.html#65">container</a>, a
|
|
* <a href="tables.html#66">reversible container</a>, and a
|
|
* <a href="tables.html#67">sequence</a>, including the
|
|
* <a href="tables.html#68">optional sequence requirements</a>.
|
|
*
|
|
* In previous HP/SGI versions of deque, there was an extra template
|
|
* parameter so users could control the node size. This extension turned
|
|
* out to violate the C++ standard (it can be detected using template
|
|
* template parameters), and it was removed.
|
|
*
|
|
* @if maint
|
|
* Here's how a deque<Tp> manages memory. Each deque has 4 members:
|
|
*
|
|
* - Tp** _M_map
|
|
* - size_t _M_map_size
|
|
* - iterator _M_start, _M_finish
|
|
*
|
|
* map_size is at least 8. %map is an array of map_size pointers-to-"nodes".
|
|
* (The name %map has nothing to do with the std::map class, and "nodes"
|
|
* should not be confused with std::list's usage of "node".)
|
|
*
|
|
* A "node" has no specific type name as such, but it is referred to as
|
|
* "node" in this file. It is a simple array-of-Tp. If Tp is very large,
|
|
* there will be one Tp element per node (i.e., an "array" of one).
|
|
* For non-huge Tp's, node size is inversely related to Tp size: the
|
|
* larger the Tp, the fewer Tp's will fit in a node. The goal here is to
|
|
* keep the total size of a node relatively small and constant over different
|
|
* Tp's, to improve allocator efficiency.
|
|
*
|
|
* **** As I write this, the nodes are /not/ allocated using the high-speed
|
|
* memory pool. There are 20 hours left in the year; perhaps I can fix
|
|
* this before 2002.
|
|
*
|
|
* Not every pointer in the %map array will point to a node. If the initial
|
|
* number of elements in the deque is small, the /middle/ %map pointers will
|
|
* be valid, and the ones at the edges will be unused. This same situation
|
|
* will arise as the %map grows: available %map pointers, if any, will be on
|
|
* the ends. As new nodes are created, only a subset of the %map's pointers
|
|
* need to be copied "outward".
|
|
*
|
|
* Class invariants:
|
|
* - For any nonsingular iterator i:
|
|
* - i.node points to a member of the %map array. (Yes, you read that
|
|
* correctly: i.node does not actually point to a node.) The member of
|
|
* the %map array is what actually points to the node.
|
|
* - i.first == *(i.node) (This points to the node (first Tp element).)
|
|
* - i.last == i.first + node_size
|
|
* - i.cur is a pointer in the range [i.first, i.last). NOTE:
|
|
* the implication of this is that i.cur is always a dereferenceable
|
|
* pointer, even if i is a past-the-end iterator.
|
|
* - Start and Finish are always nonsingular iterators. NOTE: this means that
|
|
* an empty deque must have one node, a deque with <N elements (where N is
|
|
* the node buffer size) must have one node, a deque with N through (2N-1)
|
|
* elements must have two nodes, etc.
|
|
* - For every node other than start.node and finish.node, every element in
|
|
* the node is an initialized object. If start.node == finish.node, then
|
|
* [start.cur, finish.cur) are initialized objects, and the elements outside
|
|
* that range are uninitialized storage. Otherwise, [start.cur, start.last)
|
|
* and [finish.first, finish.cur) are initialized objects, and [start.first,
|
|
* start.cur) and [finish.cur, finish.last) are uninitialized storage.
|
|
* - [%map, %map + map_size) is a valid, non-empty range.
|
|
* - [start.node, finish.node] is a valid range contained within
|
|
* [%map, %map + map_size).
|
|
* - A pointer in the range [%map, %map + map_size) points to an allocated
|
|
* node if and only if the pointer is in the range
|
|
* [start.node, finish.node].
|
|
*
|
|
* Here's the magic: nothing in deque is "aware" of the discontiguous
|
|
* storage!
|
|
*
|
|
* The memory setup and layout occurs in the parent, _Base, and the iterator
|
|
* class is entirely responsible for "leaping" from one node to the next.
|
|
* All the implementation routines for deque itself work only through the
|
|
* start and finish iterators. This keeps the routines simple and sane,
|
|
* and we can use other standard algorithms as well.
