mirror of
git://gcc.gnu.org/git/gcc.git
synced 2024-12-24 04:49:05 +08:00
0d906a5f36
* c-typeck.c (initializer_constant_valid_p): Allow conversion of 0 of any size to a pointer. From-SVN: r21697
7040 lines
212 KiB
C
7040 lines
212 KiB
C
/* Build expressions with type checking for C compiler.
|
||
Copyright (C) 1987, 88, 91-97, 1998 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* This file is part of the C front end.
|
||
It contains routines to build C expressions given their operands,
|
||
including computing the types of the result, C-specific error checks,
|
||
and some optimization.
|
||
|
||
There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
|
||
and to process initializations in declarations (since they work
|
||
like a strange sort of assignment). */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "c-tree.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "rtl.h"
|
||
#include "expr.h"
|
||
#include "toplev.h"
|
||
|
||
/* Nonzero if we've already printed a "missing braces around initializer"
|
||
message within this initializer. */
|
||
static int missing_braces_mentioned;
|
||
|
||
static tree qualify_type PROTO((tree, tree));
|
||
static int comp_target_types PROTO((tree, tree));
|
||
static int function_types_compatible_p PROTO((tree, tree));
|
||
static int type_lists_compatible_p PROTO((tree, tree));
|
||
static int self_promoting_type_p PROTO((tree));
|
||
static tree decl_constant_value PROTO((tree));
|
||
static tree lookup_field PROTO((tree, tree, tree *));
|
||
static tree convert_arguments PROTO((tree, tree, tree, tree));
|
||
static tree pointer_int_sum PROTO((enum tree_code, tree, tree));
|
||
static tree pointer_diff PROTO((tree, tree));
|
||
static tree unary_complex_lvalue PROTO((enum tree_code, tree));
|
||
static void pedantic_lvalue_warning PROTO((enum tree_code));
|
||
static tree internal_build_compound_expr PROTO((tree, int));
|
||
static tree convert_for_assignment PROTO((tree, tree, char *, tree,
|
||
tree, int));
|
||
static void warn_for_assignment PROTO((char *, char *, tree, int));
|
||
static tree valid_compound_expr_initializer PROTO((tree, tree));
|
||
static void push_string PROTO((char *));
|
||
static void push_member_name PROTO((tree));
|
||
static void push_array_bounds PROTO((int));
|
||
static int spelling_length PROTO((void));
|
||
static char *print_spelling PROTO((char *));
|
||
static char *get_spelling PROTO((char *));
|
||
static void warning_init PROTO((char *, char *,
|
||
char *));
|
||
static tree digest_init PROTO((tree, tree, int, int));
|
||
static void check_init_type_bitfields PROTO((tree));
|
||
static void output_init_element PROTO((tree, tree, tree, int));
|
||
static void output_pending_init_elements PROTO((int));
|
||
static void add_pending_init PROTO((tree, tree));
|
||
static int pending_init_member PROTO((tree));
|
||
|
||
/* Do `exp = require_complete_type (exp);' to make sure exp
|
||
does not have an incomplete type. (That includes void types.) */
|
||
|
||
tree
|
||
require_complete_type (value)
|
||
tree value;
|
||
{
|
||
tree type = TREE_TYPE (value);
|
||
|
||
/* First, detect a valid value with a complete type. */
|
||
if (TYPE_SIZE (type) != 0
|
||
&& type != void_type_node)
|
||
return value;
|
||
|
||
incomplete_type_error (value, type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Print an error message for invalid use of an incomplete type.
|
||
VALUE is the expression that was used (or 0 if that isn't known)
|
||
and TYPE is the type that was invalid. */
|
||
|
||
void
|
||
incomplete_type_error (value, type)
|
||
tree value;
|
||
tree type;
|
||
{
|
||
char *errmsg;
|
||
|
||
/* Avoid duplicate error message. */
|
||
if (TREE_CODE (type) == ERROR_MARK)
|
||
return;
|
||
|
||
if (value != 0 && (TREE_CODE (value) == VAR_DECL
|
||
|| TREE_CODE (value) == PARM_DECL))
|
||
error ("`%s' has an incomplete type",
|
||
IDENTIFIER_POINTER (DECL_NAME (value)));
|
||
else
|
||
{
|
||
retry:
|
||
/* We must print an error message. Be clever about what it says. */
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case RECORD_TYPE:
|
||
errmsg = "invalid use of undefined type `struct %s'";
|
||
break;
|
||
|
||
case UNION_TYPE:
|
||
errmsg = "invalid use of undefined type `union %s'";
|
||
break;
|
||
|
||
case ENUMERAL_TYPE:
|
||
errmsg = "invalid use of undefined type `enum %s'";
|
||
break;
|
||
|
||
case VOID_TYPE:
|
||
error ("invalid use of void expression");
|
||
return;
|
||
|
||
case ARRAY_TYPE:
|
||
if (TYPE_DOMAIN (type))
|
||
{
|
||
type = TREE_TYPE (type);
|
||
goto retry;
|
||
}
|
||
error ("invalid use of array with unspecified bounds");
|
||
return;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
|
||
error (errmsg, IDENTIFIER_POINTER (TYPE_NAME (type)));
|
||
else
|
||
/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
|
||
error ("invalid use of incomplete typedef `%s'",
|
||
IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
|
||
}
|
||
}
|
||
|
||
/* Return a variant of TYPE which has all the type qualifiers of LIKE
|
||
as well as those of TYPE. */
|
||
|
||
static tree
|
||
qualify_type (type, like)
|
||
tree type, like;
|
||
{
|
||
int constflag = TYPE_READONLY (type) || TYPE_READONLY (like);
|
||
int volflag = TYPE_VOLATILE (type) || TYPE_VOLATILE (like);
|
||
return c_build_type_variant (type, constflag, volflag);
|
||
}
|
||
|
||
/* Return the common type of two types.
|
||
We assume that comptypes has already been done and returned 1;
|
||
if that isn't so, this may crash. In particular, we assume that qualifiers
|
||
match.
|
||
|
||
This is the type for the result of most arithmetic operations
|
||
if the operands have the given two types. */
|
||
|
||
tree
|
||
common_type (t1, t2)
|
||
tree t1, t2;
|
||
{
|
||
register enum tree_code code1;
|
||
register enum tree_code code2;
|
||
tree attributes;
|
||
|
||
/* Save time if the two types are the same. */
|
||
|
||
if (t1 == t2) return t1;
|
||
|
||
/* If one type is nonsense, use the other. */
|
||
if (t1 == error_mark_node)
|
||
return t2;
|
||
if (t2 == error_mark_node)
|
||
return t1;
|
||
|
||
/* Merge the attributes. */
|
||
attributes = merge_machine_type_attributes (t1, t2);
|
||
|
||
/* Treat an enum type as the unsigned integer type of the same width. */
|
||
|
||
if (TREE_CODE (t1) == ENUMERAL_TYPE)
|
||
t1 = type_for_size (TYPE_PRECISION (t1), 1);
|
||
if (TREE_CODE (t2) == ENUMERAL_TYPE)
|
||
t2 = type_for_size (TYPE_PRECISION (t2), 1);
|
||
|
||
code1 = TREE_CODE (t1);
|
||
code2 = TREE_CODE (t2);
|
||
|
||
/* If one type is complex, form the common type of the non-complex
|
||
components, then make that complex. Use T1 or T2 if it is the
|
||
required type. */
|
||
if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
|
||
{
|
||
tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
|
||
tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
|
||
tree subtype = common_type (subtype1, subtype2);
|
||
|
||
if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
|
||
return build_type_attribute_variant (t1, attributes);
|
||
else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
|
||
return build_type_attribute_variant (t2, attributes);
|
||
else
|
||
return build_type_attribute_variant (build_complex_type (subtype),
|
||
attributes);
|
||
}
|
||
|
||
switch (code1)
|
||
{
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
/* If only one is real, use it as the result. */
|
||
|
||
if (code1 == REAL_TYPE && code2 != REAL_TYPE)
|
||
return build_type_attribute_variant (t1, attributes);
|
||
|
||
if (code2 == REAL_TYPE && code1 != REAL_TYPE)
|
||
return build_type_attribute_variant (t2, attributes);
|
||
|
||
/* Both real or both integers; use the one with greater precision. */
|
||
|
||
if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
|
||
return build_type_attribute_variant (t1, attributes);
|
||
else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
|
||
return build_type_attribute_variant (t2, attributes);
|
||
|
||
/* Same precision. Prefer longs to ints even when same size. */
|
||
|
||
if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
|
||
return build_type_attribute_variant (long_unsigned_type_node,
|
||
attributes);
|
||
|
||
if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
|
||
{
|
||
/* But preserve unsignedness from the other type,
|
||
since long cannot hold all the values of an unsigned int. */
|
||
if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
|
||
t1 = long_unsigned_type_node;
|
||
else
|
||
t1 = long_integer_type_node;
|
||
return build_type_attribute_variant (t1, attributes);
|
||
}
|
||
|
||
/* Likewise, prefer long double to double even if same size. */
|
||
if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == long_double_type_node)
|
||
return build_type_attribute_variant (long_double_type_node,
|
||
attributes);
|
||
|
||
/* Otherwise prefer the unsigned one. */
|
||
|
||
if (TREE_UNSIGNED (t1))
|
||
return build_type_attribute_variant (t1, attributes);
|
||
else
|
||
return build_type_attribute_variant (t2, attributes);
|
||
|
||
case POINTER_TYPE:
|
||
/* For two pointers, do this recursively on the target type,
|
||
and combine the qualifiers of the two types' targets. */
|
||
/* This code was turned off; I don't know why.
|
||
But ANSI C specifies doing this with the qualifiers.
|
||
So I turned it on again. */
|
||
{
|
||
tree target = common_type (TYPE_MAIN_VARIANT (TREE_TYPE (t1)),
|
||
TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
|
||
int constp
|
||
= TYPE_READONLY (TREE_TYPE (t1)) || TYPE_READONLY (TREE_TYPE (t2));
|
||
int volatilep
|
||
= TYPE_VOLATILE (TREE_TYPE (t1)) || TYPE_VOLATILE (TREE_TYPE (t2));
|
||
t1 = build_pointer_type (c_build_type_variant (target, constp,
|
||
volatilep));
|
||
return build_type_attribute_variant (t1, attributes);
|
||
}
|
||
#if 0
|
||
t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
|
||
return build_type_attribute_variant (t1, attributes);
|
||
#endif
|
||
|
||
case ARRAY_TYPE:
|
||
{
|
||
tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
|
||
/* Save space: see if the result is identical to one of the args. */
|
||
if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
|
||
return build_type_attribute_variant (t1, attributes);
|
||
if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
|
||
return build_type_attribute_variant (t2, attributes);
|
||
/* Merge the element types, and have a size if either arg has one. */
|
||
t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
|
||
return build_type_attribute_variant (t1, attributes);
|
||
}
|
||
|
||
case FUNCTION_TYPE:
|
||
/* Function types: prefer the one that specified arg types.
|
||
If both do, merge the arg types. Also merge the return types. */
|
||
{
|
||
tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
|
||
tree p1 = TYPE_ARG_TYPES (t1);
|
||
tree p2 = TYPE_ARG_TYPES (t2);
|
||
int len;
|
||
tree newargs, n;
|
||
int i;
|
||
|
||
/* Save space: see if the result is identical to one of the args. */
|
||
if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
|
||
return build_type_attribute_variant (t1, attributes);
|
||
if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
|
||
return build_type_attribute_variant (t2, attributes);
|
||
|
||
/* Simple way if one arg fails to specify argument types. */
|
||
if (TYPE_ARG_TYPES (t1) == 0)
|
||
{
|
||
t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
|
||
return build_type_attribute_variant (t1, attributes);
|
||
}
|
||
if (TYPE_ARG_TYPES (t2) == 0)
|
||
{
|
||
t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
|
||
return build_type_attribute_variant (t1, attributes);
|
||
}
|
||
|
||
/* If both args specify argument types, we must merge the two
|
||
lists, argument by argument. */
|
||
|
||
len = list_length (p1);
|
||
newargs = 0;
|
||
|
||
for (i = 0; i < len; i++)
|
||
newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
|
||
|
||
n = newargs;
|
||
|
||
for (; p1;
|
||
p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
|
||
{
|
||
/* A null type means arg type is not specified.
|
||
Take whatever the other function type has. */
|
||
if (TREE_VALUE (p1) == 0)
|
||
{
|
||
TREE_VALUE (n) = TREE_VALUE (p2);
|
||
goto parm_done;
|
||
}
|
||
if (TREE_VALUE (p2) == 0)
|
||
{
|
||
TREE_VALUE (n) = TREE_VALUE (p1);
|
||
goto parm_done;
|
||
}
|
||
|
||
/* Given wait (union {union wait *u; int *i} *)
|
||
and wait (union wait *),
|
||
prefer union wait * as type of parm. */
|
||
if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
|
||
&& TREE_VALUE (p1) != TREE_VALUE (p2))
|
||
{
|
||
tree memb;
|
||
for (memb = TYPE_FIELDS (TREE_VALUE (p1));
|
||
memb; memb = TREE_CHAIN (memb))
|
||
if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
|
||
{
|
||
TREE_VALUE (n) = TREE_VALUE (p2);
|
||
if (pedantic)
|
||
pedwarn ("function types not truly compatible in ANSI C");
|
||
goto parm_done;
|
||
}
|
||
}
|
||
if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
|
||
&& TREE_VALUE (p2) != TREE_VALUE (p1))
|
||
{
|
||
tree memb;
|
||
for (memb = TYPE_FIELDS (TREE_VALUE (p2));
|
||
memb; memb = TREE_CHAIN (memb))
|
||
if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
|
||
{
|
||
TREE_VALUE (n) = TREE_VALUE (p1);
|
||
if (pedantic)
|
||
pedwarn ("function types not truly compatible in ANSI C");
|
||
goto parm_done;
|
||
}
|
||
}
|
||
TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
|
||
parm_done: ;
|
||
}
|
||
|
||
t1 = build_function_type (valtype, newargs);
|
||
/* ... falls through ... */
|
||
}
|
||
|
||
default:
|
||
return build_type_attribute_variant (t1, attributes);
|
||
}
|
||
|
||
}
|
||
|
||
/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
|
||
or various other operations. Return 2 if they are compatible
|
||
but a warning may be needed if you use them together. */
|
||
|
||
int
|
||
comptypes (type1, type2)
|
||
tree type1, type2;
|
||
{
|
||
register tree t1 = type1;
|
||
register tree t2 = type2;
|
||
int attrval, val;
|
||
|
||
/* Suppress errors caused by previously reported errors. */
|
||
|
||
if (t1 == t2 || !t1 || !t2
|
||
|| TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
|
||
return 1;
|
||
|
||
/* Treat an enum type as the integer type of the same width and
|
||
signedness. */
|
||
|
||
if (TREE_CODE (t1) == ENUMERAL_TYPE)
|
||
t1 = type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
|
||
if (TREE_CODE (t2) == ENUMERAL_TYPE)
|
||
t2 = type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
|
||
|
||
if (t1 == t2)
|
||
return 1;
|
||
|
||
/* Different classes of types can't be compatible. */
|
||
|
||
if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
|
||
|
||
/* Qualifiers must match. */
|
||
|
||
if (TYPE_READONLY (t1) != TYPE_READONLY (t2))
|
||
return 0;
|
||
if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
|
||
return 0;
|
||
|
||
/* Allow for two different type nodes which have essentially the same
|
||
definition. Note that we already checked for equality of the type
|
||
qualifiers (just above). */
|
||
|
||
if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
|
||
return 1;
|
||
|
||
#ifndef COMP_TYPE_ATTRIBUTES
|
||
#define COMP_TYPE_ATTRIBUTES(t1,t2) 1
|
||
#endif
|
||
|
||
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
|
||
if (! (attrval = COMP_TYPE_ATTRIBUTES (t1, t2)))
|
||
return 0;
|
||
|
||
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
|
||
val = 0;
|
||
|
||
switch (TREE_CODE (t1))
|
||
{
|
||
case POINTER_TYPE:
|
||
val = (TREE_TYPE (t1) == TREE_TYPE (t2)
|
||
? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
val = function_types_compatible_p (t1, t2);
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
{
|
||
tree d1 = TYPE_DOMAIN (t1);
|
||
tree d2 = TYPE_DOMAIN (t2);
|
||
val = 1;
|
||
|
||
/* Target types must match incl. qualifiers. */
|
||
if (TREE_TYPE (t1) != TREE_TYPE (t2)
|
||
&& 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
|
||
return 0;
|
||
|
||
/* Sizes must match unless one is missing or variable. */
|
||
if (d1 == 0 || d2 == 0 || d1 == d2
|
||
|| TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
|
||
|| TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
|
||
|| TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST
|
||
|| TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)
|
||
break;
|
||
|
||
if (! ((TREE_INT_CST_LOW (TYPE_MIN_VALUE (d1))
|
||
== TREE_INT_CST_LOW (TYPE_MIN_VALUE (d2)))
|
||
&& (TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d1))
|
||
== TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d2)))
|
||
&& (TREE_INT_CST_LOW (TYPE_MAX_VALUE (d1))
|
||
== TREE_INT_CST_LOW (TYPE_MAX_VALUE (d2)))
|
||
&& (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d1))
|
||
== TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d2)))))
|
||
val = 0;
|
||
break;
|
||
}
|
||
|
||
case RECORD_TYPE:
|
||
if (maybe_objc_comptypes (t1, t2, 0) == 1)
|
||
val = 1;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return attrval == 2 && val == 1 ? 2 : val;
|
||
}
|
||
|
||
/* Return 1 if TTL and TTR are pointers to types that are equivalent,
|
||
ignoring their qualifiers. */
|
||
|
||
static int
|
||
comp_target_types (ttl, ttr)
|
||
tree ttl, ttr;
|
||
{
|
||
int val;
|
||
|
||
/* Give maybe_objc_comptypes a crack at letting these types through. */
|
||
if ((val = maybe_objc_comptypes (ttl, ttr, 1)) >= 0)
|
||
return val;
|
||
|
||
val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
|
||
TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
|
||
|
||
if (val == 2 && pedantic)
|
||
pedwarn ("types are not quite compatible");
|
||
return val;
|
||
}
|
||
|
||
/* Subroutines of `comptypes'. */
|
||
|
||
/* Return 1 if two function types F1 and F2 are compatible.
|
||
If either type specifies no argument types,
|
||
the other must specify a fixed number of self-promoting arg types.
|
||
Otherwise, if one type specifies only the number of arguments,
|
||
the other must specify that number of self-promoting arg types.
|
||
Otherwise, the argument types must match. */
|
||
|
||
static int
|
||
function_types_compatible_p (f1, f2)
|
||
tree f1, f2;
|
||
{
|
||
tree args1, args2;
|
||
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
|
||
int val = 1;
|
||
int val1;
|
||
|
||
if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
|
||
|| (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
|
||
return 0;
|
||
|
||
args1 = TYPE_ARG_TYPES (f1);
|
||
args2 = TYPE_ARG_TYPES (f2);
|
||
|
||
/* An unspecified parmlist matches any specified parmlist
|
||
whose argument types don't need default promotions. */
|
||
|
||
if (args1 == 0)
|
||
{
|
||
if (!self_promoting_args_p (args2))
|
||
return 0;
|
||
/* If one of these types comes from a non-prototype fn definition,
|
||
compare that with the other type's arglist.
