mirror of
git://gcc.gnu.org/git/gcc.git
synced 2024-12-30 15:15:19 +08:00
d1d8ed9877
* strtod.c (_strtod_r): Logic to check for missing digits after exponent had 'else' attached to wrong 'if'. From-SVN: r46132
720 lines
15 KiB
C
720 lines
15 KiB
C
/*
|
|
FUNCTION
|
|
<<strtod>>, <<strtodf>>---string to double or float
|
|
|
|
INDEX
|
|
strtod
|
|
INDEX
|
|
_strtod_r
|
|
INDEX
|
|
strtodf
|
|
|
|
ANSI_SYNOPSIS
|
|
#include <stdlib.h>
|
|
double strtod(const char *<[str]>, char **<[tail]>);
|
|
float strtodf(const char *<[str]>, char **<[tail]>);
|
|
|
|
double _strtod_r(void *<[reent]>,
|
|
const char *<[str]>, char **<[tail]>);
|
|
|
|
TRAD_SYNOPSIS
|
|
#include <stdlib.h>
|
|
double strtod(<[str]>,<[tail]>)
|
|
char *<[str]>;
|
|
char **<[tail]>;
|
|
|
|
float strtodf(<[str]>,<[tail]>)
|
|
char *<[str]>;
|
|
char **<[tail]>;
|
|
|
|
double _strtod_r(<[reent]>,<[str]>,<[tail]>)
|
|
char *<[reent]>;
|
|
char *<[str]>;
|
|
char **<[tail]>;
|
|
|
|
DESCRIPTION
|
|
The function <<strtod>> parses the character string <[str]>,
|
|
producing a substring which can be converted to a double
|
|
value. The substring converted is the longest initial
|
|
subsequence of <[str]>, beginning with the first
|
|
non-whitespace character, that has the format:
|
|
.[+|-]<[digits]>[.][<[digits]>][(e|E)[+|-]<[digits]>]
|
|
The substring contains no characters if <[str]> is empty, consists
|
|
entirely of whitespace, or if the first non-whitespace
|
|
character is something other than <<+>>, <<->>, <<.>>, or a
|
|
digit. If the substring is empty, no conversion is done, and
|
|
the value of <[str]> is stored in <<*<[tail]>>>. Otherwise,
|
|
the substring is converted, and a pointer to the final string
|
|
(which will contain at least the terminating null character of
|
|
<[str]>) is stored in <<*<[tail]>>>. If you want no
|
|
assignment to <<*<[tail]>>>, pass a null pointer as <[tail]>.
|
|
<<strtodf>> is identical to <<strtod>> except for its return type.
|
|
|
|
This implementation returns the nearest machine number to the
|
|
input decimal string. Ties are broken by using the IEEE
|
|
round-even rule.
|
|
|
|
The alternate function <<_strtod_r>> is a reentrant version.
|
|
The extra argument <[reent]> is a pointer to a reentrancy structure.
|
|
|
|
RETURNS
|
|
<<strtod>> returns the converted substring value, if any. If
|
|
no conversion could be performed, 0 is returned. If the
|
|
correct value is out of the range of representable values,
|
|
plus or minus <<HUGE_VAL>> is returned, and <<ERANGE>> is
|
|
stored in errno. If the correct value would cause underflow, 0
|
|
is returned and <<ERANGE>> is stored in errno.
|
|
|
|
Supporting OS subroutines required: <<close>>, <<fstat>>, <<isatty>>,
|
|
<<lseek>>, <<read>>, <<sbrk>>, <<write>>.
|
|
*/
|
|
|
|
/****************************************************************
|
|
*
|
|
* The author of this software is David M. Gay.
|
|
*
|
|
* Copyright (c) 1991 by AT&T.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose without fee is hereby granted, provided that this entire notice
|
|
* is included in all copies of any software which is or includes a copy
|
|
* or modification of this software and in all copies of the supporting
|
|
* documentation for such software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
|
|
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
|
|
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
|
|
*
|
|
***************************************************************/
|
|
|
|
/* Please send bug reports to
|
|
David M. Gay
|
|
AT&T Bell Laboratories, Room 2C-463
|
|
600 Mountain Avenue
|
|
Murray Hill, NJ 07974-2070
|
|
U.S.A.