|
|
* @endif
|
|
*/
|
|
template <typename _Tp, typename _Alloc = allocator<_Tp> >
|
|
class deque : protected _Deque_base<_Tp, _Alloc>
|
|
{
|
|
// concept requirements
|
|
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
|
|
|
|
typedef _Deque_base<_Tp, _Alloc> _Base;
|
|
|
|
public:
|
|
typedef _Tp value_type;
|
|
typedef value_type* pointer;
|
|
typedef const value_type* const_pointer;
|
|
typedef typename _Base::iterator iterator;
|
|
typedef typename _Base::const_iterator const_iterator;
|
|
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
typedef value_type& reference;
|
|
typedef const value_type& const_reference;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
|
|
protected:
|
|
typedef pointer* _Map_pointer;
|
|
static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
|
|
|
|
// Functions controlling memory layout, and nothing else.
|
|
using _Base::_M_initialize_map;
|
|
using _Base::_M_create_nodes;
|
|
using _Base::_M_destroy_nodes;
|
|
using _Base::_M_allocate_node;
|
|
using _Base::_M_deallocate_node;
|
|
using _Base::_M_allocate_map;
|
|
using _Base::_M_deallocate_map;
|
|
|
|
/** @if maint
|
|
* A total of four data members accumulated down the heirarchy. If the
|
|
* _Alloc type requires separate instances, then two of them will also be
|
|
* included in each deque.
|
|
* @endif
|
|
*/
|
|
using _Base::_M_map;
|
|
using _Base::_M_map_size;
|
|
using _Base::_M_start;
|
|
using _Base::_M_finish;
|
|
|
|
public:
|
|
// [23.2.1.1] construct/copy/destroy
|
|
// (assign() and get_allocator() are also listed in this section)
|
|
/**
|
|
* @brief Default constructor creates no elements.
|
|
*/
|
|
explicit
|
|
deque(const allocator_type& __a = allocator_type())
|
|
: _Base(__a, 0) {}
|
|
|
|
/**
|
|
* @brief Create a %deque with copies of an exemplar element.
|
|
* @param n The number of elements to initially create.
|
|
* @param value An element to copy.
|
|
*
|
|
* This constructor fills the %deque with @a n copies of @a value.
|
|
*/
|
|
deque(size_type __n, const value_type& __value,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a, __n)
|
|
{ _M_fill_initialize(__value); }
|
|
|
|
/**
|
|
* @brief Create a %deque with default elements.
|
|
* @param n The number of elements to initially create.
|
|
*
|
|
* This constructor fills the %deque with @a n copies of a
|
|
* default-constructed element.
|
|
*/
|
|
explicit
|
|
deque(size_type __n)
|
|
: _Base(allocator_type(), __n)
|
|
{ _M_fill_initialize(value_type()); }
|
|
|
|
/**
|
|
* @brief %Deque copy constructor.
|
|
* @param x A %deque of identical element and allocator types.
|
|
*
|
|
* The newly-created %deque uses a copy of the allocation object used
|
|
* by @a x.
|
|
*/
|
|
deque(const deque& __x)
|
|
: _Base(__x.get_allocator(), __x.size())
|
|
{ uninitialized_copy(__x.begin(), __x.end(), _M_start); }
|
|
|
|
/**
|
|
* @brief Builds a %deque from a range.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* Create a %deque consisting of copies of the elements from [first,last).
|
|
*
|
|
* If the iterators are forward, bidirectional, or random-access, then
|
|
* this will call the elements' copy constructor N times (where N is
|
|
* distance(first,last)) and do no memory reallocation. But if only
|
|
* input iterators are used, then this will do at most 2N calls to the
|
|
* copy constructor, and logN memory reallocations.
|
|
*/
|
|
template<typename _InputIterator>
|
|
deque(_InputIterator __first, _InputIterator __last,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_initialize_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
/**
|
|
* The dtor only erases the elements, and note that if the elements
|
|
* themselves are pointers, the pointed-to memory is not touched in any
|
|
* way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
~deque() { _Destroy(_M_start, _M_finish); }
|
|
|
|
/**
|
|
* @brief %Deque assignment operator.
|
|
* @param x A %deque of identical element and allocator types.
|
|
*
|
|
* All the elements of @a x are copied, but unlike the copy constructor,
|
|
* the allocator object is not copied.
|
|
*/
|
|
deque&
|
|
operator=(const deque& __x);
|
|
|
|
/**
|
|
* @brief Assigns a given value to a %deque.
|
|
* @param n Number of elements to be assigned.
|
|
* @param val Value to be assigned.
|
|
*
|
|
* This function fills a %deque with @a n copies of the given value.
