mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-27 06:14:01 +08:00
067a5735c5
* intrinsics/c99_functions.c (nextafterf): New implementation that works correctly with denormalized numbers. From-SVN: r85724
317 lines
5.3 KiB
C
317 lines
5.3 KiB
C
/* Implementation of various C99 functions
|
|
Copyright (C) 2004 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with libgfortran; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include <sys/types.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include "libgfortran.h"
|
|
|
|
|
|
#ifndef HAVE_ACOSF
|
|
float
|
|
acosf(float x)
|
|
{
|
|
return (float) acos(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_ASINF
|
|
float
|
|
asinf(float x)
|
|
{
|
|
return (float) asin(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_ATAN2F
|
|
float
|
|
atan2f(float y, float x)
|
|
{
|
|
return (float) atan2(y, x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_ATANF
|
|
float
|
|
atanf(float x)
|
|
{
|
|
return (float) atan(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_CEILF
|
|
float
|
|
ceilf(float x)
|
|
{
|
|
return (float) ceil(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_COPYSIGNF
|
|
float
|
|
copysignf(float x, float y)
|
|
{
|
|
return (float) copysign(x, y);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_COSF
|
|
float
|
|
cosf(float x)
|
|
{
|
|
return (float) cos(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_COSHF
|
|
float
|
|
coshf(float x)
|
|
{
|
|
return (float) cosh(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_EXPF
|
|
float
|
|
expf(float x)
|
|
{
|
|
return (float) exp(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_FLOORF
|
|
float
|
|
floorf(float x)
|
|
{
|
|
return (float) floor(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_FREXPF
|
|
float
|
|
frexpf(float x, int *exp)
|
|
{
|
|
return (float) frexp(x, exp);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_HYPOTF
|
|
float
|
|
hypotf(float x, float y)
|
|
{
|
|
return (float) hypot(x, y);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_LOGF
|
|
float
|
|
logf(float x)
|
|
{
|
|
return (float) log(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_LOG10F
|
|
float
|
|
log10f(float x)
|
|
{
|
|
return (float) log10(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_SCALBNF
|
|
float
|
|
scalbnf(float x, int y)
|
|
{
|
|
return (float) scalbn(x, y);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_SINF
|
|
float
|
|
sinf(float x)
|
|
{
|
|
return (float) sin(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_SINHF
|
|
float
|
|
sinhf(float x)
|
|
{
|
|
return (float) sinh(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_SQRTF
|
|
float
|
|
sqrtf(float x)
|
|
{
|
|
return (float) sqrt(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_TANF
|
|
float
|
|
tanf(float x)
|
|
{
|
|
return (float) tan(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_TANHF
|
|
float
|
|
tanhf(float x)
|
|
{
|
|
return (float) tanh(x);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_NEXTAFTERF
|
|
/* This is a portable implementation of nextafterf that is intended to be
|
|
independent of the floating point format or its in memory representation.
|
|
This implementation works correctly with denormalized values. */
|
|
float
|
|
nextafterf(float x, float y)
|
|
{
|
|
/* This variable is marked volatile to avoid excess precision problems
|
|
on some platforms, including IA-32. */
|
|
volatile float delta;
|
|
float absx, denorm_min;
|
|
|
|
if (isnan(x) || isnan(y))
|
|
return x + y;
|
|
if (x == y)
|
|
return x;
|
|
|
|
/* absx = fabsf (x); */
|
|
absx = (x < 0.0) ? -x : x;
|
|
|
|
/* __FLT_DENORM_MIN__ is non-zero iff the target supports denormals. */
|
|
if (__FLT_DENORM_MIN__ == 0.0f)
|
|
denorm_min = __FLT_MIN__;
|
|
else
|
|
denorm_min = __FLT_DENORM_MIN__;
|
|
|
|
if (absx < __FLT_MIN__)
|
|
delta = denorm_min;
|
|
else
|
|
{
|
|
float frac;
|
|
int exp;
|
|
|
|
/* Discard the fraction from x. */
|
|
frac = frexpf (absx, &exp);
|
|
delta = scalbnf (0.5f, exp);
|
|
|
|
/* Scale x by the epsilon of the representation. By rights we should
|
|
have been able to combine this with scalbnf, but some targets don't
|
|
get that correct with denormals. */
|
|
delta *= __FLT_EPSILON__;
|
|
|
|
/* If we're going to be reducing the absolute value of X, and doing so
|
|
would reduce the exponent of X, then the delta to be applied is
|
|
one exponent smaller. */
|
|
if (frac == 0.5f && (y < x) == (x > 0))
|
|
delta *= 0.5f;
|
|
|
|
/* If that underflows to zero, then we're back to the minimum. */
|
|
if (delta == 0.0f)
|
|
delta = denorm_min;
|
|
}
|
|
|
|
if (y < x)
|
|
delta = -delta;
|
|
|
|
return x + delta;
|
|
}
|
|
#endif
|
|
|
|
/* Note that if HAVE_FPCLASSIFY is not defined, then NaN is not handled */
|
|
|
|
/* Algorithm by Steven G. Kargl. */
|
|
|
|
#ifndef HAVE_ROUND
|
|
/* Round to nearest integral value. If the argument is halfway between two
|
|
integral values then round away from zero. */
|
|
|
|
double
|
|
round(double x)
|
|
{
|
|
double t;
|
|
#ifdef HAVE_FPCLASSIFY
|
|
int i;
|
|
i = fpclassify(x);
|
|
if (i == FP_INFINITE || i == FP_NAN)
|
|
return (x);
|
|
#endif
|
|
|
|
if (x >= 0.0)
|
|
{
|
|
t = ceil(x);
|
|
if (t - x > 0.5)
|
|
t -= 1.0;
|
|
return (t);
|
|
}
|
|
else
|
|
{
|
|
t = ceil(-x);
|
|
if (t + x > 0.5)
|
|
t -= 1.0;
|
|
return (-t);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_ROUNDF
|
|
/* Round to nearest integral value. If the argument is halfway between two
|
|
integral values then round away from zero. */
|
|
|
|
float
|
|
roundf(float x)
|
|
{
|
|
float t;
|
|
#ifdef HAVE_FPCLASSIFY
|
|
int i;
|
|
|
|
i = fpclassify(x);
|
|
if (i == FP_INFINITE || i == FP_NAN)
|
|
return (x);
|
|
#endif
|
|
|
|
if (x >= 0.0)
|
|
{
|
|
t = ceilf(x);
|
|
if (t - x > 0.5)
|
|
t -= 1.0;
|
|
return (t);
|
|
}
|
|
else
|
|
{
|
|
t = ceilf(-x);
|
|
if (t + x > 0.5)
|
|
t -= 1.0;
|
|
return (-t);
|
|
}
|
|
}
|
|
#endif
|
|
|