|
||
If they don't match, ask for a warning (but no error). */
|
||
if (TYPE_ACTUAL_ARG_TYPES (f1)
|
||
&& 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
|
||
val = 2;
|
||
return val;
|
||
}
|
||
if (args2 == 0)
|
||
{
|
||
if (!self_promoting_args_p (args1))
|
||
return 0;
|
||
if (TYPE_ACTUAL_ARG_TYPES (f2)
|
||
&& 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
|
||
val = 2;
|
||
return val;
|
||
}
|
||
|
||
/* Both types have argument lists: compare them and propagate results. */
|
||
val1 = type_lists_compatible_p (args1, args2);
|
||
return val1 != 1 ? val1 : val;
|
||
}
|
||
|
||
/* Check two lists of types for compatibility,
|
||
returning 0 for incompatible, 1 for compatible,
|
||
or 2 for compatible with warning. */
|
||
|
||
static int
|
||
type_lists_compatible_p (args1, args2)
|
||
tree args1, args2;
|
||
{
|
||
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
|
||
int val = 1;
|
||
int newval = 0;
|
||
|
||
while (1)
|
||
{
|
||
if (args1 == 0 && args2 == 0)
|
||
return val;
|
||
/* If one list is shorter than the other,
|
||
they fail to match. */
|
||
if (args1 == 0 || args2 == 0)
|
||
return 0;
|
||
/* A null pointer instead of a type
|
||
means there is supposed to be an argument
|
||
but nothing is specified about what type it has.
|
||
So match anything that self-promotes. */
|
||
if (TREE_VALUE (args1) == 0)
|
||
{
|
||
if (! self_promoting_type_p (TREE_VALUE (args2)))
|
||
return 0;
|
||
}
|
||
else if (TREE_VALUE (args2) == 0)
|
||
{
|
||
if (! self_promoting_type_p (TREE_VALUE (args1)))
|
||
return 0;
|
||
}
|
||
else if (! (newval = comptypes (TREE_VALUE (args1), TREE_VALUE (args2))))
|
||
{
|
||
/* Allow wait (union {union wait *u; int *i} *)
|
||
and wait (union wait *) to be compatible. */
|
||
if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
|
||
&& (TYPE_NAME (TREE_VALUE (args1)) == 0
|
||
|| TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
|
||
&& TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
|
||
&& tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
|
||
TYPE_SIZE (TREE_VALUE (args2))))
|
||
{
|
||
tree memb;
|
||
for (memb = TYPE_FIELDS (TREE_VALUE (args1));
|
||
memb; memb = TREE_CHAIN (memb))
|
||
if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
|
||
break;
|
||
if (memb == 0)
|
||
return 0;
|
||
}
|
||
else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
|
||
&& (TYPE_NAME (TREE_VALUE (args2)) == 0
|
||
|| TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
|
||
&& TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
|
||
&& tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
|
||
TYPE_SIZE (TREE_VALUE (args1))))
|
||
{
|
||
tree memb;
|
||
for (memb = TYPE_FIELDS (TREE_VALUE (args2));
|
||
memb; memb = TREE_CHAIN (memb))
|
||
if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
|
||
break;
|
||
if (memb == 0)
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* comptypes said ok, but record if it said to warn. */
|
||
if (newval > val)
|
||
val = newval;
|
||
|
||
args1 = TREE_CHAIN (args1);
|
||
args2 = TREE_CHAIN (args2);
|
||
}
|
||
}
|
||
|
||
/* Return 1 if PARMS specifies a fixed number of parameters
|
||
and none of their types is affected by default promotions. */
|
||
|
||
int
|
||
self_promoting_args_p (parms)
|
||
tree parms;
|
||
{
|
||
register tree t;
|
||
for (t = parms; t; t = TREE_CHAIN (t))
|
||
{
|
||
register tree type = TREE_VALUE (t);
|
||
|
||
if (TREE_CHAIN (t) == 0 && type != void_type_node)
|
||
return 0;
|
||
|
||
if (type == 0)
|
||
return 0;
|
||
|
||
if (TYPE_MAIN_VARIANT (type) == float_type_node)
|
||
return 0;
|
||
|
||
if (C_PROMOTING_INTEGER_TYPE_P (type))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if TYPE is not affected by default promotions. */
|
||
|
||
static int
|
||
self_promoting_type_p (type)
|
||
tree type;
|
||
{
|
||
if (TYPE_MAIN_VARIANT (type) == float_type_node)
|
||
return 0;
|
||
|
||
if (C_PROMOTING_INTEGER_TYPE_P (type))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return an unsigned type the same as TYPE in other respects. */
|
||
|
||
tree
|
||
unsigned_type (type)
|
||
tree type;
|
||
{
|
||
tree type1 = TYPE_MAIN_VARIANT (type);
|
||
if (type1 == signed_char_type_node || type1 == char_type_node)
|
||
return unsigned_char_type_node;
|
||
if (type1 == integer_type_node)
|
||
return unsigned_type_node;
|
||
if (type1 == short_integer_type_node)
|
||
return short_unsigned_type_node;
|
||
if (type1 == long_integer_type_node)
|
||
return long_unsigned_type_node;
|
||
if (type1 == long_long_integer_type_node)
|
||
return long_long_unsigned_type_node;
|
||
if (type1 == intDI_type_node)
|
||
return unsigned_intDI_type_node;
|
||
if (type1 == intSI_type_node)
|
||
return unsigned_intSI_type_node;
|
||
if (type1 == intHI_type_node)
|
||
return unsigned_intHI_type_node;
|
||
if (type1 == intQI_type_node)
|
||
return unsigned_intQI_type_node;
|
||
|
||
return signed_or_unsigned_type (1, type);
|
||
}
|
||
|
||
/* Return a signed type the same as TYPE in other respects. */
|
||
|
||
tree
|
||
signed_type (type)
|
||
tree type;
|
||
{
|
||
tree type1 = TYPE_MAIN_VARIANT (type);
|
||
if (type1 == unsigned_char_type_node || type1 == char_type_node)
|
||
return signed_char_type_node;
|
||
if (type1 == unsigned_type_node)
|
||
return integer_type_node;
|
||
if (type1 == short_unsigned_type_node)
|
||
return short_integer_type_node;
|
||
if (type1 == long_unsigned_type_node)
|
||
return long_integer_type_node;
|
||
if (type1 == long_long_unsigned_type_node)
|
||
return long_long_integer_type_node;
|
||
if (type1 == unsigned_intDI_type_node)
|
||
return intDI_type_node;
|
||
if (type1 == unsigned_intSI_type_node)
|
||
return intSI_type_node;
|
||
if (type1 == unsigned_intHI_type_node)
|
||
return intHI_type_node;
|
||
if (type1 == unsigned_intQI_type_node)
|
||
return intQI_type_node;
|
||
|
||
return signed_or_unsigned_type (0, type);
|
||
}
|
||
|
||
/* Return a type the same as TYPE except unsigned or
|
||
signed according to UNSIGNEDP. */
|
||
|
||
tree
|
||
signed_or_unsigned_type (unsignedp, type)
|
||
int unsignedp;
|
||
tree type;
|
||
{
|
||
if ((! INTEGRAL_TYPE_P (type) && ! POINTER_TYPE_P (type))
|
||
|| TREE_UNSIGNED (type) == unsignedp)
|
||
return type;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (long_long_integer_type_node))
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
return type;
|
||
}
|
||
|
||
/* Compute the value of the `sizeof' operator. */
|
||
|
||
tree
|
||
c_sizeof (type)
|
||
tree type;
|
||
{
|
||
enum tree_code code = TREE_CODE (type);
|
||
tree t;
|
||
|
||
if (code == FUNCTION_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("sizeof applied to a function type");
|
||
return size_int (1);
|
||
}
|
||
if (code == VOID_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("sizeof applied to a void type");
|
||
return size_int (1);
|
||
}
|
||
if (code == ERROR_MARK)
|
||
return size_int (1);
|
||
if (TYPE_SIZE (type) == 0)
|
||
{
|
||
error ("sizeof applied to an incomplete type");
|
||
return size_int (0);
|
||
}
|
||
|
||
/* Convert in case a char is more than one unit. */
|
||
t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
|
||
size_int (TYPE_PRECISION (char_type_node)));
|
||
t = convert (sizetype, t);
|
||
/* size_binop does not put the constant in range, so do it now. */
|
||
if (TREE_CODE (t) == INTEGER_CST && force_fit_type (t, 0))
|
||
TREE_CONSTANT_OVERFLOW (t) = TREE_OVERFLOW (t) = 1;
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
c_sizeof_nowarn (type)
|
||
tree type;
|
||
{
|
||
enum tree_code code = TREE_CODE (type);
|
||
tree t;
|
||
|
||
if (code == FUNCTION_TYPE
|
||
|| code == VOID_TYPE
|
||
|| code == ERROR_MARK)
|
||
return size_int (1);
|
||
if (TYPE_SIZE (type) == 0)
|
||
return size_int (0);
|
||
|
||
/* Convert in case a char is more than one unit. */
|
||
t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
|
||
size_int (TYPE_PRECISION (char_type_node)));
|
||
t = convert (sizetype, t);
|
||
force_fit_type (t, 0);
|
||
return t;
|
||
}
|
||
|
||
/* Compute the size to increment a pointer by. */
|
||
|
||
tree
|
||
c_size_in_bytes (type)
|
||
tree type;
|
||
{
|
||
enum tree_code code = TREE_CODE (type);
|
||
tree t;
|
||
|
||
if (code == FUNCTION_TYPE)
|
||
return size_int (1);
|
||
if (code == VOID_TYPE)
|
||
return size_int (1);
|
||
if (code == ERROR_MARK)
|
||
return size_int (1);
|
||
if (TYPE_SIZE (type) == 0)
|
||
{
|
||
error ("arithmetic on pointer to an incomplete type");
|
||
return size_int (1);
|
||
}
|
||
|
||
/* Convert in case a char is more than one unit. */
|
||
t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
|
||
size_int (BITS_PER_UNIT));
|
||
t = convert (sizetype, t);
|
||
force_fit_type (t, 0);
|
||
return t;
|
||
}
|
||
|
||
/* Implement the __alignof keyword: Return the minimum required
|
||
alignment of TYPE, measured in bytes. */
|
||
|
||
tree
|
||
c_alignof (type)
|
||
tree type;
|
||
{
|
||
enum tree_code code = TREE_CODE (type);
|
||
|
||
if (code == FUNCTION_TYPE)
|
||
return size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
|
||
|
||
if (code == VOID_TYPE || code == ERROR_MARK)
|
||
return size_int (1);
|
||
|
||
return size_int (TYPE_ALIGN (type) / BITS_PER_UNIT);
|
||
}
|
||
|
||
/* Implement the __alignof keyword: Return the minimum required
|
||
alignment of EXPR, measured in bytes. For VAR_DECL's and
|
||
FIELD_DECL's return DECL_ALIGN (which can be set from an
|
||
"aligned" __attribute__ specification). */
|
||
|
||
tree
|
||
c_alignof_expr (expr)
|
||
tree expr;
|
||
{
|
||
if (TREE_CODE (expr) == VAR_DECL)
|
||
return size_int (DECL_ALIGN (expr) / BITS_PER_UNIT);
|
||
|
||
if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
|
||
{
|
||
error ("`__alignof' applied to a bit-field");
|
||
return size_int (1);
|
||
}
|
||
else if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
|
||
return size_int (DECL_ALIGN (TREE_OPERAND (expr, 1)) / BITS_PER_UNIT);
|
||
|
||
if (TREE_CODE (expr) == INDIRECT_REF)
|
||
{
|
||
tree t = TREE_OPERAND (expr, 0);
|
||
tree best = t;
|
||
int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
|
||
while (TREE_CODE (t) == NOP_EXPR
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
|
||
{
|
||
int thisalign;
|
||
|
||
t = TREE_OPERAND (t, 0);
|
||
thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
if (thisalign > bestalign)
|
||
best = t, bestalign = thisalign;
|
||
}
|
||
return c_alignof (TREE_TYPE (TREE_TYPE (best)));
|
||
}
|
||
else
|
||
return c_alignof (TREE_TYPE (expr));
|
||
}
|
||
|
||
/* Return either DECL or its known constant value (if it has one). */
|
||
|
||
static tree
|
||
decl_constant_value (decl)
|
||
tree decl;
|
||
{
|
||
if (/* Don't change a variable array bound or initial value to a constant
|
||
in a place where a variable is invalid. */
|
||
current_function_decl != 0
|
||
&& ! pedantic
|
||
&& ! TREE_THIS_VOLATILE (decl)
|
||
&& TREE_READONLY (decl) && ! ITERATOR_P (decl)
|
||
&& DECL_INITIAL (decl) != 0
|
||
&& TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
|
||
/* This is invalid if initial value is not constant.
|
||
If it has either a function call, a memory reference,
|
||
or a variable, then re-evaluating it could give different results. */
|
||
&& TREE_CONSTANT (DECL_INITIAL (decl))
|
||
/* Check for cases where this is sub-optimal, even though valid. */
|
||
&& TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR
|
||
&& DECL_MODE (decl) != BLKmode)
|
||
return DECL_INITIAL (decl);
|
||
return decl;
|
||
}
|
||
|
||
/* Perform default promotions for C data used in expressions.
|
||
Arrays and functions are converted to pointers;
|
||
enumeral types or short or char, to int.
|
||
In addition, manifest constants symbols are replaced by their values. */
|
||
|
||
tree
|
||
default_conversion (exp)
|
||
tree exp;
|
||
{
|
||
register tree type = TREE_TYPE (exp);
|
||
register enum tree_code code = TREE_CODE (type);
|
||
|
||
/* Constants can be used directly unless they're not loadable. */
|
||
if (TREE_CODE (exp) == CONST_DECL)
|
||
exp = DECL_INITIAL (exp);
|
||
|
||
/* Replace a nonvolatile const static variable with its value unless
|
||
it is an array, in which case we must be sure that taking the
|
||
address of the array produces consistent results. */
|
||
else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
|
||
{
|
||
exp = decl_constant_value (exp);
|
||
type = TREE_TYPE (exp);
|
||
}
|
||
|
||
/* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
|
||
an lvalue. */
|
||
/* Do not use STRIP_NOPS here! It will remove conversions from pointer
|
||
to integer and cause infinite recursion. */
|
||
while (TREE_CODE (exp) == NON_LVALUE_EXPR
|
||
|| (TREE_CODE (exp) == NOP_EXPR
|
||
&& TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
|
||
exp = TREE_OPERAND (exp, 0);
|
||
|
||
/* Normally convert enums to int,
|
||
but convert wide enums to something wider. */
|
||
if (code == ENUMERAL_TYPE)
|
||
{
|
||
type = type_for_size (MAX (TYPE_PRECISION (type),
|
||
TYPE_PRECISION (integer_type_node)),
|
||
((flag_traditional
|
||
|| (TYPE_PRECISION (type)
|
||
>= TYPE_PRECISION (integer_type_node)))
|
||
&& TREE_UNSIGNED (type)));
|
||
return convert (type, exp);
|
||
}
|
||
|
||
if (TREE_CODE (exp) == COMPONENT_REF
|
||
&& DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1)))
|
||
{
|
||
tree width = DECL_SIZE (TREE_OPERAND (exp, 1));
|
||
HOST_WIDE_INT low = TREE_INT_CST_LOW (width);
|
||
|
||
/* If it's thinner than an int, promote it like a
|
||
C_PROMOTING_INTEGER_TYPE_P, otherwise leave it alone. */
|
||
|
||
if (low < TYPE_PRECISION (integer_type_node))
|
||
{
|
||
if (flag_traditional && TREE_UNSIGNED (type))
|
||
return convert (unsigned_type_node, exp);
|
||
else
|
||
return convert (integer_type_node, exp);
|
||
}
|
||
}
|
||
|
||
if (C_PROMOTING_INTEGER_TYPE_P (type))
|
||
{
|
||
/* Traditionally, unsignedness is preserved in default promotions.
|
||
Also preserve unsignedness if not really getting any wider. */
|
||
if (TREE_UNSIGNED (type)
|
||
&& (flag_traditional
|
||
|| TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
|
||
return convert (unsigned_type_node, exp);
|
||
return convert (integer_type_node, exp);
|
||
}
|
||
if (flag_traditional && !flag_allow_single_precision
|
||
&& TYPE_MAIN_VARIANT (type) == float_type_node)
|
||
return convert (double_type_node, exp);
|
||
if (code == VOID_TYPE)
|
||
{
|
||
error ("void value not ignored as it ought to be");
|
||
return error_mark_node;
|
||
}
|
||
if (code == FUNCTION_TYPE)
|
||
{
|
||
return build_unary_op (ADDR_EXPR, exp, 0);
|
||
}
|
||
if (code == ARRAY_TYPE)
|
||
{
|
||
register tree adr;
|
||
tree restype = TREE_TYPE (type);
|
||
tree ptrtype;
|
||
int constp = 0;
|
||
int volatilep = 0;
|
||
|
||
if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r'
|
||
|| TREE_CODE_CLASS (TREE_CODE (exp)) == 'd')
|
||
{
|
||
constp = TREE_READONLY (exp);
|
||
volatilep = TREE_THIS_VOLATILE (exp);
|
||
}
|
||
|
||
if (TYPE_READONLY (type) || TYPE_VOLATILE (type)
|
||
|| constp || volatilep)
|
||
restype = c_build_type_variant (restype,
|
||
TYPE_READONLY (type) || constp,
|
||
TYPE_VOLATILE (type) || volatilep);
|
||
|
||
if (TREE_CODE (exp) == INDIRECT_REF)
|
||
return convert (TYPE_POINTER_TO (restype),
|
||
TREE_OPERAND (exp, 0));
|
||
|
||
if (TREE_CODE (exp) == COMPOUND_EXPR)
|
||
{
|
||
tree op1 = default_conversion (TREE_OPERAND (exp, 1));
|
||
return build (COMPOUND_EXPR, TREE_TYPE (op1),
|
||
TREE_OPERAND (exp, 0), op1);
|
||
}
|
||
|
||
if (! lvalue_p (exp)
|
||
&& ! (TREE_CODE (exp) == CONSTRUCTOR && TREE_STATIC (exp)))
|
||
{
|
||
error ("invalid use of non-lvalue array");
|
||
return error_mark_node;
|
||
}
|
||
|
||
ptrtype = build_pointer_type (restype);
|
||
|
||
if (TREE_CODE (exp) == VAR_DECL)
|
||
{
|
||
/* ??? This is not really quite correct
|
||
in that the type of the operand of ADDR_EXPR
|
||
is not the target type of the type of the ADDR_EXPR itself.
|
||
Question is, can this lossage be avoided? */
|
||
adr = build1 (ADDR_EXPR, ptrtype, exp);
|
||
if (mark_addressable (exp) == 0)
|
||
return error_mark_node;
|
||
TREE_CONSTANT (adr) = staticp (exp);
|
||
TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
|
||
return adr;
|
||
}
|
||
/* This way is better for a COMPONENT_REF since it can
|
||
simplify the offset for a component. */
|
||
adr = build_unary_op (ADDR_EXPR, exp, 1);
|
||
return convert (ptrtype, adr);
|
||
}
|
||
return exp;
|
||
}
|
||
|
||
/* Look up component name in the structure type definition.