|
|
* Note that the assignment completely changes the %deque and that the
|
|
* resulting %deque's size is the same as the number of elements assigned.
|
|
* Old data may be lost.
|
|
*/
|
|
void
|
|
assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
|
|
|
|
/**
|
|
* @brief Assigns a range to a %deque.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* This function fills a %deque with copies of the elements in the
|
|
* range [first,last).
|
|
*
|
|
* Note that the assignment completely changes the %deque and that the
|
|
* resulting %deque's size is the same as the number of elements assigned.
|
|
* Old data may be lost.
|
|
*/
|
|
template<typename _InputIterator>
|
|
void
|
|
assign(_InputIterator __first, _InputIterator __last)
|
|
{
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_assign_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
/// Get a copy of the memory allocation object.
|
|
allocator_type
|
|
get_allocator() const { return _Base::get_allocator(); }
|
|
|
|
// iterators
|
|
/**
|
|
* Returns a read/write iterator that points to the first element in the
|
|
* %deque. Iteration is done in ordinary element order.
|
|
*/
|
|
iterator
|
|
begin() { return _M_start; }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points to the first element
|
|
* in the %deque. Iteration is done in ordinary element order.
|
|
*/
|
|
const_iterator
|
|
begin() const { return _M_start; }
|
|
|
|
/**
|
|
* Returns a read/write iterator that points one past the last element in
|
|
* the %deque. Iteration is done in ordinary element order.
|
|
*/
|
|
iterator
|
|
end() { return _M_finish; }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points one past the last
|
|
* element in the %deque. Iteration is done in ordinary element order.
|
|
*/
|
|
const_iterator
|
|
end() const { return _M_finish; }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to the last element in
|
|
* the %deque. Iteration is done in reverse element order.
|
|
*/
|
|
reverse_iterator
|
|
rbegin() { return reverse_iterator(_M_finish); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to the last
|
|
* element in the %deque. Iteration is done in reverse element order.
|
|
*/
|
|
const_reverse_iterator
|
|
rbegin() const { return const_reverse_iterator(_M_finish); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to one before the
|
|
* first element in the %deque. Iteration is done in reverse element
|
|
* order.
|
|
*/
|
|
reverse_iterator
|
|
rend() { return reverse_iterator(_M_start); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to one
|
|
* before the first element in the %deque. Iteration is done in reverse
|
|
* element order.
|
|
*/
|
|
const_reverse_iterator
|
|
rend() const { return const_reverse_iterator(_M_start); }
|
|
|
|
// [23.2.1.2] capacity
|
|
/** Returns the number of elements in the %deque. */
|
|
size_type
|
|
size() const { return _M_finish - _M_start; }
|
|
|
|
/** Returns the size() of the largest possible %deque. */
|
|
size_type
|
|
max_size() const { return size_type(-1); }
|
|
|
|
/**
|
|
* @brief Resizes the %deque to the specified number of elements.
|
|
* @param new_size Number of elements the %deque should contain.
|
|
* @param x Data with which new elements should be populated.
|
|
*
|
|
* This function will %resize the %deque to the specified number of
|
|
* elements. If the number is smaller than the %deque's current size the
|
|
* %deque is truncated, otherwise the %deque is extended and new elements
|
|
* are populated with given data.
|
|
*/
|
|
void
|
|
resize(size_type __new_size, const value_type& __x)
|
|
{
|
|
const size_type __len = size();
|
|
if (__new_size < __len)
|
|
erase(_M_start + __new_size, _M_finish);
|
|
else
|
|
insert(_M_finish, __new_size - __len, __x);
|
|
}
|
|
|
|
/**
|
|
* @brief Resizes the %deque to the specified number of elements.
|
|
* @param new_size Number of elements the %deque should contain.
|
|
*
|
|
* This function will resize the %deque to the specified number of
|
|
* elements. If the number is smaller than the %deque's current size the
|
|
* %deque is truncated, otherwise the %deque is extended and new elements
|
|
* are default-constructed.
|
|
*/
|
|
void
|
|
resize(size_type new_size) { resize(new_size, value_type()); }
|
|
|
|
/**
|
|
* Returns true if the %deque is empty. (Thus begin() would equal end().)
|
|
*/
|
|
bool empty() const { return _M_finish == _M_start; }
|
|
|
|
// element access
|
|
/**
|
|
* @brief Subscript access to the data contained in the %deque.
|
|
* @param n The index of the element for which data should be accessed.
|
|
* @return Read/write reference to data.