|
|
dmg@research.att.com or research!dmg
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <float.h>
|
|
#include <errno.h>
|
|
#include "mprec.h"
|
|
|
|
double
|
|
_DEFUN (_strtod_r, (ptr, s00, se),
|
|
struct _Jv_reent *ptr _AND
|
|
_CONST char *s00 _AND
|
|
char **se)
|
|
{
|
|
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, e1, esign, i, j,
|
|
k, nd, nd0, nf, nz, nz0, sign;
|
|
int digits = 0; /* Number of digits found in fraction part. */
|
|
long e;
|
|
_CONST char *s, *s0, *s1;
|
|
double aadj, aadj1, adj;
|
|
long L;
|
|
unsigned long y, z;
|
|
union double_union rv, rv0;
|
|
|
|
_Jv_Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
|
|
sign = nz0 = nz = 0;
|
|
rv.d = 0.;
|
|
for (s = s00;; s++)
|
|
switch (*s)
|
|
{
|
|
case '-':
|
|
sign = 1;
|
|
/* no break */
|
|
case '+':
|
|
if (*++s)
|
|
goto break2;
|
|
/* no break */
|
|
case 0:
|
|
s = s00;
|
|
goto ret;
|
|
case '\t':
|
|
case '\n':
|
|
case '\v':
|
|
case '\f':
|
|
case '\r':
|
|
case ' ':
|
|
continue;
|
|
default:
|
|
goto break2;
|
|
}
|
|
break2:
|
|
if (*s == '0')
|
|
{
|
|
digits++;
|
|
nz0 = 1;
|
|
while (*++s == '0')
|
|
digits++;
|
|
if (!*s)
|
|
goto ret;
|
|
}
|
|
s0 = s;
|
|
y = z = 0;
|
|
for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
|
|
{
|
|
digits++;
|
|
if (nd < 9)
|
|
y = 10 * y + c - '0';
|
|
else if (nd < 16)
|
|
z = 10 * z + c - '0';
|
|
}
|
|
nd0 = nd;
|
|
if (c == '.')
|
|
{
|
|
c = *++s;
|
|
if (!nd)
|
|
{
|
|
for (; c == '0'; c = *++s)
|
|
{
|
|
digits++;
|
|
nz++;
|
|
}
|
|
if (c > '0' && c <= '9')
|
|
{
|
|
digits++;
|
|
s0 = s;
|
|
nf += nz;
|
|
nz = 0;
|
|
goto have_dig;
|
|
}
|
|
goto dig_done;
|
|
}
|
|
for (; c >= '0' && c <= '9'; c = *++s)
|
|
{
|
|
digits++;
|
|
have_dig:
|
|
nz++;
|
|
if (c -= '0')
|
|
{
|
|
nf += nz;
|
|
for (i = 1; i < nz; i++)
|
|
if (nd++ < 9)
|
|
y *= 10;
|
|
else if (nd <= DBL_DIG + 1)
|
|
z *= 10;
|
|
if (nd++ < 9)
|
|
y = 10 * y + c;
|
|
else if (nd <= DBL_DIG + 1)
|
|
z = 10 * z + c;
|
|
nz = 0;
|
|
}
|
|
}
|
|
}
|
|
dig_done:
|
|
e = 0;
|
|
if (c == 'e' || c == 'E')
|
|
{
|
|
if (!nd && !nz && !nz0)
|
|
{
|
|
s = s00;
|
|
goto ret;
|
|
}
|
|
s00 = s;
|
|
esign = 0;
|
|
switch (c = *++s)
|
|
{
|
|
case '-':
|
|
esign = 1;
|
|
case '+':
|
|
c = *++s;
|
|
}
|
|
if (c >= '0' && c <= '9')
|
|
{
|
|
while (c == '0')
|
|
c = *++s;
|
|
if (c > '0' && c <= '9')
|
|
{
|
|
e = c - '0';
|
|
s1 = s;
|
|
while ((c = *++s) >= '0' && c <= '9')
|
|
e = 10 * e + c - '0';
|
|
if (s - s1 > 8)
|
|
/* Avoid confusion from exponents
|
|
* so large that e might overflow.