|
||
|
||
If this component name is found indirectly within an anonymous union,
|
||
store in *INDIRECT the component which directly contains
|
||
that anonymous union. Otherwise, set *INDIRECT to 0. */
|
||
|
||
static tree
|
||
lookup_field (type, component, indirect)
|
||
tree type, component;
|
||
tree *indirect;
|
||
{
|
||
tree field;
|
||
|
||
/* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
|
||
to the field elements. Use a binary search on this array to quickly
|
||
find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
|
||
will always be set for structures which have many elements. */
|
||
|
||
if (TYPE_LANG_SPECIFIC (type))
|
||
{
|
||
int bot, top, half;
|
||
tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
|
||
|
||
field = TYPE_FIELDS (type);
|
||
bot = 0;
|
||
top = TYPE_LANG_SPECIFIC (type)->len;
|
||
while (top - bot > 1)
|
||
{
|
||
half = (top - bot + 1) >> 1;
|
||
field = field_array[bot+half];
|
||
|
||
if (DECL_NAME (field) == NULL_TREE)
|
||
{
|
||
/* Step through all anon unions in linear fashion. */
|
||
while (DECL_NAME (field_array[bot]) == NULL_TREE)
|
||
{
|
||
tree anon = 0, junk;
|
||
|
||
field = field_array[bot++];
|
||
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
|
||
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
|
||
anon = lookup_field (TREE_TYPE (field), component, &junk);
|
||
|
||
if (anon != NULL_TREE)
|
||
{
|
||
*indirect = field;
|
||
return anon;
|
||
}
|
||
}
|
||
|
||
/* Entire record is only anon unions. */
|
||
if (bot > top)
|
||
return NULL_TREE;
|
||
|
||
/* Restart the binary search, with new lower bound. */
|
||
continue;
|
||
}
|
||
|
||
if (DECL_NAME (field) == component)
|
||
break;
|
||
if (DECL_NAME (field) < component)
|
||
bot += half;
|
||
else
|
||
top = bot + half;
|
||
}
|
||
|
||
if (DECL_NAME (field_array[bot]) == component)
|
||
field = field_array[bot];
|
||
else if (DECL_NAME (field) != component)
|
||
field = 0;
|
||
}
|
||
else
|
||
{
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (DECL_NAME (field) == NULL_TREE)
|
||
{
|
||
tree junk;
|
||
tree anon = 0;
|
||
|
||
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
|
||
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
|
||
anon = lookup_field (TREE_TYPE (field), component, &junk);
|
||
|
||
if (anon != NULL_TREE)
|
||
{
|
||
*indirect = field;
|
||
return anon;
|
||
}
|
||
}
|
||
|
||
if (DECL_NAME (field) == component)
|
||
break;
|
||
}
|
||
}
|
||
|
||
*indirect = NULL_TREE;
|
||
return field;
|
||
}
|
||
|
||
/* Make an expression to refer to the COMPONENT field of
|
||
structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
|
||
|
||
tree
|
||
build_component_ref (datum, component)
|
||
tree datum, component;
|
||
{
|
||
register tree type = TREE_TYPE (datum);
|
||
register enum tree_code code = TREE_CODE (type);
|
||
register tree field = NULL;
|
||
register tree ref;
|
||
|
||
/* If DATUM is a COMPOUND_EXPR or COND_EXPR, move our reference inside it
|
||
unless we are not to support things not strictly ANSI. */
|
||
switch (TREE_CODE (datum))
|
||
{
|
||
case COMPOUND_EXPR:
|
||
{
|
||
tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
|
||
return build (COMPOUND_EXPR, TREE_TYPE (value),
|
||
TREE_OPERAND (datum, 0), value);
|
||
}
|
||
case COND_EXPR:
|
||
return build_conditional_expr
|
||
(TREE_OPERAND (datum, 0),
|
||
build_component_ref (TREE_OPERAND (datum, 1), component),
|
||
build_component_ref (TREE_OPERAND (datum, 2), component));
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* See if there is a field or component with name COMPONENT. */
|
||
|
||
if (code == RECORD_TYPE || code == UNION_TYPE)
|
||
{
|
||
tree indirect = 0;
|
||
|
||
if (TYPE_SIZE (type) == 0)
|
||
{
|
||
incomplete_type_error (NULL_TREE, type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
field = lookup_field (type, component, &indirect);
|
||
|
||
if (!field)
|
||
{
|
||
error (code == RECORD_TYPE
|
||
? "structure has no member named `%s'"
|
||
: "union has no member named `%s'",
|
||
IDENTIFIER_POINTER (component));
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_TYPE (field) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* If FIELD was found buried within an anonymous union,
|
||
make one COMPONENT_REF to get that anonymous union,
|
||
then fall thru to make a second COMPONENT_REF to get FIELD. */
|
||
if (indirect != 0)
|
||
{
|
||
ref = build (COMPONENT_REF, TREE_TYPE (indirect), datum, indirect);
|
||
if (TREE_READONLY (datum) || TREE_READONLY (indirect))
|
||
TREE_READONLY (ref) = 1;
|
||
if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (indirect))
|
||
TREE_THIS_VOLATILE (ref) = 1;
|
||
datum = ref;
|
||
}
|
||
|
||
ref = build (COMPONENT_REF, TREE_TYPE (field), datum, field);
|
||
|
||
if (TREE_READONLY (datum) || TREE_READONLY (field))
|
||
TREE_READONLY (ref) = 1;
|
||
if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (field))
|
||
TREE_THIS_VOLATILE (ref) = 1;
|
||
|
||
return ref;
|
||
}
|
||
else if (code != ERROR_MARK)
|
||
error ("request for member `%s' in something not a structure or union",
|
||
IDENTIFIER_POINTER (component));
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Given an expression PTR for a pointer, return an expression
|
||
for the value pointed to.
|
||
ERRORSTRING is the name of the operator to appear in error messages. */
|
||
|
||
tree
|
||
build_indirect_ref (ptr, errorstring)
|
||
tree ptr;
|
||
char *errorstring;
|
||
{
|
||
register tree pointer = default_conversion (ptr);
|
||
register tree type = TREE_TYPE (pointer);
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
if (TREE_CODE (pointer) == ADDR_EXPR
|
||
&& !flag_volatile
|
||
&& (TREE_TYPE (TREE_OPERAND (pointer, 0))
|
||
== TREE_TYPE (type)))
|
||
return TREE_OPERAND (pointer, 0);
|
||
else
|
||
{
|
||
tree t = TREE_TYPE (type);
|
||
register tree ref = build1 (INDIRECT_REF,
|
||
TYPE_MAIN_VARIANT (t), pointer);
|
||
|
||
if (TYPE_SIZE (t) == 0 && TREE_CODE (t) != ARRAY_TYPE)
|
||
{
|
||
error ("dereferencing pointer to incomplete type");
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_CODE (t) == VOID_TYPE && skip_evaluation == 0)
|
||
warning ("dereferencing `void *' pointer");
|
||
|
||
/* We *must* set TREE_READONLY when dereferencing a pointer to const,
|
||
so that we get the proper error message if the result is used
|
||
to assign to. Also, &* is supposed to be a no-op.
|
||
And ANSI C seems to specify that the type of the result
|
||
should be the const type. */
|
||
/* A de-reference of a pointer to const is not a const. It is valid
|
||
to change it via some other pointer. */
|
||
TREE_READONLY (ref) = TYPE_READONLY (t);
|
||
TREE_SIDE_EFFECTS (ref)
|
||
= TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer) || flag_volatile;
|
||
TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
|
||
return ref;
|
||
}
|
||
}
|
||
else if (TREE_CODE (pointer) != ERROR_MARK)
|
||
error ("invalid type argument of `%s'", errorstring);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* This handles expressions of the form "a[i]", which denotes
|
||
an array reference.
|
||
|
||
This is logically equivalent in C to *(a+i), but we may do it differently.
|
||
If A is a variable or a member, we generate a primitive ARRAY_REF.
|
||
This avoids forcing the array out of registers, and can work on
|
||
arrays that are not lvalues (for example, members of structures returned
|
||
by functions). */
|
||
|
||
tree
|
||
build_array_ref (array, index)
|
||
tree array, index;
|
||
{
|
||
if (index == 0)
|
||
{
|
||
error ("subscript missing in array reference");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_TYPE (array) == error_mark_node
|
||
|| TREE_TYPE (index) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
|
||
&& TREE_CODE (array) != INDIRECT_REF)
|
||
{
|
||
tree rval, type;
|
||
|
||
/* Subscripting with type char is likely to lose
|
||
on a machine where chars are signed.
|
||
So warn on any machine, but optionally.
|
||
Don't warn for unsigned char since that type is safe.
|
||
Don't warn for signed char because anyone who uses that
|
||
must have done so deliberately. */
|
||
if (warn_char_subscripts
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
|
||
warning ("array subscript has type `char'");
|
||
|
||
/* Apply default promotions *after* noticing character types. */
|
||
index = default_conversion (index);
|
||
|
||
/* Require integer *after* promotion, for sake of enums. */
|
||
if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
|
||
{
|
||
error ("array subscript is not an integer");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* An array that is indexed by a non-constant
|
||
cannot be stored in a register; we must be able to do
|
||
address arithmetic on its address.
|
||
Likewise an array of elements of variable size. */
|
||
if (TREE_CODE (index) != INTEGER_CST
|
||
|| (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array))) != 0
|
||
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
|
||
{
|
||
if (mark_addressable (array) == 0)
|
||
return error_mark_node;
|
||
}
|
||
/* An array that is indexed by a constant value which is not within
|
||
the array bounds cannot be stored in a register either; because we
|
||
would get a crash in store_bit_field/extract_bit_field when trying
|
||
to access a non-existent part of the register. */
|
||
if (TREE_CODE (index) == INTEGER_CST
|
||
&& TYPE_VALUES (TREE_TYPE (array))
|
||
&& ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
|
||
{
|
||
if (mark_addressable (array) == 0)
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (pedantic && !lvalue_p (array))
|
||
{
|
||
if (DECL_REGISTER (array))
|
||
pedwarn ("ANSI C forbids subscripting `register' array");
|
||
else
|
||
pedwarn ("ANSI C forbids subscripting non-lvalue array");
|
||
}
|
||
|
||
if (pedantic)
|
||
{
|
||
tree foo = array;
|
||
while (TREE_CODE (foo) == COMPONENT_REF)
|
||
foo = TREE_OPERAND (foo, 0);
|
||
if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
|
||
pedwarn ("ANSI C forbids subscripting non-lvalue array");
|
||
}
|
||
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
|
||
rval = build (ARRAY_REF, type, array, index);
|
||
/* Array ref is const/volatile if the array elements are
|
||
or if the array is. */
|
||
TREE_READONLY (rval)
|
||
|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
|
||
| TREE_READONLY (array));
|
||
TREE_SIDE_EFFECTS (rval)
|
||
|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
|
||
| TREE_SIDE_EFFECTS (array));
|
||
TREE_THIS_VOLATILE (rval)
|
||
|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
|
||
/* This was added by rms on 16 Nov 91.
|
||
It fixes vol struct foo *a; a->elts[1]
|
||
in an inline function.
|
||
Hope it doesn't break something else. */
|
||
| TREE_THIS_VOLATILE (array));
|
||
return require_complete_type (fold (rval));
|
||
}
|
||
|
||
{
|
||
tree ar = default_conversion (array);
|
||
tree ind = default_conversion (index);
|
||
|
||
/* Do the same warning check as above, but only on the part that's
|
||
syntactically the index and only if it is also semantically
|
||
the index. */
|
||
if (warn_char_subscripts
|
||
&& TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
|
||
warning ("subscript has type `char'");
|
||
|
||
/* Put the integer in IND to simplify error checking. */
|
||
if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
|
||
{
|
||
tree temp = ar;
|
||
ar = ind;
|
||
ind = temp;
|
||
}
|
||
|
||
if (ar == error_mark_node)
|
||
return ar;
|
||
|
||
if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
|
||
|| TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
|
||
{
|
||
error ("subscripted value is neither array nor pointer");
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
|
||
{
|
||
error ("array subscript is not an integer");
|
||
return error_mark_node;
|
||
}
|
||
|
||
return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
|
||
"array indexing");
|
||
}
|
||
}
|
||
|
||
/* Build a function call to function FUNCTION with parameters PARAMS.
|
||
PARAMS is a list--a chain of TREE_LIST nodes--in which the
|
||
TREE_VALUE of each node is a parameter-expression.
|
||
FUNCTION's data type may be a function type or a pointer-to-function. */
|
||
|
||
tree
|
||
build_function_call (function, params)
|
||
tree function, params;
|
||
{
|
||
register tree fntype, fundecl = 0;
|
||
register tree coerced_params;
|
||
tree name = NULL_TREE, assembler_name = NULL_TREE;
|
||
|
||
/* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
|
||
STRIP_TYPE_NOPS (function);
|
||
|
||
/* Convert anything with function type to a pointer-to-function. */
|
||
if (TREE_CODE (function) == FUNCTION_DECL)
|
||
{
|
||
name = DECL_NAME (function);
|
||
assembler_name = DECL_ASSEMBLER_NAME (function);
|
||
|
||
/* Differs from default_conversion by not setting TREE_ADDRESSABLE
|
||
(because calling an inline function does not mean the function
|
||
needs to be separately compiled). */
|
||
fntype = build_type_variant (TREE_TYPE (function),
|
||
TREE_READONLY (function),
|
||
TREE_THIS_VOLATILE (function));
|
||
fundecl = function;
|
||
function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
|
||
}
|
||
else
|
||
function = default_conversion (function);
|
||
|
||
fntype = TREE_TYPE (function);
|
||
|
||
if (TREE_CODE (fntype) == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
if (!(TREE_CODE (fntype) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
|
||
{
|
||
error ("called object is not a function");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* fntype now gets the type of function pointed to. */
|
||
fntype = TREE_TYPE (fntype);
|
||
|
||
/* Convert the parameters to the types declared in the
|
||
function prototype, or apply default promotions. */
|
||
|
||
coerced_params
|
||
= convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
|
||
|
||
/* Check for errors in format strings. */
|
||
|
||
if (warn_format && (name || assembler_name))
|
||
check_function_format (name, assembler_name, coerced_params);
|
||
|
||
/* Recognize certain built-in functions so we can make tree-codes
|
||
other than CALL_EXPR. We do this when it enables fold-const.c
|
||
to do something useful. */
|
||
|
||
if (TREE_CODE (function) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN (TREE_OPERAND (function, 0)))
|
||
switch (DECL_FUNCTION_CODE (TREE_OPERAND (function, 0)))
|
||
{
|
||
case BUILT_IN_ABS:
|
||
case BUILT_IN_LABS:
|
||
case BUILT_IN_FABS:
|
||
if (coerced_params == 0)
|
||
return integer_zero_node;
|
||
return build_unary_op (ABS_EXPR, TREE_VALUE (coerced_params), 0);
|
||
default:
|
||
break;
|
||
}
|
||
|
||
{
|
||
register tree result
|
||
= build (CALL_EXPR, TREE_TYPE (fntype),
|
||
function, coerced_params, NULL_TREE);
|
||
|
||
TREE_SIDE_EFFECTS (result) = 1;
|
||
if (TREE_TYPE (result) == void_type_node)
|
||
return result;
|
||
return require_complete_type (result);
|
||
}
|
||
}
|
||
|
||
/* Convert the argument expressions in the list VALUES
|
||
to the types in the list TYPELIST. The result is a list of converted
|
||
argument expressions.
|
||
|
||
If TYPELIST is exhausted, or when an element has NULL as its type,
|
||
perform the default conversions.
|
||
|
||
PARMLIST is the chain of parm decls for the function being called.
|
||
It may be 0, if that info is not available.
|
||
It is used only for generating error messages.
|
||
|
||
NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
|
||
|
||
This is also where warnings about wrong number of args are generated.
|
||
|
||
Both VALUES and the returned value are chains of TREE_LIST nodes
|
||
with the elements of the list in the TREE_VALUE slots of those nodes. */
|
||
|
||
static tree
|
||
convert_arguments (typelist, values, name, fundecl)
|
||
tree typelist, values, name, fundecl;
|
||
{
|
||
register tree typetail, valtail;
|
||
register tree result = NULL;
|
||
int parmnum;
|
||
|
||
/* Scan the given expressions and types, producing individual
|
||
converted arguments and pushing them on RESULT in reverse order. */
|
||
|
||
for (valtail = values, typetail = typelist, parmnum = 0;
|
||
valtail;
|
||
valtail = TREE_CHAIN (valtail), parmnum++)
|
||
{
|
||
register tree type = typetail ? TREE_VALUE (typetail) : 0;
|
||
register tree val = TREE_VALUE (valtail);
|
||
|
||
if (type == void_type_node)
|
||
{
|
||
if (name)
|
||
error ("too many arguments to function `%s'",
|
||
IDENTIFIER_POINTER (name));
|
||
else
|
||
error ("too many arguments to function");
|
||
break;
|
||
}
|
||
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
|
||
/* Do not use STRIP_NOPS here! We do not want an enumerator with value 0
|
||
to convert automatically to a pointer. */
|
||
if (TREE_CODE (val) == NON_LVALUE_EXPR)
|
||
val = TREE_OPERAND (val, 0);
|
||
|
||
if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE
|
||
|| TREE_CODE (TREE_TYPE (val)) == FUNCTION_TYPE)
|
||
val = default_conversion (val);
|
||
|
||
val = require_complete_type (val);
|
||
|
||
if (type != 0)
|
||
{
|
||
/* Formal parm type is specified by a function prototype. */
|
||
tree parmval;
|
||
|
||
if (TYPE_SIZE (type) == 0)
|
||
{
|
||
error ("type of formal parameter %d is incomplete", parmnum + 1);
|
||
parmval = val;
|
||
}
|
||
else
|
||
{
|
||
/* Optionally warn about conversions that
|
||
differ from the default conversions. */
|
||
if (warn_conversion)
|
||
{
|
||
int formal_prec = TYPE_PRECISION (type);
|
||
|
||
if (INTEGRAL_TYPE_P (type)
|
||
&& TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
|
||
warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
|
||
else if (TREE_CODE (type) == COMPLEX_TYPE
|
||
&& TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
|
||
warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
|
||
else if (TREE_CODE (type) == REAL_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
|
||
warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
|
||
else if (TREE_CODE (type) == REAL_TYPE
|
||
&& TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
|
||
warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
|
||
/* ??? At some point, messages should be written about
|
||
conversions between complex types, but that's too messy
|
||
to do now. */
|
||
else if (TREE_CODE (type) == REAL_TYPE
|
||
&& TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
|
||
{
|
||
/* Warn if any argument is passed as `float',
|
||
since without a prototype it would be `double'. */
|
||
if (formal_prec == TYPE_PRECISION (float_type_node))
|
||
warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
|
||
}
|
||
/* Detect integer changing in width or signedness. */
|
||
else if (INTEGRAL_TYPE_P (type)
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
|
||
{
|
||
tree would_have_been = default_conversion (val);
|
||
tree type1 = TREE_TYPE (would_have_been);
|
||
|
||
if (TREE_CODE (type) == ENUMERAL_TYPE
|
||
&& type == TREE_TYPE (val))
|
||
/* No warning if function asks for enum
|
||
and the actual arg is that enum type. */
|
||
;
|
||
else if (formal_prec != TYPE_PRECISION (type1))
|
||
warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
|
||
else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
|
||
;
|
||
/* Don't complain if the formal parameter type
|
||
is an enum, because we can't tell now whether
|
||
the value was an enum--even the same enum. */
|
||
else if (TREE_CODE (type) == ENUMERAL_TYPE)
|
||
;
|
||
else if (TREE_CODE (val) == INTEGER_CST
|
||
&& int_fits_type_p (val, type))
|
||
/* Change in signedness doesn't matter
|
||
if a constant value is unaffected. */
|
||
;
|
||
/* Likewise for a constant in a NOP_EXPR. */
|
||
else if (TREE_CODE (val) == NOP_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
|
||
&& int_fits_type_p (TREE_OPERAND (val, 0), type))
|
||
;
|
||
#if 0 /* We never get such tree structure here. */
|
||
else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
|
||
&& int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
|
||
&& int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
|
||
/* Change in signedness doesn't matter
|
||
if an enum value is unaffected. */
|
||
;
|
||
#endif
|
||
/* If the value is extended from a narrower
|
||
unsigned type, it doesn't matter whether we
|
||
pass it as signed or unsigned; the value
|
||
certainly is the same either way. */
|
||
else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
|
||
&& TREE_UNSIGNED (TREE_TYPE (val)))
|
||
;
|
||
else if (TREE_UNSIGNED (type))
|
||
warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
|
||
else
|
||
warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
|
||
}
|
||
}
|
||
|
||
parmval = convert_for_assignment (type, val,
|
||
(char *) 0, /* arg passing */
|
||
fundecl, name, parmnum + 1);
|
||
|
||
#ifdef PROMOTE_PROTOTYPES
|
||
if ((TREE_CODE (type) == INTEGER_TYPE
|
||
|| TREE_CODE (type) == ENUMERAL_TYPE)
|
||
&& (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
|
||
parmval = default_conversion (parmval);
|
||
#endif
|
||
}
|
||
result = tree_cons (NULL_TREE, parmval, result);
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
|
||
&& (TYPE_PRECISION (TREE_TYPE (val))
|
||
< TYPE_PRECISION (double_type_node)))
|
||
/* Convert `float' to `double'. */
|
||
result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
|
||
else
|
||
/* Convert `short' and `char' to full-size `int'. */
|
||
result = tree_cons (NULL_TREE, default_conversion (val), result);
|
||
|
||
if (typetail)
|
||
typetail = TREE_CHAIN (typetail);
|
||
}
|
||
|
||
if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
|
||
{
|
||
if (name)
|
||
error ("too few arguments to function `%s'",
|
||
IDENTIFIER_POINTER (name));
|
||
else
|
||
error ("too few arguments to function");
|
||
}
|
||
|
||
return nreverse (result);
|
||
}
|
||
|
||
/* This is the entry point used by the parser
|
||
for binary operators in the input.