|
|
*
|
|
* This operator allows for easy, array-style, data access.
|
|
* Note that data access with this operator is unchecked and out_of_range
|
|
* lookups are not defined. (For checked lookups see at().)
|
|
*/
|
|
reference
|
|
operator[](size_type __n) { return _M_start[difference_type(__n)]; }
|
|
|
|
/**
|
|
* @brief Subscript access to the data contained in the %deque.
|
|
* @param n The index of the element for which data should be accessed.
|
|
* @return Read-only (constant) reference to data.
|
|
*
|
|
* This operator allows for easy, array-style, data access.
|
|
* Note that data access with this operator is unchecked and out_of_range
|
|
* lookups are not defined. (For checked lookups see at().)
|
|
*/
|
|
const_reference
|
|
operator[](size_type __n) const { return _M_start[difference_type(__n)]; }
|
|
|
|
protected:
|
|
/// @if maint Safety check used only from at(). @endif
|
|
void
|
|
_M_range_check(size_type __n) const
|
|
{
|
|
if (__n >= this->size())
|
|
__throw_out_of_range("deque [] access out of range");
|
|
}
|
|
|
|
public:
|
|
/**
|
|
* @brief Provides access to the data contained in the %deque.
|
|
* @param n The index of the element for which data should be accessed.
|
|
* @return Read/write reference to data.
|
|
* @throw std::out_of_range If @a n is an invalid index.
|
|
*
|
|
* This function provides for safer data access. The parameter is first
|
|
* checked that it is in the range of the deque. The function throws
|
|
* out_of_range if the check fails.
|
|
*/
|
|
reference
|
|
at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
|
|
|
|
/**
|
|
* @brief Provides access to the data contained in the %deque.
|
|
* @param n The index of the element for which data should be accessed.
|
|
* @return Read-only (constant) reference to data.
|
|
* @throw std::out_of_range If @a n is an invalid index.
|
|
*
|
|
* This function provides for safer data access. The parameter is first
|
|
* checked that it is in the range of the deque. The function throws
|
|
* out_of_range if the check fails.
|
|
*/
|
|
const_reference
|
|
at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
|
|
|
|
/**
|
|
* Returns a read/write reference to the data at the first element of the
|
|
* %deque.
|
|
*/
|
|
reference
|
|
front() { return *_M_start; }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the first
|
|
* element of the %deque.
|
|
*/
|
|
const_reference
|
|
front() const { return *_M_start; }
|
|
|
|
/**
|
|
* Returns a read/write reference to the data at the last element of the
|
|
* %deque.
|
|
*/
|
|
reference
|
|
back()
|
|
{
|
|
iterator __tmp = _M_finish;
|
|
--__tmp;
|
|
return *__tmp;
|
|
}
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the last
|
|
* element of the %deque.
|
|
*/
|
|
const_reference
|
|
back() const
|
|
{
|
|
const_iterator __tmp = _M_finish;
|
|
--__tmp;
|
|
return *__tmp;
|
|
}
|
|
|
|
// [23.2.1.2] modifiers
|
|
/**
|
|
* @brief Add data to the front of the %deque.
|
|
* @param x Data to be added.
|
|
*
|
|
* This is a typical stack operation. The function creates an element at
|
|
* the front of the %deque and assigns the given data to it. Due to the
|
|
* nature of a %deque this operation can be done in constant time.
|
|
*/
|
|
void
|
|
push_front(const value_type& __x)
|
|
{
|
|
if (_M_start._M_cur != _M_start._M_first) {
|
|
_Construct(_M_start._M_cur - 1, __x);
|
|
--_M_start._M_cur;
|
|
}
|
|
else
|
|
_M_push_front_aux(__x);
|
|
}
|
|
|
|
#ifdef _GLIBCPP_DEPRECATED
|
|
/**
|
|
* @brief Add data to the front of the %deque.
|
|
*
|
|
* This is a typical stack operation. The function creates a
|
|
* default-constructed element at the front of the %deque. Due to the
|
|
* nature of a %deque this operation can be done in constant time. You
|
|
* should consider using push_front(value_type()) instead.
|
|
*
|
|
* @note This was deprecated in 3.2 and will be removed in 3.4. You must
|
|
* define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
|
|
* c++config.h.
|
|
*/
|
|
void
|
|
push_front()
|
|
{
|
|
if (_M_start._M_cur != _M_start._M_first) {
|
|
_Construct(_M_start._M_cur - 1);
|
|
--_M_start._M_cur;
|
|
}
|
|
else
|
|
_M_push_front_aux();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Add data to the end of the %deque.