|
|
*/
|
|
e = 9999999L;
|
|
if (esign)
|
|
e = -e;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* No exponent after an 'E' : that's an error. */
|
|
ptr->_errno = EINVAL;
|
|
e = 0;
|
|
s = s00;
|
|
goto ret;
|
|
}
|
|
}
|
|
if (!nd)
|
|
{
|
|
if (!nz && !nz0)
|
|
s = s00;
|
|
goto ret;
|
|
}
|
|
e1 = e -= nf;
|
|
|
|
/* Now we have nd0 digits, starting at s0, followed by a
|
|
* decimal point, followed by nd-nd0 digits. The number we're
|
|
* after is the integer represented by those digits times
|
|
* 10**e */
|
|
|
|
if (!nd0)
|
|
nd0 = nd;
|
|
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
|
|
rv.d = y;
|
|
if (k > 9)
|
|
rv.d = tens[k - 9] * rv.d + z;
|
|
bd0 = 0;
|
|
if (nd <= DBL_DIG
|
|
#ifndef RND_PRODQUOT
|
|
&& FLT_ROUNDS == 1
|
|
#endif
|
|
)
|
|
{
|
|
if (!e)
|
|
goto ret;
|
|
if (e > 0)
|
|
{
|
|
if (e <= Ten_pmax)
|
|
{
|
|
#ifdef VAX
|
|
goto vax_ovfl_check;
|
|
#else
|
|
/* rv.d = */ rounded_product (rv.d, tens[e]);
|
|
goto ret;
|
|
#endif
|
|
}
|
|
i = DBL_DIG - nd;
|
|
if (e <= Ten_pmax + i)
|
|
{
|
|
/* A fancier test would sometimes let us do
|
|
* this for larger i values.
|
|
*/
|
|
e -= i;
|
|
rv.d *= tens[i];
|
|
#ifdef VAX
|
|
/* VAX exponent range is so narrow we must
|
|
* worry about overflow here...
|
|
*/
|
|
vax_ovfl_check:
|
|
word0 (rv) -= P * Exp_msk1;
|
|
/* rv.d = */ rounded_product (rv.d, tens[e]);
|
|
if ((word0 (rv) & Exp_mask)
|
|
> Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
|
|
goto ovfl;
|
|
word0 (rv) += P * Exp_msk1;
|
|
#else
|
|
/* rv.d = */ rounded_product (rv.d, tens[e]);
|
|
#endif
|
|
goto ret;
|
|
}
|
|
}
|
|
#ifndef Inaccurate_Divide
|
|
else if (e >= -Ten_pmax)
|
|
{
|
|
/* rv.d = */ rounded_quotient (rv.d, tens[-e]);
|
|
goto ret;
|
|
}
|
|
#endif
|
|
}
|
|
e1 += nd - k;
|
|
|
|
/* Get starting approximation = rv.d * 10**e1 */
|
|
|
|
if (e1 > 0)
|
|
{
|
|
if ((i = e1 & 15))
|
|
rv.d *= tens[i];
|
|
|
|
if (e1 &= ~15)
|
|
{
|
|
if (e1 > DBL_MAX_10_EXP)
|
|
{
|
|
ovfl:
|
|
ptr->_errno = ERANGE;
|
|
|
|
/* Force result to IEEE infinity. */
|
|
word0 (rv) = Exp_mask;
|
|
word1 (rv) = 0;
|
|
|
|
if (bd0)
|
|
goto retfree;
|
|
goto ret;
|
|
}
|
|
if (e1 >>= 4)
|
|
{
|
|
for (j = 0; e1 > 1; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
rv.d *= bigtens[j];
|
|
/* The last multiplication could overflow. */
|
|
word0 (rv) -= P * Exp_msk1;
|
|
rv.d *= bigtens[j];
|
|
if ((z = word0 (rv) & Exp_mask)
|
|
> Exp_msk1 * (DBL_MAX_EXP + Bias - P))
|
|
goto ovfl;
|
|
if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
|
|
{
|
|