|
||
In addition to constructing the expression,
|
||
we check for operands that were written with other binary operators
|
||
in a way that is likely to confuse the user. */
|
||
|
||
tree
|
||
parser_build_binary_op (code, arg1, arg2)
|
||
enum tree_code code;
|
||
tree arg1, arg2;
|
||
{
|
||
tree result = build_binary_op (code, arg1, arg2, 1);
|
||
|
||
char class;
|
||
char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
|
||
char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
|
||
enum tree_code code1 = ERROR_MARK;
|
||
enum tree_code code2 = ERROR_MARK;
|
||
|
||
if (class1 == 'e' || class1 == '1'
|
||
|| class1 == '2' || class1 == '<')
|
||
code1 = C_EXP_ORIGINAL_CODE (arg1);
|
||
if (class2 == 'e' || class2 == '1'
|
||
|| class2 == '2' || class2 == '<')
|
||
code2 = C_EXP_ORIGINAL_CODE (arg2);
|
||
|
||
/* Check for cases such as x+y<<z which users are likely
|
||
to misinterpret. If parens are used, C_EXP_ORIGINAL_CODE
|
||
is cleared to prevent these warnings. */
|
||
if (warn_parentheses)
|
||
{
|
||
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
|
||
{
|
||
if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
|
||
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
|
||
warning ("suggest parentheses around + or - inside shift");
|
||
}
|
||
|
||
if (code == TRUTH_ORIF_EXPR)
|
||
{
|
||
if (code1 == TRUTH_ANDIF_EXPR
|
||
|| code2 == TRUTH_ANDIF_EXPR)
|
||
warning ("suggest parentheses around && within ||");
|
||
}
|
||
|
||
if (code == BIT_IOR_EXPR)
|
||
{
|
||
if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
|
||
|| code1 == PLUS_EXPR || code1 == MINUS_EXPR
|
||
|| code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
|
||
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
|
||
warning ("suggest parentheses around arithmetic in operand of |");
|
||
/* Check cases like x|y==z */
|
||
if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
|
||
warning ("suggest parentheses around comparison in operand of |");
|
||
}
|
||
|
||
if (code == BIT_XOR_EXPR)
|
||
{
|
||
if (code1 == BIT_AND_EXPR
|
||
|| code1 == PLUS_EXPR || code1 == MINUS_EXPR
|
||
|| code2 == BIT_AND_EXPR
|
||
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
|
||
warning ("suggest parentheses around arithmetic in operand of ^");
|
||
/* Check cases like x^y==z */
|
||
if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
|
||
warning ("suggest parentheses around comparison in operand of ^");
|
||
}
|
||
|
||
if (code == BIT_AND_EXPR)
|
||
{
|
||
if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
|
||
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
|
||
warning ("suggest parentheses around + or - in operand of &");
|
||
/* Check cases like x&y==z */
|
||
if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
|
||
warning ("suggest parentheses around comparison in operand of &");
|
||
}
|
||
}
|
||
|
||
/* Similarly, check for cases like 1<=i<=10 that are probably errors. */
|
||
if (TREE_CODE_CLASS (code) == '<' && extra_warnings
|
||
&& (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
|
||
warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
|
||
|
||
unsigned_conversion_warning (result, arg1);
|
||
unsigned_conversion_warning (result, arg2);
|
||
overflow_warning (result);
|
||
|
||
class = TREE_CODE_CLASS (TREE_CODE (result));
|
||
|
||
/* Record the code that was specified in the source,
|
||
for the sake of warnings about confusing nesting. */
|
||
if (class == 'e' || class == '1'
|
||
|| class == '2' || class == '<')
|
||
C_SET_EXP_ORIGINAL_CODE (result, code);
|
||
else
|
||
{
|
||
int flag = TREE_CONSTANT (result);
|
||
/* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
|
||
so that convert_for_assignment wouldn't strip it.
|
||
That way, we got warnings for things like p = (1 - 1).
|
||
But it turns out we should not get those warnings. */
|
||
result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
|
||
C_SET_EXP_ORIGINAL_CODE (result, code);
|
||
TREE_CONSTANT (result) = flag;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Build a binary-operation expression without default conversions.
|
||
CODE is the kind of expression to build.
|
||
This function differs from `build' in several ways:
|
||
the data type of the result is computed and recorded in it,
|
||
warnings are generated if arg data types are invalid,
|
||
special handling for addition and subtraction of pointers is known,
|
||
and some optimization is done (operations on narrow ints
|
||
are done in the narrower type when that gives the same result).
|
||
Constant folding is also done before the result is returned.
|
||
|
||
Note that the operands will never have enumeral types, or function
|
||
or array types, because either they will have the default conversions
|
||
performed or they have both just been converted to some other type in which
|
||
the arithmetic is to be done. */
|
||
|
||
tree
|
||
build_binary_op (code, orig_op0, orig_op1, convert_p)
|
||
enum tree_code code;
|
||
tree orig_op0, orig_op1;
|
||
int convert_p;
|
||
{
|
||
tree type0, type1;
|
||
register enum tree_code code0, code1;
|
||
tree op0, op1;
|
||
|
||
/* Expression code to give to the expression when it is built.
|
||
Normally this is CODE, which is what the caller asked for,
|
||
but in some special cases we change it. */
|
||
register enum tree_code resultcode = code;
|
||
|
||
/* Data type in which the computation is to be performed.
|
||
In the simplest cases this is the common type of the arguments. */
|
||
register tree result_type = NULL;
|
||
|
||
/* Nonzero means operands have already been type-converted
|
||
in whatever way is necessary.
|
||
Zero means they need to be converted to RESULT_TYPE. */
|
||
int converted = 0;
|
||
|
||
/* Nonzero means create the expression with this type, rather than
|
||
RESULT_TYPE. */
|
||
tree build_type = 0;
|
||
|
||
/* Nonzero means after finally constructing the expression
|
||
convert it to this type. */
|
||
tree final_type = 0;
|
||
|
||
/* Nonzero if this is an operation like MIN or MAX which can
|
||
safely be computed in short if both args are promoted shorts.
|
||
Also implies COMMON.
|
||
-1 indicates a bitwise operation; this makes a difference
|
||
in the exact conditions for when it is safe to do the operation
|
||
in a narrower mode. */
|
||
int shorten = 0;
|
||
|
||
/* Nonzero if this is a comparison operation;
|
||
if both args are promoted shorts, compare the original shorts.
|
||
Also implies COMMON. */
|
||
int short_compare = 0;
|
||
|
||
/* Nonzero if this is a right-shift operation, which can be computed on the
|
||
original short and then promoted if the operand is a promoted short. */
|
||
int short_shift = 0;
|
||
|
||
/* Nonzero means set RESULT_TYPE to the common type of the args. */
|
||
int common = 0;
|
||
|
||
if (convert_p)
|
||
{
|
||
op0 = default_conversion (orig_op0);
|
||
op1 = default_conversion (orig_op1);
|
||
}
|
||
else
|
||
{
|
||
op0 = orig_op0;
|
||
op1 = orig_op1;
|
||
}
|
||
|
||
type0 = TREE_TYPE (op0);
|
||
type1 = TREE_TYPE (op1);
|
||
|
||
/* The expression codes of the data types of the arguments tell us
|
||
whether the arguments are integers, floating, pointers, etc. */
|
||
code0 = TREE_CODE (type0);
|
||
code1 = TREE_CODE (type1);
|
||
|
||
/* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
|
||
STRIP_TYPE_NOPS (op0);
|
||
STRIP_TYPE_NOPS (op1);
|
||
|
||
/* If an error was already reported for one of the arguments,
|
||
avoid reporting another error. */
|
||
|
||
if (code0 == ERROR_MARK || code1 == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
/* Handle the pointer + int case. */
|
||
if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
return pointer_int_sum (PLUS_EXPR, op0, op1);
|
||
else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
|
||
return pointer_int_sum (PLUS_EXPR, op1, op0);
|
||
else
|
||
common = 1;
|
||
break;
|
||
|
||
case MINUS_EXPR:
|
||
/* Subtraction of two similar pointers.
|
||
We must subtract them as integers, then divide by object size. */
|
||
if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
|
||
&& comp_target_types (type0, type1))
|
||
return pointer_diff (op0, op1);
|
||
/* Handle pointer minus int. Just like pointer plus int. */
|
||
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
return pointer_int_sum (MINUS_EXPR, op0, op1);
|
||
else
|
||
common = 1;
|
||
break;
|
||
|
||
case MULT_EXPR:
|
||
common = 1;
|
||
break;
|
||
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
|
||
|| code0 == COMPLEX_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE
|
||
|| code1 == COMPLEX_TYPE))
|
||
{
|
||
if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
|
||
resultcode = RDIV_EXPR;
|
||
else
|
||
{
|
||
/* Although it would be tempting to shorten always here, that
|
||
loses on some targets, since the modulo instruction is
|
||
undefined if the quotient can't be represented in the
|
||
computation mode. We shorten only if unsigned or if
|
||
dividing by something we know != -1. */
|
||
shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
|
||
|| (TREE_CODE (op1) == INTEGER_CST
|
||
&& (TREE_INT_CST_LOW (op1) != -1
|
||
|| TREE_INT_CST_HIGH (op1) != -1)));
|
||
}
|
||
common = 1;
|
||
}
|
||
break;
|
||
|
||
case BIT_AND_EXPR:
|
||
case BIT_ANDTC_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
|
||
shorten = -1;
|
||
/* If one operand is a constant, and the other is a short type
|
||
that has been converted to an int,
|
||
really do the work in the short type and then convert the
|
||
result to int. If we are lucky, the constant will be 0 or 1
|
||
in the short type, making the entire operation go away. */
|
||
if (TREE_CODE (op0) == INTEGER_CST
|
||
&& TREE_CODE (op1) == NOP_EXPR
|
||
&& TYPE_PRECISION (type1) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))
|
||
&& TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op1, 0))))
|
||
{
|
||
final_type = result_type;
|
||
op1 = TREE_OPERAND (op1, 0);
|
||
result_type = TREE_TYPE (op1);
|
||
}
|
||
if (TREE_CODE (op1) == INTEGER_CST
|
||
&& TREE_CODE (op0) == NOP_EXPR
|
||
&& TYPE_PRECISION (type0) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))
|
||
&& TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0))))
|
||
{
|
||
final_type = result_type;
|
||
op0 = TREE_OPERAND (op0, 0);
|
||
result_type = TREE_TYPE (op0);
|
||
}
|
||
break;
|
||
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
/* Although it would be tempting to shorten always here, that loses
|
||
on some targets, since the modulo instruction is undefined if the
|
||
quotient can't be represented in the computation mode. We shorten
|
||
only if unsigned or if dividing by something we know != -1. */
|
||
shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
|
||
|| (TREE_CODE (op1) == INTEGER_CST
|
||
&& (TREE_INT_CST_LOW (op1) != -1
|
||
|| TREE_INT_CST_HIGH (op1) != -1)));
|
||
common = 1;
|
||
}
|
||
break;
|
||
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
|
||
|| code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
|
||
|| code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
|
||
{
|
||
/* Result of these operations is always an int,
|
||
but that does not mean the operands should be
|
||
converted to ints! */
|
||
result_type = integer_type_node;
|
||
op0 = truthvalue_conversion (op0);
|
||
op1 = truthvalue_conversion (op1);
|
||
converted = 1;
|
||
}
|
||
break;
|
||
|
||
/* Shift operations: result has same type as first operand;
|
||
always convert second operand to int.
|
||
Also set SHORT_SHIFT if shifting rightward. */
|
||
|
||
case RSHIFT_EXPR:
|
||
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
|
||
{
|
||
if (tree_int_cst_sgn (op1) < 0)
|
||
warning ("right shift count is negative");
|
||
else
|
||
{
|
||
if (TREE_INT_CST_LOW (op1) | TREE_INT_CST_HIGH (op1))
|
||
short_shift = 1;
|
||
if (TREE_INT_CST_HIGH (op1) != 0
|
||
|| ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
|
||
>= TYPE_PRECISION (type0)))
|
||
warning ("right shift count >= width of type");
|
||
}
|
||
}
|
||
/* Use the type of the value to be shifted.
|
||
This is what most traditional C compilers do. */
|
||
result_type = type0;
|
||
/* Unless traditional, convert the shift-count to an integer,
|
||
regardless of size of value being shifted. */
|
||
if (! flag_traditional)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
|
||
op1 = convert (integer_type_node, op1);
|
||
/* Avoid converting op1 to result_type later. */
|
||
converted = 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case LSHIFT_EXPR:
|
||
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
|
||
{
|
||
if (tree_int_cst_sgn (op1) < 0)
|
||
warning ("left shift count is negative");
|
||
else if (TREE_INT_CST_HIGH (op1) != 0
|
||
|| ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
|
||
>= TYPE_PRECISION (type0)))
|
||
warning ("left shift count >= width of type");
|
||
}
|
||
/* Use the type of the value to be shifted.
|
||
This is what most traditional C compilers do. */
|
||
result_type = type0;
|
||
/* Unless traditional, convert the shift-count to an integer,
|
||
regardless of size of value being shifted. */
|
||
if (! flag_traditional)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
|
||
op1 = convert (integer_type_node, op1);
|
||
/* Avoid converting op1 to result_type later. */
|
||
converted = 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case RROTATE_EXPR:
|
||
case LROTATE_EXPR:
|
||
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
|
||
{
|
||
if (tree_int_cst_sgn (op1) < 0)
|
||
warning ("shift count is negative");
|
||
else if (TREE_INT_CST_HIGH (op1) != 0
|
||
|| ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
|
||
>= TYPE_PRECISION (type0)))
|
||
warning ("shift count >= width of type");
|
||
}
|
||
/* Use the type of the value to be shifted.
|
||
This is what most traditional C compilers do. */
|
||
result_type = type0;
|
||
/* Unless traditional, convert the shift-count to an integer,
|
||
regardless of size of value being shifted. */
|
||
if (! flag_traditional)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
|
||
op1 = convert (integer_type_node, op1);
|
||
/* Avoid converting op1 to result_type later. */
|
||
converted = 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
/* Result of comparison is always int,
|
||
but don't convert the args to int! */
|
||
build_type = integer_type_node;
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
|
||
|| code0 == COMPLEX_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE
|
||
|| code1 == COMPLEX_TYPE))
|
||
short_compare = 1;
|
||
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
|
||
{
|
||
register tree tt0 = TREE_TYPE (type0);
|
||
register tree tt1 = TREE_TYPE (type1);
|
||
/* Anything compares with void *. void * compares with anything.
|
||
Otherwise, the targets must be compatible
|
||
and both must be object or both incomplete. */
|
||
if (comp_target_types (type0, type1))
|
||
result_type = common_type (type0, type1);
|
||
else if (TYPE_MAIN_VARIANT (tt0) == void_type_node)
|
||
{
|
||
/* op0 != orig_op0 detects the case of something
|
||
whose value is 0 but which isn't a valid null ptr const. */
|
||
if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
|
||
&& TREE_CODE (tt1) == FUNCTION_TYPE)
|
||
pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
|
||
}
|
||
else if (TYPE_MAIN_VARIANT (tt1) == void_type_node)
|
||
{
|
||
if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
|
||
&& TREE_CODE (tt0) == FUNCTION_TYPE)
|
||
pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
|
||
}
|
||
else
|
||
pedwarn ("comparison of distinct pointer types lacks a cast");
|
||
|
||
if (result_type == NULL_TREE)
|
||
result_type = ptr_type_node;
|
||
}
|
||
else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
|
||
&& integer_zerop (op1))
|
||
result_type = type0;
|
||
else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
|
||
&& integer_zerop (op0))
|
||
result_type = type1;
|
||
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
result_type = type0;
|
||
if (! flag_traditional)
|
||
pedwarn ("comparison between pointer and integer");
|
||
}
|
||
else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
|
||
{
|
||
result_type = type1;
|
||
if (! flag_traditional)
|
||
pedwarn ("comparison between pointer and integer");
|
||
}
|
||
break;
|
||
|
||
case MAX_EXPR:
|
||
case MIN_EXPR:
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
|
||
shorten = 1;
|
||
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
|
||
{
|
||
if (comp_target_types (type0, type1))
|
||
{
|
||
result_type = common_type (type0, type1);
|
||
if (pedantic
|
||
&& TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
|
||
pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
|
||
}
|
||
else
|
||
{
|
||
result_type = ptr_type_node;
|
||
pedwarn ("comparison of distinct pointer types lacks a cast");
|
||
}
|
||
}
|
||
break;
|
||
|
||
case LE_EXPR:
|
||
case GE_EXPR:
|
||
case LT_EXPR:
|
||
case GT_EXPR:
|
||
build_type = integer_type_node;
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
|
||
short_compare = 1;
|
||
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
|
||
{
|
||
if (comp_target_types (type0, type1))
|
||
{
|
||
result_type = common_type (type0, type1);
|
||
if ((TYPE_SIZE (TREE_TYPE (type0)) != 0)
|
||
!= (TYPE_SIZE (TREE_TYPE (type1)) != 0))
|
||
pedwarn ("comparison of complete and incomplete pointers");
|
||
else if (pedantic
|
||
&& TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
|
||
pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
|
||
}
|
||
else
|
||
{
|
||
result_type = ptr_type_node;
|
||
pedwarn ("comparison of distinct pointer types lacks a cast");
|
||
}
|
||
}
|
||
else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
|
||
&& integer_zerop (op1))
|
||
{
|
||
result_type = type0;
|
||
if (pedantic || extra_warnings)
|
||
pedwarn ("ordered comparison of pointer with integer zero");
|
||
}
|
||
else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
|
||
&& integer_zerop (op0))
|
||
{
|
||
result_type = type1;
|
||
if (pedantic)
|
||
pedwarn ("ordered comparison of pointer with integer zero");
|
||
}
|
||
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
result_type = type0;
|
||
if (! flag_traditional)
|
||
pedwarn ("comparison between pointer and integer");
|
||
}
|
||
else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
|
||
{
|
||
result_type = type1;
|
||
if (! flag_traditional)
|
||
pedwarn ("comparison between pointer and integer");
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
|
||
&&
|
||
(code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
|
||
{
|
||
int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
|
||
|
||
if (shorten || common || short_compare)
|
||
result_type = common_type (type0, type1);
|
||
|
||
/* For certain operations (which identify themselves by shorten != 0)
|
||
if both args were extended from the same smaller type,
|
||
do the arithmetic in that type and then extend.