|
|
* @param x Data to be added.
|
|
*
|
|
* This is a typical stack operation. The function creates an element at
|
|
* the end of the %deque and assigns the given data to it. Due to the
|
|
* nature of a %deque this operation can be done in constant time.
|
|
*/
|
|
void
|
|
push_back(const value_type& __x)
|
|
{
|
|
if (_M_finish._M_cur != _M_finish._M_last - 1) {
|
|
_Construct(_M_finish._M_cur, __x);
|
|
++_M_finish._M_cur;
|
|
}
|
|
else
|
|
_M_push_back_aux(__x);
|
|
}
|
|
|
|
#ifdef _GLIBCPP_DEPRECATED
|
|
/**
|
|
* @brief Add data to the end of the %deque.
|
|
*
|
|
* This is a typical stack operation. The function creates a
|
|
* default-constructed element at the end of the %deque. Due to the nature
|
|
* of a %deque this operation can be done in constant time. You should
|
|
* consider using push_back(value_type()) instead.
|
|
*
|
|
* @note This was deprecated in 3.2 and will be removed in 3.4. You must
|
|
* define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
|
|
* c++config.h.
|
|
*/
|
|
void
|
|
push_back()
|
|
{
|
|
if (_M_finish._M_cur != _M_finish._M_last - 1) {
|
|
_Construct(_M_finish._M_cur);
|
|
++_M_finish._M_cur;
|
|
}
|
|
else
|
|
_M_push_back_aux();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Removes first element.
|
|
*
|
|
* This is a typical stack operation. It shrinks the %deque by one.
|
|
*
|
|
* Note that no data is returned, and if the first element's data is
|
|
* needed, it should be retrieved before pop_front() is called.
|
|
*/
|
|
void
|
|
pop_front()
|
|
{
|
|
if (_M_start._M_cur != _M_start._M_last - 1) {
|
|
_Destroy(_M_start._M_cur);
|
|
++_M_start._M_cur;
|
|
}
|
|
else
|
|
_M_pop_front_aux();
|
|
}
|
|
|
|
/**
|
|
* @brief Removes last element.
|
|
*
|
|
* This is a typical stack operation. It shrinks the %deque by one.
|
|
*
|
|
* Note that no data is returned, and if the last element's data is
|
|
* needed, it should be retrieved before pop_back() is called.
|
|
*/
|
|
void
|
|
pop_back()
|
|
{
|
|
if (_M_finish._M_cur != _M_finish._M_first) {
|
|
--_M_finish._M_cur;
|
|
_Destroy(_M_finish._M_cur);
|
|
}
|
|
else
|
|
_M_pop_back_aux();
|
|
}
|
|
|
|
/**
|
|
* @brief Inserts given value into %deque before specified iterator.
|
|
* @param position An iterator into the %deque.
|
|
* @param x Data to be inserted.
|
|
* @return An iterator that points to the inserted data.
|
|
*
|
|
* This function will insert a copy of the given value before the specified
|
|
* location.
|
|
*/
|
|
iterator
|
|
insert(iterator position, const value_type& __x);
|
|
|
|
#ifdef _GLIBCPP_DEPRECATED
|
|
/**
|
|
* @brief Inserts an element into the %deque.
|
|
* @param position An iterator into the %deque.
|
|
* @return An iterator that points to the inserted element.
|
|
*
|
|
* This function will insert a default-constructed element before the
|
|
* specified location. You should consider using
|
|
* insert(position,value_type()) instead.
|
|
*
|
|
* @note This was deprecated in 3.2 and will be removed in 3.4. You must
|
|
* define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
|
|
* c++config.h.
|
|
*/
|
|
iterator
|
|
insert(iterator __position)
|
|
{ return insert(__position, value_type()); }
|
|
#endif
|
|
|
|
/**
|
|
* @brief Inserts a number of copies of given data into the %deque.
|
|
* @param position An iterator into the %deque.
|
|
* @param n Number of elements to be inserted.
|
|
* @param x Data to be inserted.
|
|
*
|
|
* This function will insert a specified number of copies of the given data
|
|
* before the location specified by @a position.
|
|
*/
|
|
void
|
|
insert(iterator __position, size_type __n, const value_type& __x)
|
|
{ _M_fill_insert(__position, __n, __x); }
|
|
|
|
/**
|
|
* @brief Inserts a range into the %deque.