/* set to largest number */
|
|
/* (Can't trust DBL_MAX) */
|
|
word0 (rv) = Big0;
|
|
#ifndef _DOUBLE_IS_32BITS
|
|
word1 (rv) = Big1;
|
|
#endif
|
|
}
|
|
else
|
|
word0 (rv) += P * Exp_msk1;
|
|
}
|
|
|
|
}
|
|
}
|
|
else if (e1 < 0)
|
|
{
|
|
e1 = -e1;
|
|
if ((i = e1 & 15))
|
|
rv.d /= tens[i];
|
|
if (e1 &= ~15)
|
|
{
|
|
e1 >>= 4;
|
|
if (e1 >= 1 << n_bigtens)
|
|
goto undfl;
|
|
for (j = 0; e1 > 1; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
rv.d *= tinytens[j];
|
|
/* The last multiplication could underflow. */
|
|
rv0.d = rv.d;
|
|
rv.d *= tinytens[j];
|
|
if (!rv.d)
|
|
{
|
|
rv.d = 2. * rv0.d;
|
|
rv.d *= tinytens[j];
|
|
if (!rv.d)
|
|
{
|
|
undfl:
|
|
rv.d = 0.;
|
|
ptr->_errno = ERANGE;
|
|
if (bd0)
|
|
goto retfree;
|
|
goto ret;
|
|
}
|
|
#ifndef _DOUBLE_IS_32BITS
|
|
word0 (rv) = Tiny0;
|
|
word1 (rv) = Tiny1;
|
|
#else
|
|
word0 (rv) = Tiny1;
|
|
#endif
|
|
/* The refinement below will clean
|
|
* this approximation up.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now the hard part -- adjusting rv to the correct value.*/
|
|
|
|
/* Put digits into bd: true value = bd * 10^e */
|
|
|
|
bd0 = s2b (ptr, s0, nd0, nd, y);
|
|
|
|
for (;;)
|
|
{
|
|
bd = Balloc (ptr, bd0->_k);
|
|
Bcopy (bd, bd0);
|
|
bb = d2b (ptr, rv.d, &bbe, &bbbits); /* rv.d = bb * 2^bbe */
|
|
bs = i2b (ptr, 1);
|
|
|
|
if (e >= 0)
|
|
{
|
|
bb2 = bb5 = 0;
|
|
bd2 = bd5 = e;
|
|
}
|
|
else
|
|
{
|
|
bb2 = bb5 = -e;
|
|
bd2 = bd5 = 0;
|
|
}
|
|
if (bbe >= 0)
|
|
bb2 += bbe;
|
|
else
|
|
bd2 -= bbe;
|
|
bs2 = bb2;
|
|
#ifdef Sudden_Underflow
|
|
#ifdef IBM
|
|
j = 1 + 4 * P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
|
|
#else
|
|
j = P + 1 - bbbits;
|
|
#endif
|
|
#else
|
|
i = bbe + bbbits - 1; /* logb(rv.d) */
|
|
if (i < Emin) /* denormal */
|
|
j = bbe + (P - Emin);
|
|
else
|
|
j = P + 1 - bbbits;
|
|
#endif
|
|
bb2 += j;
|
|
bd2 += j;
|
|
i = bb2 < bd2 ? bb2 : bd2;
|
|
if (i > bs2)
|
|
i = bs2;
|
|
if (i > 0)
|
|
{
|
|
bb2 -= i;
|
|
bd2 -= i;
|
|
bs2 -= i;
|
|
}
|
|
if (bb5 > 0)
|
|
{
|
|
bs = pow5mult (ptr, bs, bb5);
|
|
bb1 = mult (ptr, bs, bb);
|
|
Bfree (ptr, bb);
|
|
bb = bb1;
|
|
}
|
|
if (bb2 > 0)
|
|
bb = lshift (ptr, bb, bb2);
|
|
if (bd5 > 0)
|
|
bd = pow5mult (ptr, bd, bd5);
|
|
if (bd2 > 0)
|
|
bd = lshift (ptr, bd, bd2);
|
|
if (bs2 > 0)
|
|
bs = lshift (ptr, bs, bs2);
|
|
delta = diff (ptr, bb, bd);
|
|
dsign = delta->_sign;
|
|
delta->_sign = 0;
|
|
i = cmp (delta, bs);
|
|
if (i < 0)
|
|
{
|
|
/* Error is less than half an ulp -- check for
|
|
* special case of mantissa a power of two.