|
||
|
||
shorten !=0 and !=1 indicates a bitwise operation.
|
||
For them, this optimization is safe only if
|
||
both args are zero-extended or both are sign-extended.
|
||
Otherwise, we might change the result.
|
||
Eg, (short)-1 | (unsigned short)-1 is (int)-1
|
||
but calculated in (unsigned short) it would be (unsigned short)-1. */
|
||
|
||
if (shorten && none_complex)
|
||
{
|
||
int unsigned0, unsigned1;
|
||
tree arg0 = get_narrower (op0, &unsigned0);
|
||
tree arg1 = get_narrower (op1, &unsigned1);
|
||
/* UNS is 1 if the operation to be done is an unsigned one. */
|
||
int uns = TREE_UNSIGNED (result_type);
|
||
tree type;
|
||
|
||
final_type = result_type;
|
||
|
||
/* Handle the case that OP0 (or OP1) does not *contain* a conversion
|
||
but it *requires* conversion to FINAL_TYPE. */
|
||
|
||
if ((TYPE_PRECISION (TREE_TYPE (op0))
|
||
== TYPE_PRECISION (TREE_TYPE (arg0)))
|
||
&& TREE_TYPE (op0) != final_type)
|
||
unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
|
||
if ((TYPE_PRECISION (TREE_TYPE (op1))
|
||
== TYPE_PRECISION (TREE_TYPE (arg1)))
|
||
&& TREE_TYPE (op1) != final_type)
|
||
unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
|
||
|
||
/* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
|
||
|
||
/* For bitwise operations, signedness of nominal type
|
||
does not matter. Consider only how operands were extended. */
|
||
if (shorten == -1)
|
||
uns = unsigned0;
|
||
|
||
/* Note that in all three cases below we refrain from optimizing
|
||
an unsigned operation on sign-extended args.
|
||
That would not be valid. */
|
||
|
||
/* Both args variable: if both extended in same way
|
||
from same width, do it in that width.
|
||
Do it unsigned if args were zero-extended. */
|
||
if ((TYPE_PRECISION (TREE_TYPE (arg0))
|
||
< TYPE_PRECISION (result_type))
|
||
&& (TYPE_PRECISION (TREE_TYPE (arg1))
|
||
== TYPE_PRECISION (TREE_TYPE (arg0)))
|
||
&& unsigned0 == unsigned1
|
||
&& (unsigned0 || !uns))
|
||
result_type
|
||
= signed_or_unsigned_type (unsigned0,
|
||
common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
|
||
else if (TREE_CODE (arg0) == INTEGER_CST
|
||
&& (unsigned1 || !uns)
|
||
&& (TYPE_PRECISION (TREE_TYPE (arg1))
|
||
< TYPE_PRECISION (result_type))
|
||
&& (type = signed_or_unsigned_type (unsigned1,
|
||
TREE_TYPE (arg1)),
|
||
int_fits_type_p (arg0, type)))
|
||
result_type = type;
|
||
else if (TREE_CODE (arg1) == INTEGER_CST
|
||
&& (unsigned0 || !uns)
|
||
&& (TYPE_PRECISION (TREE_TYPE (arg0))
|
||
< TYPE_PRECISION (result_type))
|
||
&& (type = signed_or_unsigned_type (unsigned0,
|
||
TREE_TYPE (arg0)),
|
||
int_fits_type_p (arg1, type)))
|
||
result_type = type;
|
||
}
|
||
|
||
/* Shifts can be shortened if shifting right. */
|
||
|
||
if (short_shift)
|
||
{
|
||
int unsigned_arg;
|
||
tree arg0 = get_narrower (op0, &unsigned_arg);
|
||
|
||
final_type = result_type;
|
||
|
||
if (arg0 == op0 && final_type == TREE_TYPE (op0))
|
||
unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
|
||
|
||
if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
|
||
/* We can shorten only if the shift count is less than the
|
||
number of bits in the smaller type size. */
|
||
&& TREE_INT_CST_HIGH (op1) == 0
|
||
&& TYPE_PRECISION (TREE_TYPE (arg0)) > TREE_INT_CST_LOW (op1)
|
||
/* If arg is sign-extended and then unsigned-shifted,
|
||
we can simulate this with a signed shift in arg's type
|
||
only if the extended result is at least twice as wide
|
||
as the arg. Otherwise, the shift could use up all the
|
||
ones made by sign-extension and bring in zeros.
|
||
We can't optimize that case at all, but in most machines
|
||
it never happens because available widths are 2**N. */
|
||
&& (!TREE_UNSIGNED (final_type)
|
||
|| unsigned_arg
|
||
|| 2 * TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (result_type)))
|
||
{
|
||
/* Do an unsigned shift if the operand was zero-extended. */
|
||
result_type
|
||
= signed_or_unsigned_type (unsigned_arg,
|
||
TREE_TYPE (arg0));
|
||
/* Convert value-to-be-shifted to that type. */
|
||
if (TREE_TYPE (op0) != result_type)
|
||
op0 = convert (result_type, op0);
|
||
converted = 1;
|
||
}
|
||
}
|
||
|
||
/* Comparison operations are shortened too but differently.
|
||
They identify themselves by setting short_compare = 1. */
|
||
|
||
if (short_compare)
|
||
{
|
||
/* Don't write &op0, etc., because that would prevent op0
|
||
from being kept in a register.
|
||
Instead, make copies of the our local variables and
|
||
pass the copies by reference, then copy them back afterward. */
|
||
tree xop0 = op0, xop1 = op1, xresult_type = result_type;
|
||
enum tree_code xresultcode = resultcode;
|
||
tree val
|
||
= shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
|
||
if (val != 0)
|
||
return val;
|
||
op0 = xop0, op1 = xop1;
|
||
converted = 1;
|
||
resultcode = xresultcode;
|
||
|
||
if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare != 0)
|
||
&& skip_evaluation == 0)
|
||
{
|
||
int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
|
||
int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
|
||
|
||
int unsignedp0, unsignedp1;
|
||
tree primop0 = get_narrower (op0, &unsignedp0);
|
||
tree primop1 = get_narrower (op1, &unsignedp1);
|
||
|
||
/* Avoid spurious warnings for comparison with enumerators. */
|
||
|
||
xop0 = orig_op0;
|
||
xop1 = orig_op1;
|
||
STRIP_TYPE_NOPS (xop0);
|
||
STRIP_TYPE_NOPS (xop1);
|
||
|
||
/* Give warnings for comparisons between signed and unsigned
|
||
quantities that may fail. */
|
||
/* Do the checking based on the original operand trees, so that
|
||
casts will be considered, but default promotions won't be. */
|
||
|
||
/* Do not warn if the comparison is being done in a signed type,
|
||
since the signed type will only be chosen if it can represent
|
||
all the values of the unsigned type. */
|
||
if (! TREE_UNSIGNED (result_type))
|
||
/* OK */;
|
||
/* Do not warn if both operands are unsigned. */
|
||
else if (op0_signed == op1_signed)
|
||
/* OK */;
|
||
/* Do not warn if the signed quantity is an unsuffixed
|
||
integer literal (or some static constant expression
|
||
involving such literals) and it is non-negative. */
|
||
else if ((op0_signed && TREE_CODE (xop0) == INTEGER_CST
|
||
&& tree_int_cst_sgn (xop0) >= 0)
|
||
|| (op1_signed && TREE_CODE (xop1) == INTEGER_CST
|
||
&& tree_int_cst_sgn (xop1) >= 0))
|
||
/* OK */;
|
||
/* Do not warn if the comparison is an equality operation,
|
||
the unsigned quantity is an integral constant and it does
|
||
not use the most significant bit of result_type. */
|
||
else if ((resultcode == EQ_EXPR || resultcode == NE_EXPR)
|
||
&& ((op0_signed && TREE_CODE (xop1) == INTEGER_CST
|
||
&& int_fits_type_p (xop1, signed_type (result_type)))
|
||
|| (op1_signed && TREE_CODE (xop0) == INTEGER_CST
|
||
&& int_fits_type_p (xop0, signed_type (result_type)))))
|
||
/* OK */;
|
||
else
|
||
warning ("comparison between signed and unsigned");
|
||
|
||
/* Warn if two unsigned values are being compared in a size
|
||
larger than their original size, and one (and only one) is the
|
||
result of a `~' operator. This comparison will always fail.
|
||
|
||
Also warn if one operand is a constant, and the constant
|
||
does not have all bits set that are set in the ~ operand
|
||
when it is extended. */
|
||
|
||
if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
|
||
!= (TREE_CODE (primop1) == BIT_NOT_EXPR))
|
||
{
|
||
if (TREE_CODE (primop0) == BIT_NOT_EXPR)
|
||
primop0 = get_narrower (TREE_OPERAND (primop0, 0),
|
||
&unsignedp0);
|
||
else
|
||
primop1 = get_narrower (TREE_OPERAND (primop1, 0),
|
||
&unsignedp1);
|
||
|
||
if (TREE_CODE (primop0) == INTEGER_CST
|
||
|| TREE_CODE (primop1) == INTEGER_CST)
|
||
{
|
||
tree primop;
|
||
long constant, mask;
|
||
int unsignedp, bits;
|
||
|
||
if (TREE_CODE (primop0) == INTEGER_CST)
|
||
{
|
||
primop = primop1;
|
||
unsignedp = unsignedp1;
|
||
constant = TREE_INT_CST_LOW (primop0);
|
||
}
|
||
else
|
||
{
|
||
primop = primop0;
|
||
unsignedp = unsignedp0;
|
||
constant = TREE_INT_CST_LOW (primop1);
|
||
}
|
||
|
||
bits = TYPE_PRECISION (TREE_TYPE (primop));
|
||
if (bits < TYPE_PRECISION (result_type)
|
||
&& bits < HOST_BITS_PER_LONG && unsignedp)
|
||
{
|
||
mask = (~0L) << bits;
|
||
if ((mask & constant) != mask)
|
||
warning ("comparison of promoted ~unsigned with constant");
|
||
}
|
||
}
|
||
else if (unsignedp0 && unsignedp1
|
||
&& (TYPE_PRECISION (TREE_TYPE (primop0))
|
||
< TYPE_PRECISION (result_type))
|
||
&& (TYPE_PRECISION (TREE_TYPE (primop1))
|
||
< TYPE_PRECISION (result_type)))
|
||
warning ("comparison of promoted ~unsigned with unsigned");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* At this point, RESULT_TYPE must be nonzero to avoid an error message.
|
||
If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
|
||
Then the expression will be built.
|
||
It will be given type FINAL_TYPE if that is nonzero;
|
||
otherwise, it will be given type RESULT_TYPE. */
|
||
|
||
if (!result_type)
|
||
{
|
||
binary_op_error (code);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (! converted)
|
||
{
|
||
if (TREE_TYPE (op0) != result_type)
|
||
op0 = convert (result_type, op0);
|
||
if (TREE_TYPE (op1) != result_type)
|
||
op1 = convert (result_type, op1);
|
||
}
|
||
|
||
if (build_type == NULL_TREE)
|
||
build_type = result_type;
|
||
|
||
{
|
||
register tree result = build (resultcode, build_type, op0, op1);
|
||
register tree folded;
|
||
|
||
folded = fold (result);
|
||
if (folded == result)
|
||
TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
|
||
if (final_type != 0)
|
||
return convert (final_type, folded);
|
||
return folded;
|
||
}
|
||
}
|
||
|
||
/* Return a tree for the sum or difference (RESULTCODE says which)
|
||
of pointer PTROP and integer INTOP. */
|
||
|
||
static tree
|
||
pointer_int_sum (resultcode, ptrop, intop)
|
||
enum tree_code resultcode;
|
||
register tree ptrop, intop;
|
||
{
|
||
tree size_exp;
|
||
|
||
register tree result;
|
||
register tree folded;
|
||
|
||
/* The result is a pointer of the same type that is being added. */
|
||
|
||
register tree result_type = TREE_TYPE (ptrop);
|
||
|
||
if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer of type `void *' used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer to a function used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else
|
||
size_exp = c_size_in_bytes (TREE_TYPE (result_type));
|
||
|
||
/* If what we are about to multiply by the size of the elements
|
||
contains a constant term, apply distributive law
|
||
and multiply that constant term separately.
|
||
This helps produce common subexpressions. */
|
||
|
||
if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
|
||
&& ! TREE_CONSTANT (intop)
|
||
&& TREE_CONSTANT (TREE_OPERAND (intop, 1))
|
||
&& TREE_CONSTANT (size_exp)
|
||
/* If the constant comes from pointer subtraction,
|
||
skip this optimization--it would cause an error. */
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
|
||
/* If the constant is unsigned, and smaller than the pointer size,
|
||
then we must skip this optimization. This is because it could cause
|
||
an overflow error if the constant is negative but INTOP is not. */
|
||
&& (! TREE_UNSIGNED (TREE_TYPE (intop))
|
||
|| (TYPE_PRECISION (TREE_TYPE (intop))
|
||
== TYPE_PRECISION (TREE_TYPE (ptrop)))))
|
||
{
|
||
enum tree_code subcode = resultcode;
|
||
tree int_type = TREE_TYPE (intop);
|
||
if (TREE_CODE (intop) == MINUS_EXPR)
|
||
subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
|
||
/* Convert both subexpression types to the type of intop,
|
||
because weird cases involving pointer arithmetic
|
||
can result in a sum or difference with different type args. */
|
||
ptrop = build_binary_op (subcode, ptrop,
|
||
convert (int_type, TREE_OPERAND (intop, 1)), 1);
|
||
intop = convert (int_type, TREE_OPERAND (intop, 0));
|
||
}
|
||
|
||
/* Convert the integer argument to a type the same size as sizetype
|
||
so the multiply won't overflow spuriously. */
|
||
|
||
if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
|
||
|| TREE_UNSIGNED (TREE_TYPE (intop)) != TREE_UNSIGNED (sizetype))
|
||
intop = convert (type_for_size (TYPE_PRECISION (sizetype),
|
||
TREE_UNSIGNED (sizetype)), intop);
|
||
|
||
/* Replace the integer argument with a suitable product by the object size.
|
||
Do this multiplication as signed, then convert to the appropriate
|
||
pointer type (actually unsigned integral). */
|
||
|
||
intop = convert (result_type,
|
||
build_binary_op (MULT_EXPR, intop,
|
||
convert (TREE_TYPE (intop), size_exp), 1));
|
||
|
||
/* Create the sum or difference. */
|
||
|
||
result = build (resultcode, result_type, ptrop, intop);
|
||
|
||
folded = fold (result);
|
||
if (folded == result)
|
||
TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
|
||
return folded;
|
||
}
|
||
|
||
/* Return a tree for the difference of pointers OP0 and OP1.
|
||
The resulting tree has type int. */
|
||
|
||
static tree
|
||
pointer_diff (op0, op1)
|
||
register tree op0, op1;
|
||
{
|
||
register tree result, folded;
|
||
tree restype = ptrdiff_type_node;
|
||
|
||
tree target_type = TREE_TYPE (TREE_TYPE (op0));
|
||
|
||
if (pedantic || warn_pointer_arith)
|
||
{
|
||
if (TREE_CODE (target_type) == VOID_TYPE)
|
||
pedwarn ("pointer of type `void *' used in subtraction");
|
||
if (TREE_CODE (target_type) == FUNCTION_TYPE)
|
||
pedwarn ("pointer to a function used in subtraction");
|
||
}
|
||
|
||
/* First do the subtraction as integers;
|
||
then drop through to build the divide operator.