|
|
* @param pos An iterator into the %deque.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* This function will insert copies of the data in the range [first,last)
|
|
* into the %deque before the location specified by @a pos. This is
|
|
* known as "range insert."
|
|
*/
|
|
template<typename _InputIterator>
|
|
void
|
|
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
|
|
{
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_insert_dispatch(__pos, __first, __last, _Integral());
|
|
}
|
|
|
|
/**
|
|
* @brief Remove element at given position.
|
|
* @param position Iterator pointing to element to be erased.
|
|
* @return An iterator pointing to the next element (or end()).
|
|
*
|
|
* This function will erase the element at the given position and thus
|
|
* shorten the %deque by one.
|
|
*
|
|
* The user is cautioned that
|
|
* this function only erases the element, and that if the element is itself
|
|
* a pointer, the pointed-to memory is not touched in any way. Managing
|
|
* the pointer is the user's responsibilty.
|
|
*/
|
|
iterator
|
|
erase(iterator __position);
|
|
|
|
/**
|
|
* @brief Remove a range of elements.
|
|
* @param first Iterator pointing to the first element to be erased.
|
|
* @param last Iterator pointing to one past the last element to be
|
|
* erased.
|
|
* @return An iterator pointing to the element pointed to by @a last
|
|
* prior to erasing (or end()).
|
|
*
|
|
* This function will erase the elements in the range [first,last) and
|
|
* shorten the %deque accordingly.
|
|
*
|
|
* The user is cautioned that
|
|
* this function only erases the elements, and that if the elements
|
|
* themselves are pointers, the pointed-to memory is not touched in any
|
|
* way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
iterator
|
|
erase(iterator __first, iterator __last);
|
|
|
|
/**
|
|
* @brief Swaps data with another %deque.
|
|
* @param x A %deque of the same element and allocator types.
|
|
*
|
|
* This exchanges the elements between two deques in constant time.
|
|
* (Four pointers, so it should be quite fast.)
|
|
* Note that the global std::swap() function is specialized such that
|
|
* std::swap(d1,d2) will feed to this function.
|
|
*/
|
|
void
|
|
swap(deque& __x)
|
|
{
|
|
std::swap(_M_start, __x._M_start);
|
|
std::swap(_M_finish, __x._M_finish);
|
|
std::swap(_M_map, __x._M_map);
|
|
std::swap(_M_map_size, __x._M_map_size);
|
|
}
|
|
|
|
/**
|
|
* Erases all the elements. Note that this function only erases the
|
|
* elements, and that if the elements themselves are pointers, the
|
|
* pointed-to memory is not touched in any way. Managing the pointer is
|
|
* the user's responsibilty.
|
|
*/
|
|
void clear();
|
|
|
|
protected:
|
|
// Internal constructor functions follow.
|
|
|
|
// called by the range constructor to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
|
|
{
|
|
_M_initialize_map(__n);
|
|
_M_fill_initialize(__x);
|
|
}
|
|
|
|
// called by the range constructor to implement [23.1.1]/9
|
|
template<typename _InputIter>
|
|
void
|
|
_M_initialize_dispatch(_InputIter __first, _InputIter __last,
|
|
__false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIter>::iterator_category
|
|
_IterCategory;
|
|
_M_range_initialize(__first, __last, _IterCategory());
|
|
}
|
|
|
|
// called by the second initialize_dispatch above
|
|
/** @{
|
|
* @if maint
|
|
* @brief Fills the deque with whatever is in [first,last).
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
* @return Nothing.
|
|
*
|
|
* If the iterators are actually forward iterators (or better), then the
|
|
* memory layout can be done all at once. Else we move forward using
|
|
* push_back on each value from the iterator.
|
|
* @endif
|
|
*/
|
|
template <typename _InputIterator>
|
|
void
|
|
_M_range_initialize(_InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag);
|
|
|
|
// called by the second initialize_dispatch above
|
|
template <typename _ForwardIterator>
|
|
void
|
|
_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag);
|
|
/** @} */
|
|
|
|
/**
|
|
* @if maint
|
|
* @brief Fills the %deque with copies of value.
|
|
* @param value Initial value.
|
|
* @return Nothing.
|
|
* @pre _M_start and _M_finish have already been initialized, but none of
|
|
* the %deque's elements have yet been constructed.
|
|
*
|
|
* This function is called only when the user provides an explicit size
|
|
* (with or without an explicit exemplar value).