|
|
*/
|
|
if (dsign || word1 (rv) || word0 (rv) & Bndry_mask)
|
|
break;
|
|
delta = lshift (ptr, delta, Log2P);
|
|
if (cmp (delta, bs) > 0)
|
|
goto drop_down;
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
{
|
|
/* exactly half-way between */
|
|
if (dsign)
|
|
{
|
|
if ((word0 (rv) & Bndry_mask1) == Bndry_mask1
|
|
&& word1 (rv) == 0xffffffff)
|
|
{
|
|
/*boundary case -- increment exponent*/
|
|
word0 (rv) = (word0 (rv) & Exp_mask)
|
|
+ Exp_msk1
|
|
#ifdef IBM
|
|
| Exp_msk1 >> 4
|
|
#endif
|
|
;
|
|
#ifndef _DOUBLE_IS_32BITS
|
|
word1 (rv) = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
else if (!(word0 (rv) & Bndry_mask) && !word1 (rv))
|
|
{
|
|
drop_down:
|
|
/* boundary case -- decrement exponent */
|
|
#ifdef Sudden_Underflow
|
|
L = word0 (rv) & Exp_mask;
|
|
#ifdef IBM
|
|
if (L < Exp_msk1)
|
|
#else
|
|
if (L <= Exp_msk1)
|
|
#endif
|
|
goto undfl;
|
|
L -= Exp_msk1;
|
|
#else
|
|
L = (word0 (rv) & Exp_mask) - Exp_msk1;
|
|
#endif
|
|
word0 (rv) = L | Bndry_mask1;
|
|
#ifndef _DOUBLE_IS_32BITS
|
|
word1 (rv) = 0xffffffff;
|
|
#endif
|
|
#ifdef IBM
|
|
goto cont;
|
|
#else
|
|
break;
|
|
#endif
|
|
}
|
|
#ifndef ROUND_BIASED
|
|
if (!(word1 (rv) & LSB))
|
|
break;
|
|
#endif
|
|
if (dsign)
|
|
rv.d += ulp (rv.d);
|
|
#ifndef ROUND_BIASED
|
|
else
|
|
{
|
|
rv.d -= ulp (rv.d);
|
|
#ifndef Sudden_Underflow
|
|
if (!rv.d)
|
|
goto undfl;
|
|
#endif
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
if ((aadj = ratio (delta, bs)) <= 2.)
|
|
{
|
|
if (dsign)
|
|
aadj = aadj1 = 1.;
|
|
else if (word1 (rv) || word0 (rv) & Bndry_mask)
|
|
{
|
|
#ifndef Sudden_Underflow
|
|
if (word1 (rv) == Tiny1 && !word0 (rv))
|
|
goto undfl;
|
|
#endif
|
|
aadj = 1.;
|
|
aadj1 = -1.;
|
|
}
|
|
else
|
|
{
|
|
/* special case -- power of FLT_RADIX to be */
|
|
/* rounded down... */
|
|
|
|
if (aadj < 2. / FLT_RADIX)
|
|
aadj = 1. / FLT_RADIX;
|
|
else
|
|
aadj *= 0.5;
|
|
aadj1 = -aadj;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
aadj *= 0.5;
|
|
aadj1 = dsign ? aadj : -aadj;
|
|
#ifdef Check_FLT_ROUNDS
|
|
switch (FLT_ROUNDS)
|
|
{
|
|
case 2: /* towards +infinity */
|
|
aadj1 -= 0.5;
|
|
break;
|
|
case 0: /* towards 0 */
|
|
case 3: /* towards -infinity */
|
|
aadj1 += 0.5;
|
|
}
|
|
#else
|
|
if (FLT_ROUNDS == 0)
|
|
aadj1 += 0.5;
|
|
#endif
|
|
}
|
|
y = word0 (rv) & Exp_mask;