|
||
Do not do default conversions on the minus operator
|
||
in case restype is a short type. */
|
||
|
||
op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
|
||
convert (restype, op1), 0);
|
||
/* This generates an error if op1 is pointer to incomplete type. */
|
||
if (TYPE_SIZE (TREE_TYPE (TREE_TYPE (op1))) == 0)
|
||
error ("arithmetic on pointer to an incomplete type");
|
||
|
||
/* This generates an error if op0 is pointer to incomplete type. */
|
||
op1 = c_size_in_bytes (target_type);
|
||
|
||
/* Divide by the size, in easiest possible way. */
|
||
|
||
result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
|
||
|
||
folded = fold (result);
|
||
if (folded == result)
|
||
TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
|
||
return folded;
|
||
}
|
||
|
||
/* Construct and perhaps optimize a tree representation
|
||
for a unary operation. CODE, a tree_code, specifies the operation
|
||
and XARG is the operand. NOCONVERT nonzero suppresses
|
||
the default promotions (such as from short to int). */
|
||
|
||
tree
|
||
build_unary_op (code, xarg, noconvert)
|
||
enum tree_code code;
|
||
tree xarg;
|
||
int noconvert;
|
||
{
|
||
/* No default_conversion here. It causes trouble for ADDR_EXPR. */
|
||
register tree arg = xarg;
|
||
register tree argtype = 0;
|
||
register enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
|
||
char *errstring = NULL;
|
||
tree val;
|
||
|
||
if (typecode == ERROR_MARK)
|
||
return error_mark_node;
|
||
if (typecode == ENUMERAL_TYPE)
|
||
typecode = INTEGER_TYPE;
|
||
|
||
switch (code)
|
||
{
|
||
case CONVERT_EXPR:
|
||
/* This is used for unary plus, because a CONVERT_EXPR
|
||
is enough to prevent anybody from looking inside for
|
||
associativity, but won't generate any code. */
|
||
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|
||
|| typecode == COMPLEX_TYPE))
|
||
errstring = "wrong type argument to unary plus";
|
||
else if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
break;
|
||
|
||
case NEGATE_EXPR:
|
||
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|
||
|| typecode == COMPLEX_TYPE))
|
||
errstring = "wrong type argument to unary minus";
|
||
else if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
break;
|
||
|
||
case BIT_NOT_EXPR:
|
||
if (typecode == COMPLEX_TYPE)
|
||
{
|
||
code = CONJ_EXPR;
|
||
if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
}
|
||
else if (typecode != INTEGER_TYPE)
|
||
errstring = "wrong type argument to bit-complement";
|
||
else if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
break;
|
||
|
||
case ABS_EXPR:
|
||
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|
||
|| typecode == COMPLEX_TYPE))
|
||
errstring = "wrong type argument to abs";
|
||
else if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
break;
|
||
|
||
case CONJ_EXPR:
|
||
/* Conjugating a real value is a no-op, but allow it anyway. */
|
||
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|
||
|| typecode == COMPLEX_TYPE))
|
||
errstring = "wrong type argument to conjugation";
|
||
else if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
break;
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
if (typecode != INTEGER_TYPE
|
||
&& typecode != REAL_TYPE && typecode != POINTER_TYPE
|
||
&& typecode != COMPLEX_TYPE
|
||
/* These will convert to a pointer. */
|
||
&& typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
|
||
{
|
||
errstring = "wrong type argument to unary exclamation mark";
|
||
break;
|
||
}
|
||
arg = truthvalue_conversion (arg);
|
||
return invert_truthvalue (arg);
|
||
|
||
case NOP_EXPR:
|
||
break;
|
||
|
||
case REALPART_EXPR:
|
||
if (TREE_CODE (arg) == COMPLEX_CST)
|
||
return TREE_REALPART (arg);
|
||
else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
|
||
return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
|
||
else
|
||
return arg;
|
||
|
||
case IMAGPART_EXPR:
|
||
if (TREE_CODE (arg) == COMPLEX_CST)
|
||
return TREE_IMAGPART (arg);
|
||
else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
|
||
return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
|
||
else
|
||
return convert (TREE_TYPE (arg), integer_zero_node);
|
||
|
||
case PREINCREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
/* Handle complex lvalues (when permitted)
|
||
by reduction to simpler cases. */
|
||
|
||
val = unary_complex_lvalue (code, arg);
|
||
if (val != 0)
|
||
return val;
|
||
|
||
/* Increment or decrement the real part of the value,
|
||
and don't change the imaginary part. */
|
||
if (typecode == COMPLEX_TYPE)
|
||
{
|
||
tree real, imag;
|
||
|
||
arg = stabilize_reference (arg);
|
||
real = build_unary_op (REALPART_EXPR, arg, 1);
|
||
imag = build_unary_op (IMAGPART_EXPR, arg, 1);
|
||
return build (COMPLEX_EXPR, TREE_TYPE (arg),
|
||
build_unary_op (code, real, 1), imag);
|
||
}
|
||
|
||
/* Report invalid types. */
|
||
|
||
if (typecode != POINTER_TYPE
|
||
&& typecode != INTEGER_TYPE && typecode != REAL_TYPE)
|
||
{
|
||
if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
|
||
errstring ="wrong type argument to increment";
|
||
else
|
||
errstring ="wrong type argument to decrement";
|
||
break;
|
||
}
|
||
|
||
{
|
||
register tree inc;
|
||
tree result_type = TREE_TYPE (arg);
|
||
|
||
arg = get_unwidened (arg, 0);
|
||
argtype = TREE_TYPE (arg);
|
||
|
||
/* Compute the increment. */
|
||
|
||
if (typecode == POINTER_TYPE)
|
||
{
|
||
/* If pointer target is an undefined struct,
|
||
we just cannot know how to do the arithmetic. */
|
||
if (TYPE_SIZE (TREE_TYPE (result_type)) == 0)
|
||
error ("%s of pointer to unknown structure",
|
||
((code == PREINCREMENT_EXPR
|
||
|| code == POSTINCREMENT_EXPR)
|
||
? "increment" : "decrement"));
|
||
else if ((pedantic || warn_pointer_arith)
|
||
&& (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
|
||
pedwarn ("wrong type argument to %s",
|
||
((code == PREINCREMENT_EXPR
|
||
|| code == POSTINCREMENT_EXPR)
|
||
? "increment" : "decrement"));
|
||
inc = c_size_in_bytes (TREE_TYPE (result_type));
|
||
}
|
||
else
|
||
inc = integer_one_node;
|
||
|
||
inc = convert (argtype, inc);
|
||
|
||
/* Handle incrementing a cast-expression. */
|
||
|
||
while (1)
|
||
switch (TREE_CODE (arg))
|
||
{
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
case FLOAT_EXPR:
|
||
case FIX_TRUNC_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_ROUND_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
pedantic_lvalue_warning (CONVERT_EXPR);
|
||
/* If the real type has the same machine representation
|
||
as the type it is cast to, we can make better output
|
||
by adding directly to the inside of the cast. */
|
||
if ((TREE_CODE (TREE_TYPE (arg))
|
||
== TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
|
||
&& (TYPE_MODE (TREE_TYPE (arg))
|
||
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
|
||
arg = TREE_OPERAND (arg, 0);
|
||
else
|
||
{
|
||
tree incremented, modify, value;
|
||
arg = stabilize_reference (arg);
|
||
if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
|
||
value = arg;
|
||
else
|
||
value = save_expr (arg);
|
||
incremented = build (((code == PREINCREMENT_EXPR
|
||
|| code == POSTINCREMENT_EXPR)
|
||
? PLUS_EXPR : MINUS_EXPR),
|
||
argtype, value, inc);
|
||
TREE_SIDE_EFFECTS (incremented) = 1;
|
||
modify = build_modify_expr (arg, NOP_EXPR, incremented);
|
||
value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
|
||
TREE_USED (value) = 1;
|
||
return value;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
goto give_up;
|
||
}
|
||
give_up:
|
||
|
||
/* Complain about anything else that is not a true lvalue. */
|
||
if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
|
||
|| code == POSTINCREMENT_EXPR)
|
||
? "increment" : "decrement")))
|
||
return error_mark_node;
|
||
|
||
/* Report a read-only lvalue. */
|
||
if (TREE_READONLY (arg))
|
||
readonly_warning (arg,
|
||
((code == PREINCREMENT_EXPR
|
||
|| code == POSTINCREMENT_EXPR)
|
||
? "increment" : "decrement"));
|
||
|
||
val = build (code, TREE_TYPE (arg), arg, inc);
|
||
TREE_SIDE_EFFECTS (val) = 1;
|
||
val = convert (result_type, val);
|
||
if (TREE_CODE (val) != code)
|
||
TREE_NO_UNUSED_WARNING (val) = 1;
|
||
return val;
|
||
}
|
||
|
||
case ADDR_EXPR:
|
||
/* Note that this operation never does default_conversion
|
||
regardless of NOCONVERT. */
|
||
|
||
/* Let &* cancel out to simplify resulting code. */
|
||
if (TREE_CODE (arg) == INDIRECT_REF)
|
||
{
|
||
/* Don't let this be an lvalue. */
|
||
if (lvalue_p (TREE_OPERAND (arg, 0)))
|
||
return non_lvalue (TREE_OPERAND (arg, 0));
|
||
return TREE_OPERAND (arg, 0);
|
||
}
|
||
|
||
/* For &x[y], return x+y */
|
||
if (TREE_CODE (arg) == ARRAY_REF)
|
||
{
|
||
if (mark_addressable (TREE_OPERAND (arg, 0)) == 0)
|
||
return error_mark_node;
|
||
return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
|
||
TREE_OPERAND (arg, 1), 1);
|
||
}
|
||
|
||
/* Handle complex lvalues (when permitted)
|
||
by reduction to simpler cases. */
|
||
val = unary_complex_lvalue (code, arg);
|
||
if (val != 0)
|
||
return val;
|
||
|
||
#if 0 /* Turned off because inconsistent;
|
||
float f; *&(int)f = 3.4 stores in int format
|
||
whereas (int)f = 3.4 stores in float format. */
|
||
/* Address of a cast is just a cast of the address
|
||
of the operand of the cast. */
|
||
switch (TREE_CODE (arg))
|
||
{
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
case FLOAT_EXPR:
|
||
case FIX_TRUNC_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_ROUND_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
if (pedantic)
|
||
pedwarn ("ANSI C forbids the address of a cast expression");
|
||
return convert (build_pointer_type (TREE_TYPE (arg)),
|
||
build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
|
||
0));
|
||
}
|
||
#endif
|
||
|
||
/* Allow the address of a constructor if all the elements
|
||
are constant. */
|
||
if (TREE_CODE (arg) == CONSTRUCTOR && TREE_CONSTANT (arg))
|
||
;
|
||
/* Anything not already handled and not a true memory reference
|
||
is an error. */
|
||
else if (typecode != FUNCTION_TYPE && !lvalue_or_else (arg, "unary `&'"))
|
||
return error_mark_node;
|
||
|
||
/* Ordinary case; arg is a COMPONENT_REF or a decl. */
|
||
argtype = TREE_TYPE (arg);
|
||
/* If the lvalue is const or volatile,
|
||
merge that into the type that the address will point to. */
|
||
if (TREE_CODE_CLASS (TREE_CODE (arg)) == 'd'
|
||
|| TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
|
||
{
|
||
if (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg))
|
||
argtype = c_build_type_variant (argtype,
|
||
TREE_READONLY (arg),
|
||
TREE_THIS_VOLATILE (arg));
|
||
}
|
||
|
||
argtype = build_pointer_type (argtype);
|
||
|
||
if (mark_addressable (arg) == 0)
|
||
return error_mark_node;
|
||
|
||
{
|
||
tree addr;
|
||
|
||
if (TREE_CODE (arg) == COMPONENT_REF)
|
||
{
|
||
tree field = TREE_OPERAND (arg, 1);
|
||
|
||
addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), 0);
|
||
|
||
if (DECL_C_BIT_FIELD (field))
|
||
{
|
||
error ("attempt to take address of bit-field structure member `%s'",
|
||
IDENTIFIER_POINTER (DECL_NAME (field)));
|
||
return error_mark_node;
|
||
}
|
||
|
||
addr = convert (argtype, addr);
|
||
|
||
if (! integer_zerop (DECL_FIELD_BITPOS (field)))
|
||
{
|
||
tree offset
|
||
= size_binop (EASY_DIV_EXPR, DECL_FIELD_BITPOS (field),
|
||
size_int (BITS_PER_UNIT));
|
||
int flag = TREE_CONSTANT (addr);
|
||
addr = fold (build (PLUS_EXPR, argtype,
|
||
addr, convert (argtype, offset)));
|
||
TREE_CONSTANT (addr) = flag;
|
||
}
|
||
}
|
||
else
|
||
addr = build1 (code, argtype, arg);
|
||
|
||
/* Address of a static or external variable or
|
||
file-scope function counts as a constant. */
|
||
if (staticp (arg)
|
||
&& ! (TREE_CODE (arg) == FUNCTION_DECL
|
||
&& DECL_CONTEXT (arg) != 0))
|
||
TREE_CONSTANT (addr) = 1;
|
||
return addr;
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (!errstring)
|
||
{
|
||
if (argtype == 0)
|
||
argtype = TREE_TYPE (arg);
|
||
return fold (build1 (code, argtype, arg));
|
||
}
|
||
|
||
error (errstring);
|
||
return error_mark_node;
|
||
}
|
||
|
||
#if 0
|
||
/* If CONVERSIONS is a conversion expression or a nested sequence of such,
|
||
convert ARG with the same conversions in the same order
|
||
and return the result. */
|
||
|
||
static tree
|
||
convert_sequence (conversions, arg)
|
||
tree conversions;
|
||
tree arg;
|
||
{
|
||
switch (TREE_CODE (conversions))
|
||
{
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
case FLOAT_EXPR:
|
||
case FIX_TRUNC_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_ROUND_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
return convert (TREE_TYPE (conversions),
|
||
convert_sequence (TREE_OPERAND (conversions, 0),
|
||
arg));
|
||
|
||
default:
|
||
return arg;
|
||
}
|
||
}
|
||
#endif /* 0 */
|
||
|
||
/* Return nonzero if REF is an lvalue valid for this language.
|
||
Lvalues can be assigned, unless their type has TYPE_READONLY.
|
||
Lvalues can have their address taken, unless they have DECL_REGISTER. */
|
||
|
||
int
|
||
lvalue_p (ref)
|
||
tree ref;
|
||
{
|
||
register enum tree_code code = TREE_CODE (ref);
|
||
|
||
switch (code)
|
||
{
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case COMPONENT_REF:
|
||
return lvalue_p (TREE_OPERAND (ref, 0));
|
||
|
||
case STRING_CST:
|
||
return 1;
|
||
|
||
case INDIRECT_REF:
|
||
case ARRAY_REF:
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
case ERROR_MARK:
|
||
return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
|
||
&& TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
|
||
|
||
case BIND_EXPR:
|
||
case RTL_EXPR:
|
||
return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if REF is an lvalue valid for this language;
|
||
otherwise, print an error message and return zero. */
|
||
|
||
int
|
||
lvalue_or_else (ref, string)
|
||
tree ref;
|
||
char *string;
|
||
{
|
||
int win = lvalue_p (ref);
|
||
if (! win)
|
||
error ("invalid lvalue in %s", string);
|
||
return win;
|
||
}
|
||
|
||
/* Apply unary lvalue-demanding operator CODE to the expression ARG
|
||
for certain kinds of expressions which are not really lvalues
|
||
but which we can accept as lvalues.
|
||
|
||
If ARG is not a kind of expression we can handle, return zero. */
|
||
|
||
static tree
|
||
unary_complex_lvalue (code, arg)
|
||
enum tree_code code;
|
||
tree arg;
|
||
{
|
||
/* Handle (a, b) used as an "lvalue". */
|
||
if (TREE_CODE (arg) == COMPOUND_EXPR)
|
||
{
|
||
tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
|
||
|
||
/* If this returns a function type, it isn't really being used as
|
||
an lvalue, so don't issue a warning about it. */
|
||
if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
|
||
pedantic_lvalue_warning (COMPOUND_EXPR);
|
||
|
||
return build (COMPOUND_EXPR, TREE_TYPE (real_result),
|
||
TREE_OPERAND (arg, 0), real_result);
|
||
}
|
||
|
||
/* Handle (a ? b : c) used as an "lvalue". */
|
||
if (TREE_CODE (arg) == COND_EXPR)
|
||
{
|
||
pedantic_lvalue_warning (COND_EXPR);
|
||
if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
|
||
pedantic_lvalue_warning (COMPOUND_EXPR);
|
||
|
||
return (build_conditional_expr
|
||
(TREE_OPERAND (arg, 0),
|
||
build_unary_op (code, TREE_OPERAND (arg, 1), 0),
|
||
build_unary_op (code, TREE_OPERAND (arg, 2), 0)));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If pedantic, warn about improper lvalue. CODE is either COND_EXPR
|
||
COMPOUND_EXPR, or CONVERT_EXPR (for casts). */
|
||
|
||
static void
|
||
pedantic_lvalue_warning (code)
|
||
enum tree_code code;
|
||
{
|
||
if (pedantic)
|
||
pedwarn ("ANSI C forbids use of %s expressions as lvalues",
|
||
code == COND_EXPR ? "conditional"
|
||
: code == COMPOUND_EXPR ? "compound" : "cast");
|
||
}
|
||
|
||
/* Warn about storing in something that is `const'. */
|
||
|
||
void
|
||
readonly_warning (arg, string)
|
||
tree arg;
|
||
char *string;
|
||
{
|
||
char buf[80];
|
||
strcpy (buf, string);
|
||
|
||
/* Forbid assignments to iterators. */
|
||
if (TREE_CODE (arg) == VAR_DECL && ITERATOR_P (arg))
|
||
{
|
||
strcat (buf, " of iterator `%s'");
|
||
pedwarn (buf, IDENTIFIER_POINTER (DECL_NAME (arg)));
|
||
}
|
||
|
||
if (TREE_CODE (arg) == COMPONENT_REF)
|
||
{
|
||
if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
|
||
readonly_warning (TREE_OPERAND (arg, 0), string);
|
||
else
|
||
{
|
||
strcat (buf, " of read-only member `%s'");
|
||
pedwarn (buf, IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
|
||
}
|
||
}
|
||
else if (TREE_CODE (arg) == VAR_DECL)
|
||
{
|
||
strcat (buf, " of read-only variable `%s'");
|
||
pedwarn (buf, IDENTIFIER_POINTER (DECL_NAME (arg)));
|
||
}
|
||
else
|
||
{
|
||
pedwarn ("%s of read-only location", buf);
|
||
}
|
||
}
|
||
|
||
/* Mark EXP saying that we need to be able to take the
|
||
address of it; it should not be allocated in a register.