|
|
* @endif
|
|
*/
|
|
void
|
|
_M_fill_initialize(const value_type& __value);
|
|
|
|
|
|
// Internal assign functions follow. The *_aux functions do the actual
|
|
// assignment work for the range versions.
|
|
|
|
// called by the range assign to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
|
|
{
|
|
_M_fill_assign(static_cast<size_type>(__n),
|
|
static_cast<value_type>(__val));
|
|
}
|
|
|
|
// called by the range assign to implement [23.1.1]/9
|
|
template<typename _InputIter>
|
|
void
|
|
_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIter>::iterator_category
|
|
_IterCategory;
|
|
_M_assign_aux(__first, __last, _IterCategory());
|
|
}
|
|
|
|
// called by the second assign_dispatch above
|
|
template <typename _InputIterator>
|
|
void
|
|
_M_assign_aux(_InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag);
|
|
|
|
// called by the second assign_dispatch above
|
|
template <typename _ForwardIterator>
|
|
void
|
|
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag)
|
|
{
|
|
size_type __len = distance(__first, __last);
|
|
if (__len > size()) {
|
|
_ForwardIterator __mid = __first;
|
|
advance(__mid, size());
|
|
copy(__first, __mid, begin());
|
|
insert(end(), __mid, __last);
|
|
}
|
|
else
|
|
erase(copy(__first, __last, begin()), end());
|
|
}
|
|
|
|
// Called by assign(n,t), and the range assign when it turns out to be the
|
|
// same thing.
|
|
void
|
|
_M_fill_assign(size_type __n, const value_type& __val)
|
|
{
|
|
if (__n > size())
|
|
{
|
|
fill(begin(), end(), __val);
|
|
insert(end(), __n - size(), __val);
|
|
}
|
|
else
|
|
{
|
|
erase(begin() + __n, end());
|
|
fill(begin(), end(), __val);
|
|
}
|
|
}
|
|
|
|
|
|
/** @{
|
|
* @if maint
|
|
* @brief Helper functions for push_* and pop_*.
|
|
* @endif
|
|
*/
|
|
void _M_push_back_aux(const value_type&);
|
|
void _M_push_front_aux(const value_type&);
|
|
#ifdef _GLIBCPP_DEPRECATED
|
|
void _M_push_back_aux();
|
|
void _M_push_front_aux();
|
|
#endif
|
|
void _M_pop_back_aux();
|
|
void _M_pop_front_aux();
|
|
/** @} */
|
|
|
|
|
|
// Internal insert functions follow. The *_aux functions do the actual
|
|
// insertion work when all shortcuts fail.
|
|
|
|
// called by the range insert to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_insert_dispatch(iterator __pos,
|
|
_Integer __n, _Integer __x, __true_type)
|
|
{
|
|
_M_fill_insert(__pos, static_cast<size_type>(__n),
|
|
static_cast<value_type>(__x));
|
|
}
|
|
|
|
// called by the range insert to implement [23.1.1]/9
|
|
template<typename _InputIterator>
|
|
void
|
|
_M_insert_dispatch(iterator __pos,
|
|
_InputIterator __first, _InputIterator __last,
|
|
__false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIterator>::iterator_category
|
|
_IterCategory;
|
|
_M_range_insert_aux(__pos, __first, __last, _IterCategory());
|
|
}
|
|
|
|
// called by the second insert_dispatch above
|
|
template <typename _InputIterator>
|
|
void
|
|
_M_range_insert_aux(iterator __pos, _InputIterator __first,
|
|
_InputIterator __last, input_iterator_tag);
|
|
|
|
// called by the second insert_dispatch above
|
|
template <typename _ForwardIterator>
|
|
void
|
|
_M_range_insert_aux(iterator __pos, _ForwardIterator __first,
|
|
_ForwardIterator __last, forward_iterator_tag);
|
|
|
|
// Called by insert(p,n,x), and the range insert when it turns out to be
|
|
// the same thing. Can use fill functions in optimal situations, otherwise
|
|
// passes off to insert_aux(p,n,x).
|
|
void
|
|
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
|
|
|
|
// called by insert(p,x)
|
|
iterator
|
|
_M_insert_aux(iterator __pos, const value_type& __x);
|
|
|
|
// called by insert(p,n,x) via fill_insert
|
|
void
|
|
_M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
|
|
|
|
// called by range_insert_aux for forward iterators
|
|
template <typename _ForwardIterator>
|
|
void
|
|
_M_insert_aux(iterator __pos,
|
|
_ForwardIterator __first, _ForwardIterator __last,
|
|
size_type __n);
|
|
|
|
#ifdef _GLIBCPP_DEPRECATED
|
|
// unused, see comment in implementation
|
|
iterator _M_insert_aux(iterator __pos);
|
|
#endif
|
|
|
|
/** @{
|
|
* @if maint
|
|
* @brief Memory-handling helpers for the previous internal insert
|
|
* functions.