|
|
|
|
/* Check for overflow */
|
|
|
|
if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
|
|
{
|
|
rv0.d = rv.d;
|
|
word0 (rv) -= P * Exp_msk1;
|
|
adj = aadj1 * ulp (rv.d);
|
|
rv.d += adj;
|
|
if ((word0 (rv) & Exp_mask) >=
|
|
Exp_msk1 * (DBL_MAX_EXP + Bias - P))
|
|
{
|
|
if (word0 (rv0) == Big0 && word1 (rv0) == Big1)
|
|
goto ovfl;
|
|
#ifdef _DOUBLE_IS_32BITS
|
|
word0 (rv) = Big1;
|
|
#else
|
|
word0 (rv) = Big0;
|
|
word1 (rv) = Big1;
|
|
#endif
|
|
goto cont;
|
|
}
|
|
else
|
|
word0 (rv) += P * Exp_msk1;
|
|
}
|
|
else
|
|
{
|
|
#ifdef Sudden_Underflow
|
|
if ((word0 (rv) & Exp_mask) <= P * Exp_msk1)
|
|
{
|
|
rv0.d = rv.d;
|
|
word0 (rv) += P * Exp_msk1;
|
|
adj = aadj1 * ulp (rv.d);
|
|
rv.d += adj;
|
|
#ifdef IBM
|
|
if ((word0 (rv) & Exp_mask) < P * Exp_msk1)
|
|
#else
|
|
if ((word0 (rv) & Exp_mask) <= P * Exp_msk1)
|
|
#endif
|
|
{
|
|
if (word0 (rv0) == Tiny0
|
|
&& word1 (rv0) == Tiny1)
|
|
goto undfl;
|
|
word0 (rv) = Tiny0;
|
|
word1 (rv) = Tiny1;
|
|
goto cont;
|
|
}
|
|
else
|
|
word0 (rv) -= P * Exp_msk1;
|
|
}
|
|
else
|
|
{
|
|
adj = aadj1 * ulp (rv.d);
|
|
rv.d += adj;
|
|
}
|
|
#else
|
|
/* Compute adj so that the IEEE rounding rules will
|
|
* correctly round rv.d + adj in some half-way cases.
|
|
* If rv.d * ulp(rv.d) is denormalized (i.e.,
|
|
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
|
|
* trouble from bits lost to denormalization;
|
|
* example: 1.2e-307 .
|
|
*/
|
|
if (y <= (P - 1) * Exp_msk1 && aadj >= 1.)
|
|
{
|
|
aadj1 = (double) (int) (aadj + 0.5);
|
|
if (!dsign)
|
|
aadj1 = -aadj1;
|
|
}
|
|
adj = aadj1 * ulp (rv.d);
|
|
rv.d += adj;
|
|
#endif
|
|
}
|
|
z = word0 (rv) & Exp_mask;
|
|
if (y == z)
|
|
{
|
|
/* Can we stop now? */
|
|
L = aadj;
|
|
aadj -= L;
|
|
/* The tolerances below are conservative. */
|
|
if (dsign || word1 (rv) || word0 (rv) & Bndry_mask)
|
|
{
|
|
if (aadj < .4999999 || aadj > .5000001)
|
|
break;
|
|
}
|
|
else if (aadj < .4999999 / FLT_RADIX)
|
|
break;
|
|
}
|
|
cont:
|
|
Bfree (ptr, bb);
|
|
Bfree (ptr, bd);
|
|
Bfree (ptr, bs);
|
|
Bfree (ptr, delta);
|
|
}
|
|
retfree:
|
|
Bfree (ptr, bb);
|
|
Bfree (ptr, bd);
|
|
Bfree (ptr, bs);
|
|
Bfree (ptr, bd0);
|
|
Bfree (ptr, delta);
|
|
ret:
|
|
if (se)
|
|
*se = (char *) s;
|
|
if (digits == 0)
|
|
ptr->_errno = EINVAL;
|
|
return sign ? -rv.d : rv.d;
|
|
}
|
|
|