|
||
Value is 1 if successful. */
|
||
|
||
int
|
||
mark_addressable (exp)
|
||
tree exp;
|
||
{
|
||
register tree x = exp;
|
||
while (1)
|
||
switch (TREE_CODE (x))
|
||
{
|
||
case COMPONENT_REF:
|
||
if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
|
||
{
|
||
error ("cannot take address of bitfield `%s'",
|
||
IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x, 1))));
|
||
return 0;
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case ADDR_EXPR:
|
||
case ARRAY_REF:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
x = TREE_OPERAND (x, 0);
|
||
break;
|
||
|
||
case CONSTRUCTOR:
|
||
TREE_ADDRESSABLE (x) = 1;
|
||
return 1;
|
||
|
||
case VAR_DECL:
|
||
case CONST_DECL:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x)
|
||
&& DECL_NONLOCAL (x))
|
||
{
|
||
if (TREE_PUBLIC (x))
|
||
{
|
||
error ("global register variable `%s' used in nested function",
|
||
IDENTIFIER_POINTER (DECL_NAME (x)));
|
||
return 0;
|
||
}
|
||
pedwarn ("register variable `%s' used in nested function",
|
||
IDENTIFIER_POINTER (DECL_NAME (x)));
|
||
}
|
||
else if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x))
|
||
{
|
||
if (TREE_PUBLIC (x))
|
||
{
|
||
error ("address of global register variable `%s' requested",
|
||
IDENTIFIER_POINTER (DECL_NAME (x)));
|
||
return 0;
|
||
}
|
||
|
||
/* If we are making this addressable due to its having
|
||
volatile components, give a different error message. Also
|
||
handle the case of an unnamed parameter by not trying
|
||
to give the name. */
|
||
|
||
else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x)))
|
||
{
|
||
error ("cannot put object with volatile field into register");
|
||
return 0;
|
||
}
|
||
|
||
pedwarn ("address of register variable `%s' requested",
|
||
IDENTIFIER_POINTER (DECL_NAME (x)));
|
||
}
|
||
put_var_into_stack (x);
|
||
|
||
/* drops in */
|
||
case FUNCTION_DECL:
|
||
TREE_ADDRESSABLE (x) = 1;
|
||
#if 0 /* poplevel deals with this now. */
|
||
if (DECL_CONTEXT (x) == 0)
|
||
TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1;
|
||
#endif
|
||
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Build and return a conditional expression IFEXP ? OP1 : OP2. */
|
||
|
||
tree
|
||
build_conditional_expr (ifexp, op1, op2)
|
||
tree ifexp, op1, op2;
|
||
{
|
||
register tree type1;
|
||
register tree type2;
|
||
register enum tree_code code1;
|
||
register enum tree_code code2;
|
||
register tree result_type = NULL;
|
||
tree orig_op1 = op1, orig_op2 = op2;
|
||
|
||
ifexp = truthvalue_conversion (default_conversion (ifexp));
|
||
|
||
#if 0 /* Produces wrong result if within sizeof. */
|
||
/* Don't promote the operands separately if they promote
|
||
the same way. Return the unpromoted type and let the combined
|
||
value get promoted if necessary. */
|
||
|
||
if (TREE_TYPE (op1) == TREE_TYPE (op2)
|
||
&& TREE_CODE (TREE_TYPE (op1)) != ARRAY_TYPE
|
||
&& TREE_CODE (TREE_TYPE (op1)) != ENUMERAL_TYPE
|
||
&& TREE_CODE (TREE_TYPE (op1)) != FUNCTION_TYPE)
|
||
{
|
||
if (TREE_CODE (ifexp) == INTEGER_CST)
|
||
return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
|
||
|
||
return fold (build (COND_EXPR, TREE_TYPE (op1), ifexp, op1, op2));
|
||
}
|
||
#endif
|
||
|
||
/* Promote both alternatives. */
|
||
|
||
if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
|
||
op1 = default_conversion (op1);
|
||
if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
|
||
op2 = default_conversion (op2);
|
||
|
||
if (TREE_CODE (ifexp) == ERROR_MARK
|
||
|| TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
|
||
|| TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
type1 = TREE_TYPE (op1);
|
||
code1 = TREE_CODE (type1);
|
||
type2 = TREE_TYPE (op2);
|
||
code2 = TREE_CODE (type2);
|
||
|
||
/* Quickly detect the usual case where op1 and op2 have the same type
|
||
after promotion. */
|
||
if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
|
||
{
|
||
if (type1 == type2)
|
||
result_type = type1;
|
||
else
|
||
result_type = TYPE_MAIN_VARIANT (type1);
|
||
}
|
||
else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE)
|
||
&& (code2 == INTEGER_TYPE || code2 == REAL_TYPE))
|
||
{
|
||
result_type = common_type (type1, type2);
|
||
}
|
||
else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
|
||
{
|
||
if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
|
||
pedwarn ("ANSI C forbids conditional expr with only one void side");
|
||
result_type = void_type_node;
|
||
}
|
||
else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
|
||
{
|
||
if (comp_target_types (type1, type2))
|
||
result_type = common_type (type1, type2);
|
||
else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
|
||
&& TREE_CODE (orig_op1) != NOP_EXPR)
|
||
result_type = qualify_type (type2, type1);
|
||
else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
|
||
&& TREE_CODE (orig_op2) != NOP_EXPR)
|
||
result_type = qualify_type (type1, type2);
|
||
else if (TYPE_MAIN_VARIANT (TREE_TYPE (type1)) == void_type_node)
|
||
{
|
||
if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
|
||
pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
|
||
result_type = qualify_type (type1, type2);
|
||
}
|
||
else if (TYPE_MAIN_VARIANT (TREE_TYPE (type2)) == void_type_node)
|
||
{
|
||
if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
|
||
pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
|
||
result_type = qualify_type (type2, type1);
|
||
}
|
||
else
|
||
{
|
||
pedwarn ("pointer type mismatch in conditional expression");
|
||
result_type = build_pointer_type (void_type_node);
|
||
}
|
||
}
|
||
else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
|
||
{
|
||
if (! integer_zerop (op2))
|
||
pedwarn ("pointer/integer type mismatch in conditional expression");
|
||
else
|
||
{
|
||
op2 = null_pointer_node;
|
||
#if 0 /* The spec seems to say this is permitted. */
|
||
if (pedantic && TREE_CODE (type1) == FUNCTION_TYPE)
|
||
pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
|
||
#endif
|
||
}
|
||
result_type = type1;
|
||
}
|
||
else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
if (!integer_zerop (op1))
|
||
pedwarn ("pointer/integer type mismatch in conditional expression");
|
||
else
|
||
{
|
||
op1 = null_pointer_node;
|
||
#if 0 /* The spec seems to say this is permitted. */
|
||
if (pedantic && TREE_CODE (type2) == FUNCTION_TYPE)
|
||
pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
|
||
#endif
|
||
}
|
||
result_type = type2;
|
||
}
|
||
|
||
if (!result_type)
|
||
{
|
||
if (flag_cond_mismatch)
|
||
result_type = void_type_node;
|
||
else
|
||
{
|
||
error ("type mismatch in conditional expression");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Merge const and volatile flags of the incoming types. */
|
||
result_type
|
||
= build_type_variant (result_type,
|
||
TREE_READONLY (op1) || TREE_READONLY (op2),
|
||
TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
|
||
|
||
if (result_type != TREE_TYPE (op1))
|
||
op1 = convert_and_check (result_type, op1);
|
||
if (result_type != TREE_TYPE (op2))
|
||
op2 = convert_and_check (result_type, op2);
|
||
|
||
#if 0
|
||
if (code1 == RECORD_TYPE || code1 == UNION_TYPE)
|
||
{
|
||
result_type = TREE_TYPE (op1);
|
||
if (TREE_CONSTANT (ifexp))
|
||
return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
|
||
|
||
if (TYPE_MODE (result_type) == BLKmode)
|
||
{
|
||
register tree tempvar
|
||
= build_decl (VAR_DECL, NULL_TREE, result_type);
|
||
register tree xop1 = build_modify_expr (tempvar, op1);
|
||
register tree xop2 = build_modify_expr (tempvar, op2);
|
||
register tree result = fold (build (COND_EXPR, result_type,
|
||
ifexp, xop1, xop2));
|
||
|
||
layout_decl (tempvar, TYPE_ALIGN (result_type));
|
||
/* No way to handle variable-sized objects here.
|
||
I fear that the entire handling of BLKmode conditional exprs
|
||
needs to be redone. */
|
||
if (TREE_CODE (DECL_SIZE (tempvar)) != INTEGER_CST)
|
||
abort ();
|
||
DECL_RTL (tempvar)
|
||
= assign_stack_local (DECL_MODE (tempvar),
|
||
(TREE_INT_CST_LOW (DECL_SIZE (tempvar))
|
||
+ BITS_PER_UNIT - 1)
|
||
/ BITS_PER_UNIT,
|
||
0);
|
||
|
||
TREE_SIDE_EFFECTS (result)
|
||
= TREE_SIDE_EFFECTS (ifexp) | TREE_SIDE_EFFECTS (op1)
|
||
| TREE_SIDE_EFFECTS (op2);
|
||
return build (COMPOUND_EXPR, result_type, result, tempvar);
|
||
}
|
||
}
|
||
#endif /* 0 */
|
||
|
||
if (TREE_CODE (ifexp) == INTEGER_CST)
|
||
return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
|
||
|
||
return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
|
||
}
|
||
|
||
/* Given a list of expressions, return a compound expression
|
||
that performs them all and returns the value of the last of them. */
|
||
|
||
tree
|
||
build_compound_expr (list)
|
||
tree list;
|
||
{
|
||
return internal_build_compound_expr (list, TRUE);
|
||
}
|
||
|
||
static tree
|
||
internal_build_compound_expr (list, first_p)
|
||
tree list;
|
||
int first_p;
|
||
{
|
||
register tree rest;
|
||
|
||
if (TREE_CHAIN (list) == 0)
|
||
{
|
||
#if 0 /* If something inside inhibited lvalueness, we should not override. */
|
||
/* Consider (x, y+0), which is not an lvalue since y+0 is not. */
|
||
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
|
||
if (TREE_CODE (list) == NON_LVALUE_EXPR)
|
||
list = TREE_OPERAND (list, 0);
|
||
#endif
|
||
|
||
/* Don't let (0, 0) be null pointer constant. */
|
||
if (!first_p && integer_zerop (TREE_VALUE (list)))
|
||
return non_lvalue (TREE_VALUE (list));
|
||
return TREE_VALUE (list);
|
||
}
|
||
|
||
if (TREE_CHAIN (list) != 0 && TREE_CHAIN (TREE_CHAIN (list)) == 0)
|
||
{
|
||
/* Convert arrays to pointers when there really is a comma operator. */
|
||
if (TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (list)))) == ARRAY_TYPE)
|
||
TREE_VALUE (TREE_CHAIN (list))
|
||
= default_conversion (TREE_VALUE (TREE_CHAIN (list)));
|
||
}
|
||
|
||
rest = internal_build_compound_expr (TREE_CHAIN (list), FALSE);
|
||
|
||
if (! TREE_SIDE_EFFECTS (TREE_VALUE (list)))
|
||
{
|
||
/* The left-hand operand of a comma expression is like an expression
|
||
statement: with -W or -Wunused, we should warn if it doesn't have
|
||
any side-effects, unless it was explicitly cast to (void). */
|
||
if ((extra_warnings || warn_unused)
|
||
&& ! (TREE_CODE (TREE_VALUE (list)) == CONVERT_EXPR
|
||
&& TREE_TYPE (TREE_VALUE (list)) == void_type_node))
|
||
warning ("left-hand operand of comma expression has no effect");
|
||
|
||
/* When pedantic, a compound expression can be neither an lvalue
|
||
nor an integer constant expression. */
|
||
if (! pedantic)
|
||
return rest;
|
||
}
|
||
|
||
/* With -Wunused, we should also warn if the left-hand operand does have
|
||
side-effects, but computes a value which is not used. For example, in
|
||
`foo() + bar(), baz()' the result of the `+' operator is not used,
|
||
so we should issue a warning. */
|
||
else if (warn_unused)
|
||
warn_if_unused_value (TREE_VALUE (list));
|
||
|
||
return build (COMPOUND_EXPR, TREE_TYPE (rest), TREE_VALUE (list), rest);
|
||
}
|
||
|
||
/* Build an expression representing a cast to type TYPE of expression EXPR. */
|
||
|
||
tree
|
||
build_c_cast (type, expr)
|
||
register tree type;
|
||
tree expr;
|
||
{
|
||
register tree value = expr;
|
||
|
||
if (type == error_mark_node || expr == error_mark_node)
|
||
return error_mark_node;
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
#if 0
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
|
||
if (TREE_CODE (value) == NON_LVALUE_EXPR)
|
||
value = TREE_OPERAND (value, 0);
|
||
#endif
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
error ("cast specifies array type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("cast specifies function type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (type == TREE_TYPE (value))
|
||
{
|
||
if (pedantic)
|
||
{
|
||
if (TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE)
|
||
pedwarn ("ANSI C forbids casting nonscalar to the same type");
|
||
}
|
||
}
|
||
else if (TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
tree field;
|
||
if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
|
||
|| TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE)
|
||
value = default_conversion (value);
|
||
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
|
||
TYPE_MAIN_VARIANT (TREE_TYPE (value))))
|
||
break;
|
||
|
||
if (field)
|
||
{
|
||
char *name;
|
||
tree t;
|
||
|
||
if (pedantic)
|
||
pedwarn ("ANSI C forbids casts to union type");
|
||
if (TYPE_NAME (type) != 0)
|
||
{
|
||
if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
|
||
name = IDENTIFIER_POINTER (TYPE_NAME (type));
|
||
else
|
||
name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
|
||
}
|
||
else
|
||
name = "";
|
||
t = digest_init (type, build (CONSTRUCTOR, type, NULL_TREE,
|
||
build_tree_list (field, value)),
|
||
0, 0);
|
||
TREE_CONSTANT (t) = TREE_CONSTANT (value);
|
||
return t;
|
||
}
|
||
error ("cast to union type from type not present in union");
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
tree otype, ovalue;
|
||
|
||
/* If casting to void, avoid the error that would come
|
||
from default_conversion in the case of a non-lvalue array. */
|
||
if (type == void_type_node)
|
||
return build1 (CONVERT_EXPR, type, value);
|
||
|
||
/* Convert functions and arrays to pointers,
|
||
but don't convert any other types. */
|
||
if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE)
|
||
value = default_conversion (value);
|
||
otype = TREE_TYPE (value);
|
||
|
||
/* Optionally warn about potentially worrisome casts. */
|
||
|
||
if (warn_cast_qual
|
||
&& TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (otype) == POINTER_TYPE)
|
||
{
|
||
/* Go to the innermost object being pointed to. */
|
||
tree in_type = type;
|
||
tree in_otype = otype;
|
||
|
||
while (TREE_CODE (in_type) == POINTER_TYPE)
|
||
in_type = TREE_TYPE (in_type);
|
||
while (TREE_CODE (in_otype) == POINTER_TYPE)
|
||
in_otype = TREE_TYPE (in_otype);
|
||
|
||
if (TYPE_VOLATILE (in_otype) && ! TYPE_VOLATILE (in_type))
|
||
pedwarn ("cast discards `volatile' from pointer target type");
|
||
if (TYPE_READONLY (in_otype) && ! TYPE_READONLY (in_type))
|
||
pedwarn ("cast discards `const' from pointer target type");
|
||
}
|
||
|
||
/* Warn about possible alignment problems. */
|
||
if (STRICT_ALIGNMENT && warn_cast_align
|
||
&& TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (otype) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
|
||
&& TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
|
||
/* Don't warn about opaque types, where the actual alignment
|
||
restriction is unknown. */
|
||
&& !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
|
||
&& TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
|
||
&& TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
|
||
warning ("cast increases required alignment of target type");
|
||
|
||
if (TREE_CODE (type) == INTEGER_TYPE
|
||
&& TREE_CODE (otype) == POINTER_TYPE
|
||
&& TYPE_PRECISION (type) != TYPE_PRECISION (otype)
|
||
&& !TREE_CONSTANT (value))
|
||
warning ("cast from pointer to integer of different size");
|
||
|
||
if (warn_bad_function_cast
|
||
&& TREE_CODE (value) == CALL_EXPR
|
||
&& TREE_CODE (type) != TREE_CODE (otype))
|
||
warning ("cast does not match function type");
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (otype) == INTEGER_TYPE
|
||
&& TYPE_PRECISION (type) != TYPE_PRECISION (otype)
|
||
#if 0
|
||
/* Don't warn about converting 0 to pointer,
|
||
provided the 0 was explicit--not cast or made by folding. */
|
||
&& !(TREE_CODE (value) == INTEGER_CST && integer_zerop (value))
|
||
#endif
|
||
/* Don't warn about converting any constant. */
|
||
&& !TREE_CONSTANT (value))
|
||
warning ("cast to pointer from integer of different size");
|
||
|
||
ovalue = value;
|
||
value = convert (type, value);
|
||
|
||
/* Ignore any integer overflow caused by the cast. */
|
||
if (TREE_CODE (value) == INTEGER_CST)
|
||
{
|
||
TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
|
||
TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
|
||
}
|
||
}
|
||
|
||
/* Pedantically, don't ley (void *) (FOO *) 0 be a null pointer constant. */
|
||
if (pedantic && TREE_CODE (value) == INTEGER_CST
|
||
&& TREE_CODE (expr) == INTEGER_CST
|
||
&& TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
|
||
value = non_lvalue (value);
|
||
|
||
/* If pedantic, don't let a cast be an lvalue. */
|
||
if (value == expr && pedantic)
|
||
value = non_lvalue (value);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Build an assignment expression of lvalue LHS from value RHS.
|
||
MODIFYCODE is the code for a binary operator that we use
|
||
to combine the old value of LHS with RHS to get the new value.
|
||
Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
|
||
|
||
tree
|
||
build_modify_expr (lhs, modifycode, rhs)
|
||
tree lhs, rhs;
|
||
enum tree_code modifycode;
|
||
{
|
||
register tree result;
|
||
tree newrhs;
|
||
tree lhstype = TREE_TYPE (lhs);
|
||
tree olhstype = lhstype;
|
||
|
||
/* Types that aren't fully specified cannot be used in assignments. */
|
||
lhs = require_complete_type (lhs);
|
||
|
||
/* Avoid duplicate error messages from operands that had errors. */
|
||
if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
|
||
/* Do not use STRIP_NOPS here. We do not want an enumerator
|
||
whose value is 0 to count as a null pointer constant. */
|
||
if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
|
||
rhs = TREE_OPERAND (rhs, 0);
|
||
|
||
newrhs = rhs;
|
||
|
||
/* Handle control structure constructs used as "lvalues". */
|
||
|
||
switch (TREE_CODE (lhs))
|
||
{
|
||
/* Handle (a, b) used as an "lvalue". */
|
||
case COMPOUND_EXPR:
|
||
pedantic_lvalue_warning (COMPOUND_EXPR);
|
||
newrhs = build_modify_expr (TREE_OPERAND (lhs, 1),
|
||
modifycode, rhs);
|
||
if (TREE_CODE (newrhs) == ERROR_MARK)
|
||
return error_mark_node;
|
||
return build (COMPOUND_EXPR, lhstype,
|
||
TREE_OPERAND (lhs, 0), newrhs);
|
||
|
||
/* Handle (a ? b : c) used as an "lvalue". */
|
||
case COND_EXPR:
|
||
pedantic_lvalue_warning (COND_EXPR);
|
||
rhs = save_expr (rhs);
|
||
{
|
||
/* Produce (a ? (b = rhs) : (c = rhs))
|
||
except that the RHS goes through a save-expr
|
||
so the code to compute it is only emitted once. */
|
||
tree cond
|
||
= build_conditional_expr (TREE_OPERAND (lhs, 0),
|
||
build_modify_expr (TREE_OPERAND (lhs, 1),
|
||
modifycode, rhs),
|
||
build_modify_expr (TREE_OPERAND (lhs, 2),
|
||
modifycode, rhs));
|
||
if (TREE_CODE (cond) == ERROR_MARK)
|
||
return cond;
|
||
/* Make sure the code to compute the rhs comes out
|
||
before the split. */
|
||
return build (COMPOUND_EXPR, TREE_TYPE (lhs),
|
||
/* But cast it to void to avoid an "unused" error. */
|
||
convert (void_type_node, rhs), cond);
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If a binary op has been requested, combine the old LHS value with the RHS
|
||
producing the value we should actually store into the LHS. */
|
||
|
||
if (modifycode != NOP_EXPR)
|
||
{
|
||
lhs = stabilize_reference (lhs);
|
||
newrhs = build_binary_op (modifycode, lhs, rhs, 1);
|
||
}
|
||
|
||
/* Handle a cast used as an "lvalue".
|
||
We have already performed any binary operator using the value as cast.
|
||
Now convert the result to the cast type of the lhs,
|
||
and then true type of the lhs and store it there;
|
||
then convert result back to the cast type to be the value
|
||
of the assignment. */
|
||
|
||
switch (TREE_CODE (lhs))
|
||
{
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
case FLOAT_EXPR:
|
||
case FIX_TRUNC_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_ROUND_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
if (TREE_CODE (TREE_TYPE (newrhs)) == ARRAY_TYPE
|
||
|| TREE_CODE (TREE_TYPE (newrhs)) == FUNCTION_TYPE)
|
||
newrhs = default_conversion (newrhs);
|
||
{
|
||
tree inner_lhs = TREE_OPERAND (lhs, 0);
|
||
tree result;
|
||
result = build_modify_expr (inner_lhs, NOP_EXPR,
|
||
convert (TREE_TYPE (inner_lhs),
|
||
convert (lhstype, newrhs)));
|
||
if (TREE_CODE (result) == ERROR_MARK)
|
||
return result;
|
||
pedantic_lvalue_warning (CONVERT_EXPR);
|
||
return convert (TREE_TYPE (lhs), result);
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Now we have handled acceptable kinds of LHS that are not truly lvalues.