|
|
* @endif
|
|
*/
|
|
iterator
|
|
_M_reserve_elements_at_front(size_type __n)
|
|
{
|
|
size_type __vacancies = _M_start._M_cur - _M_start._M_first;
|
|
if (__n > __vacancies)
|
|
_M_new_elements_at_front(__n - __vacancies);
|
|
return _M_start - difference_type(__n);
|
|
}
|
|
|
|
iterator
|
|
_M_reserve_elements_at_back(size_type __n)
|
|
{
|
|
size_type __vacancies = (_M_finish._M_last - _M_finish._M_cur) - 1;
|
|
if (__n > __vacancies)
|
|
_M_new_elements_at_back(__n - __vacancies);
|
|
return _M_finish + difference_type(__n);
|
|
}
|
|
|
|
void
|
|
_M_new_elements_at_front(size_type __new_elements);
|
|
|
|
void
|
|
_M_new_elements_at_back(size_type __new_elements);
|
|
/** @} */
|
|
|
|
|
|
/** @{
|
|
* @if maint
|
|
* @brief Memory-handling helpers for the major %map.
|
|
*
|
|
* Makes sure the _M_map has space for new nodes. Does not actually add
|
|
* the nodes. Can invalidate _M_map pointers. (And consequently, %deque
|
|
* iterators.)
|
|
* @endif
|
|
*/
|
|
void
|
|
_M_reserve_map_at_back (size_type __nodes_to_add = 1)
|
|
{
|
|
if (__nodes_to_add + 1 > _M_map_size - (_M_finish._M_node - _M_map))
|
|
_M_reallocate_map(__nodes_to_add, false);
|
|
}
|
|
|
|
void
|
|
_M_reserve_map_at_front (size_type __nodes_to_add = 1)
|
|
{
|
|
if (__nodes_to_add > size_type(_M_start._M_node - _M_map))
|
|
_M_reallocate_map(__nodes_to_add, true);
|
|
}
|
|
|
|
void
|
|
_M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
|
|
/** @} */
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief Deque equality comparison.
|
|
* @param x A %deque.
|
|
* @param y A %deque of the same type as @a x.
|
|
* @return True iff the size and elements of the deques are equal.
|
|
*
|
|
* This is an equivalence relation. It is linear in the size of the
|
|
* deques. Deques are considered equivalent if their sizes are equal,
|
|
* and if corresponding elements compare equal.
|
|
*/
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool operator==(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y)
|
|
{
|
|
return __x.size() == __y.size() &&
|
|
equal(__x.begin(), __x.end(), __y.begin());
|
|
}
|
|
|
|
/**
|
|
* @brief Deque ordering relation.
|
|
* @param x A %deque.
|
|
* @param y A %deque of the same type as @a x.
|
|
* @return True iff @a x is lexographically less than @a y.
|
|
*
|
|
* This is a total ordering relation. It is linear in the size of the
|
|
* deques. The elements must be comparable with @c <.
|
|
*
|
|
* See std::lexographical_compare() for how the determination is made.
|
|
*/
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool operator<(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y)
|
|
{
|
|
return lexicographical_compare(__x.begin(), __x.end(),
|
|
__y.begin(), __y.end());
|
|
}
|
|
|
|
/// Based on operator==
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool operator!=(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return !(__x == __y);
|
|
}
|
|
|
|
/// Based on operator<
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool operator>(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return __y < __x;
|
|
}
|
|
|
|
/// Based on operator<
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool operator<=(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return !(__y < __x);
|
|
}
|
|
|
|
/// Based on operator<
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool operator>=(const deque<_Tp, _Alloc>& __x,
|
|
const deque<_Tp, _Alloc>& __y) {
|
|
return !(__x < __y);
|
|
}
|
|
|
|
/// See std::deque::swap().
|
|
template <typename _Tp, typename _Alloc>
|
|
inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
|
|
{
|
|
__x.swap(__y);
|
|
}
|
|
} // namespace std
|
|
|
|
#endif /* __GLIBCPP_INTERNAL_DEQUE_H */
|