|
||
Reject anything strange now. */
|
||
|
||
if (!lvalue_or_else (lhs, "assignment"))
|
||
return error_mark_node;
|
||
|
||
/* Warn about storing in something that is `const'. */
|
||
|
||
if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
|
||
|| ((TREE_CODE (lhstype) == RECORD_TYPE
|
||
|| TREE_CODE (lhstype) == UNION_TYPE)
|
||
&& C_TYPE_FIELDS_READONLY (lhstype)))
|
||
readonly_warning (lhs, "assignment");
|
||
|
||
/* If storing into a structure or union member,
|
||
it has probably been given type `int'.
|
||
Compute the type that would go with
|
||
the actual amount of storage the member occupies. */
|
||
|
||
if (TREE_CODE (lhs) == COMPONENT_REF
|
||
&& (TREE_CODE (lhstype) == INTEGER_TYPE
|
||
|| TREE_CODE (lhstype) == REAL_TYPE
|
||
|| TREE_CODE (lhstype) == ENUMERAL_TYPE))
|
||
lhstype = TREE_TYPE (get_unwidened (lhs, 0));
|
||
|
||
/* If storing in a field that is in actuality a short or narrower than one,
|
||
we must store in the field in its actual type. */
|
||
|
||
if (lhstype != TREE_TYPE (lhs))
|
||
{
|
||
lhs = copy_node (lhs);
|
||
TREE_TYPE (lhs) = lhstype;
|
||
}
|
||
|
||
/* Convert new value to destination type. */
|
||
|
||
newrhs = convert_for_assignment (lhstype, newrhs, "assignment",
|
||
NULL_TREE, NULL_TREE, 0);
|
||
if (TREE_CODE (newrhs) == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
|
||
TREE_SIDE_EFFECTS (result) = 1;
|
||
|
||
/* If we got the LHS in a different type for storing in,
|
||
convert the result back to the nominal type of LHS
|
||
so that the value we return always has the same type
|
||
as the LHS argument. */
|
||
|
||
if (olhstype == TREE_TYPE (result))
|
||
return result;
|
||
return convert_for_assignment (olhstype, result, "assignment",
|
||
NULL_TREE, NULL_TREE, 0);
|
||
}
|
||
|
||
/* Convert value RHS to type TYPE as preparation for an assignment
|
||
to an lvalue of type TYPE.
|
||
The real work of conversion is done by `convert'.
|
||
The purpose of this function is to generate error messages
|
||
for assignments that are not allowed in C.
|
||
ERRTYPE is a string to use in error messages:
|
||
"assignment", "return", etc. If it is null, this is parameter passing
|
||
for a function call (and different error messages are output). Otherwise,
|
||
it may be a name stored in the spelling stack and interpreted by
|
||
get_spelling.
|
||
|
||
FUNNAME is the name of the function being called,
|
||
as an IDENTIFIER_NODE, or null.
|
||
PARMNUM is the number of the argument, for printing in error messages. */
|
||
|
||
static tree
|
||
convert_for_assignment (type, rhs, errtype, fundecl, funname, parmnum)
|
||
tree type, rhs;
|
||
char *errtype;
|
||
tree fundecl, funname;
|
||
int parmnum;
|
||
{
|
||
register enum tree_code codel = TREE_CODE (type);
|
||
register tree rhstype;
|
||
register enum tree_code coder;
|
||
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
|
||
/* Do not use STRIP_NOPS here. We do not want an enumerator
|
||
whose value is 0 to count as a null pointer constant. */
|
||
if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
|
||
rhs = TREE_OPERAND (rhs, 0);
|
||
|
||
if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
|
||
|| TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
|
||
rhs = default_conversion (rhs);
|
||
else if (optimize && TREE_CODE (rhs) == VAR_DECL)
|
||
rhs = decl_constant_value (rhs);
|
||
|
||
rhstype = TREE_TYPE (rhs);
|
||
coder = TREE_CODE (rhstype);
|
||
|
||
if (coder == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
|
||
{
|
||
overflow_warning (rhs);
|
||
/* Check for Objective-C protocols. This will issue a warning if
|
||
there are protocol violations. No need to use the return value. */
|
||
maybe_objc_comptypes (type, rhstype, 0);
|
||
return rhs;
|
||
}
|
||
|
||
if (coder == VOID_TYPE)
|
||
{
|
||
error ("void value not ignored as it ought to be");
|
||
return error_mark_node;
|
||
}
|
||
/* Arithmetic types all interconvert, and enum is treated like int. */
|
||
if ((codel == INTEGER_TYPE || codel == REAL_TYPE || codel == ENUMERAL_TYPE
|
||
|| codel == COMPLEX_TYPE)
|
||
&& (coder == INTEGER_TYPE || coder == REAL_TYPE || coder == ENUMERAL_TYPE
|
||
|| coder == COMPLEX_TYPE))
|
||
return convert_and_check (type, rhs);
|
||
|
||
/* Conversion to a transparent union from its member types.
|
||
This applies only to function arguments. */
|
||
else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type) && ! errtype)
|
||
{
|
||
tree memb_types;
|
||
tree marginal_memb_type = 0;
|
||
|
||
for (memb_types = TYPE_FIELDS (type); memb_types;
|
||
memb_types = TREE_CHAIN (memb_types))
|
||
{
|
||
tree memb_type = TREE_TYPE (memb_types);
|
||
|
||
if (comptypes (TYPE_MAIN_VARIANT (memb_type),
|
||
TYPE_MAIN_VARIANT (rhstype)))
|
||
break;
|
||
|
||
if (TREE_CODE (memb_type) != POINTER_TYPE)
|
||
continue;
|
||
|
||
if (coder == POINTER_TYPE)
|
||
{
|
||
register tree ttl = TREE_TYPE (memb_type);
|
||
register tree ttr = TREE_TYPE (rhstype);
|
||
|
||
/* Any non-function converts to a [const][volatile] void *
|
||
and vice versa; otherwise, targets must be the same.
|
||
Meanwhile, the lhs target must have all the qualifiers of
|
||
the rhs. */
|
||
if (TYPE_MAIN_VARIANT (ttl) == void_type_node
|
||
|| TYPE_MAIN_VARIANT (ttr) == void_type_node
|
||
|| comp_target_types (memb_type, rhstype))
|
||
{
|
||
/* If this type won't generate any warnings, use it. */
|
||
if ((TREE_CODE (ttr) == FUNCTION_TYPE
|
||
&& TREE_CODE (ttl) == FUNCTION_TYPE)
|
||
? ((! TYPE_READONLY (ttl) | TYPE_READONLY (ttr))
|
||
& (! TYPE_VOLATILE (ttl) | TYPE_VOLATILE (ttr)))
|
||
: ((TYPE_READONLY (ttl) | ! TYPE_READONLY (ttr))
|
||
& (TYPE_VOLATILE (ttl) | ! TYPE_VOLATILE (ttr))))
|
||
break;
|
||
|
||
/* Keep looking for a better type, but remember this one. */
|
||
if (! marginal_memb_type)
|
||
marginal_memb_type = memb_type;
|
||
}
|
||
}
|
||
|
||
/* Can convert integer zero to any pointer type. */
|
||
if (integer_zerop (rhs)
|
||
|| (TREE_CODE (rhs) == NOP_EXPR
|
||
&& integer_zerop (TREE_OPERAND (rhs, 0))))
|
||
{
|
||
rhs = null_pointer_node;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (memb_types || marginal_memb_type)
|
||
{
|
||
if (! memb_types)
|
||
{
|
||
/* We have only a marginally acceptable member type;
|
||
it needs a warning. */
|
||
register tree ttl = TREE_TYPE (marginal_memb_type);
|
||
register tree ttr = TREE_TYPE (rhstype);
|
||
|
||
/* Const and volatile mean something different for function
|
||
types, so the usual warnings are not appropriate. */
|
||
if (TREE_CODE (ttr) == FUNCTION_TYPE
|
||
&& TREE_CODE (ttl) == FUNCTION_TYPE)
|
||
{
|
||
/* Because const and volatile on functions are
|
||
restrictions that say the function will not do
|
||
certain things, it is okay to use a const or volatile
|
||
function where an ordinary one is wanted, but not
|
||
vice-versa. */
|
||
if (TYPE_READONLY (ttl) && ! TYPE_READONLY (ttr))
|
||
warn_for_assignment ("%s makes `const *' function pointer from non-const",
|
||
get_spelling (errtype), funname,
|
||
parmnum);
|
||
if (TYPE_VOLATILE (ttl) && ! TYPE_VOLATILE (ttr))
|
||
warn_for_assignment ("%s makes `volatile *' function pointer from non-volatile",
|
||
get_spelling (errtype), funname,
|
||
parmnum);
|
||
}
|
||
else
|
||
{
|
||
if (! TYPE_READONLY (ttl) && TYPE_READONLY (ttr))
|
||
warn_for_assignment ("%s discards `const' from pointer target type",
|
||
get_spelling (errtype), funname,
|
||
parmnum);
|
||
if (! TYPE_VOLATILE (ttl) && TYPE_VOLATILE (ttr))
|
||
warn_for_assignment ("%s discards `volatile' from pointer target type",
|
||
get_spelling (errtype), funname,
|
||
parmnum);
|
||
}
|
||
}
|
||
|
||
if (pedantic && ! DECL_IN_SYSTEM_HEADER (fundecl))
|
||
pedwarn ("ANSI C prohibits argument conversion to union type");
|
||
|
||
return build1 (NOP_EXPR, type, rhs);
|
||
}
|
||
}
|
||
|
||
/* Conversions among pointers */
|
||
else if (codel == POINTER_TYPE && coder == POINTER_TYPE)
|
||
{
|
||
register tree ttl = TREE_TYPE (type);
|
||
register tree ttr = TREE_TYPE (rhstype);
|
||
|
||
/* Any non-function converts to a [const][volatile] void *
|
||
and vice versa; otherwise, targets must be the same.
|
||
Meanwhile, the lhs target must have all the qualifiers of the rhs. */
|
||
if (TYPE_MAIN_VARIANT (ttl) == void_type_node
|
||
|| TYPE_MAIN_VARIANT (ttr) == void_type_node
|
||
|| comp_target_types (type, rhstype)
|
||
|| (unsigned_type (TYPE_MAIN_VARIANT (ttl))
|
||
== unsigned_type (TYPE_MAIN_VARIANT (ttr))))
|
||
{
|
||
if (pedantic
|
||
&& ((TYPE_MAIN_VARIANT (ttl) == void_type_node
|
||
&& TREE_CODE (ttr) == FUNCTION_TYPE)
|
||
||
|
||
(TYPE_MAIN_VARIANT (ttr) == void_type_node
|
||
/* Check TREE_CODE to catch cases like (void *) (char *) 0
|
||
which are not ANSI null ptr constants. */
|
||
&& (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
|
||
&& TREE_CODE (ttl) == FUNCTION_TYPE)))
|
||
warn_for_assignment ("ANSI forbids %s between function pointer and `void *'",
|
||
get_spelling (errtype), funname, parmnum);
|
||
/* Const and volatile mean something different for function types,
|
||
so the usual warnings are not appropriate. */
|
||
else if (TREE_CODE (ttr) != FUNCTION_TYPE
|
||
&& TREE_CODE (ttl) != FUNCTION_TYPE)
|
||
{
|
||
if (! TYPE_READONLY (ttl) && TYPE_READONLY (ttr))
|
||
warn_for_assignment ("%s discards `const' from pointer target type",
|
||
get_spelling (errtype), funname, parmnum);
|
||
else if (! TYPE_VOLATILE (ttl) && TYPE_VOLATILE (ttr))
|
||
warn_for_assignment ("%s discards `volatile' from pointer target type",
|
||
get_spelling (errtype), funname, parmnum);
|
||
/* If this is not a case of ignoring a mismatch in signedness,
|
||
no warning. */
|
||
else if (TYPE_MAIN_VARIANT (ttl) == void_type_node
|
||
|| TYPE_MAIN_VARIANT (ttr) == void_type_node
|
||
|| comp_target_types (type, rhstype))
|
||
;
|
||
/* If there is a mismatch, do warn. */
|
||
else if (pedantic)
|
||
warn_for_assignment ("pointer targets in %s differ in signedness",
|
||
get_spelling (errtype), funname, parmnum);
|
||
}
|
||
else if (TREE_CODE (ttl) == FUNCTION_TYPE
|
||
&& TREE_CODE (ttr) == FUNCTION_TYPE)
|
||
{
|
||
/* Because const and volatile on functions are restrictions
|
||
that say the function will not do certain things,
|
||
it is okay to use a const or volatile function
|
||
where an ordinary one is wanted, but not vice-versa. */
|
||
if (TYPE_READONLY (ttl) && ! TYPE_READONLY (ttr))
|
||
warn_for_assignment ("%s makes `const *' function pointer from non-const",
|
||
get_spelling (errtype), funname, parmnum);
|
||
if (TYPE_VOLATILE (ttl) && ! TYPE_VOLATILE (ttr))
|
||
warn_for_assignment ("%s makes `volatile *' function pointer from non-volatile",
|
||
get_spelling (errtype), funname, parmnum);
|
||
}
|
||
}
|
||
else
|
||
warn_for_assignment ("%s from incompatible pointer type",
|
||
get_spelling (errtype), funname, parmnum);
|
||
return convert (type, rhs);
|
||
}
|
||
else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
|
||
{
|
||
/* An explicit constant 0 can convert to a pointer,
|
||
or one that results from arithmetic, even including
|
||
a cast to integer type. */
|
||
if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
|
||
&&
|
||
! (TREE_CODE (rhs) == NOP_EXPR
|
||
&& TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
|
||
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
|
||
&& integer_zerop (TREE_OPERAND (rhs, 0))))
|
||
{
|
||
warn_for_assignment ("%s makes pointer from integer without a cast",
|
||
get_spelling (errtype), funname, parmnum);
|
||
return convert (type, rhs);
|
||
}
|
||
return null_pointer_node;
|
||
}
|
||
else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
|
||
{
|
||
warn_for_assignment ("%s makes integer from pointer without a cast",
|
||
get_spelling (errtype), funname, parmnum);
|
||
return convert (type, rhs);
|
||
}
|
||
|
||
if (!errtype)
|
||
{
|
||
if (funname)
|
||
{
|
||
tree selector = maybe_building_objc_message_expr ();
|
||
|
||
if (selector && parmnum > 2)
|
||
error ("incompatible type for argument %d of `%s'",
|
||
parmnum - 2, IDENTIFIER_POINTER (selector));
|
||
else
|
||
error ("incompatible type for argument %d of `%s'",
|
||
parmnum, IDENTIFIER_POINTER (funname));
|
||
}
|
||
else
|
||
error ("incompatible type for argument %d of indirect function call",
|
||
parmnum);
|
||
}
|
||
else
|
||
error ("incompatible types in %s", get_spelling (errtype));
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Print a warning using MSG.
|
||
It gets OPNAME as its one parameter.
|
||
If OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
|
||
FUNCTION and ARGNUM are handled specially if we are building an
|
||
Objective-C selector. */
|
||
|
||
static void
|
||
warn_for_assignment (msg, opname, function, argnum)
|
||
char *msg;
|
||
char *opname;
|
||
tree function;
|
||
int argnum;
|
||
{
|
||
static char argstring[] = "passing arg %d of `%s'";
|
||
static char argnofun[] = "passing arg %d";
|
||
|
||
if (opname == 0)
|
||
{
|
||
tree selector = maybe_building_objc_message_expr ();
|
||
|
||
if (selector && argnum > 2)
|
||
{
|
||
function = selector;
|
||
argnum -= 2;
|
||
}
|
||
if (function)
|
||
{
|
||
/* Function name is known; supply it. */
|
||
opname = (char *) alloca (IDENTIFIER_LENGTH (function)
|
||
+ sizeof (argstring) + 25 /*%d*/ + 1);
|
||
sprintf (opname, argstring, argnum, IDENTIFIER_POINTER (function));
|
||
}
|
||
else
|
||
{
|
||
/* Function name unknown (call through ptr); just give arg number. */
|
||
opname = (char *) alloca (sizeof (argnofun) + 25 /*%d*/ + 1);
|
||
sprintf (opname, argnofun, argnum);
|
||
}
|
||
}
|
||
pedwarn (msg, opname);
|
||
}
|
||
|
||
/* Return nonzero if VALUE is a valid constant-valued expression
|
||
for use in initializing a static variable; one that can be an
|
||
element of a "constant" initializer.
|
||
|
||
Return null_pointer_node if the value is absolute;
|
||
if it is relocatable, return the variable that determines the relocation.
|
||
We assume that VALUE has been folded as much as possible;
|
||
therefore, we do not need to check for such things as
|
||
arithmetic-combinations of integers. */
|
||
|
||
tree
|
||
initializer_constant_valid_p (value, endtype)
|
||
tree value;
|
||
tree endtype;
|
||
{
|
||
switch (TREE_CODE (value))
|
||
{
|
||
case CONSTRUCTOR:
|
||
if ((TREE_CODE (TREE_TYPE (value)) == UNION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (value)) == RECORD_TYPE)
|
||
&& TREE_CONSTANT (value)
|
||
&& CONSTRUCTOR_ELTS (value))
|
||
return
|
||
initializer_constant_valid_p (TREE_VALUE (CONSTRUCTOR_ELTS (value)),
|
||
endtype);
|
||
|
||
return TREE_STATIC (value) ? null_pointer_node : 0;
|
||
|
||
case INTEGER_CST:
|
||
case REAL_CST:
|
||
case STRING_CST:
|
||
case COMPLEX_CST:
|
||
return null_pointer_node;
|
||
|
||
case ADDR_EXPR:
|
||
return TREE_OPERAND (value, 0);
|
||
|
||
case NON_LVALUE_EXPR:
|
||
return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
|
||
|
||
case CONVERT_EXPR:
|
||
case NOP_EXPR:
|
||
/* Allow conversions between pointer types. */
|
||
if (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == POINTER_TYPE)
|
||
return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
|
||
|
||
/* Allow conversions between real types. */
|
||
if (TREE_CODE (TREE_TYPE (value)) == REAL_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == REAL_TYPE)
|
||
return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
|
||
|
||
/* Allow length-preserving conversions between integer types. */
|
||
if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE
|
||
&& (TYPE_PRECISION (TREE_TYPE (value))
|
||
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
|
||
return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
|
||
|
||
/* Allow conversions between other integer types only if
|
||
explicit value. */
|
||
if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE)
|
||
{
|
||
tree inner = initializer_constant_valid_p (TREE_OPERAND (value, 0),
|
||
endtype);
|
||
if (inner == null_pointer_node)
|
||
return null_pointer_node;
|
||
return 0;
|
||
}
|
||
|
||
/* Allow (int) &foo provided int is as wide as a pointer. */
|
||
if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == POINTER_TYPE
|
||
&& (TYPE_PRECISION (TREE_TYPE (value))
|
||
>= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
|
||
return initializer_constant_valid_p (TREE_OPERAND (value, 0),
|
||
endtype);
|
||
|
||
/* Likewise conversions from int to pointers, but also allow
|
||
conversions from 0. */
|
||
if (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE)
|
||
{
|
||
if (integer_zerop (TREE_OPERAND (value, 0)))
|
||
return null_pointer_node;
|
||
else if (TYPE_PRECISION (TREE_TYPE (value))
|
||
<= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0))))
|
||
return initializer_constant_valid_p (TREE_OPERAND (value, 0),
|
||
endtype);
|
||
}
|
||
|
||
/* Allow conversions to union types if the value inside is okay. */
|
||
if (TREE_CODE (TREE_TYPE (value)) == UNION_TYPE)
|
||
return initializer_constant_valid_p (TREE_OPERAND (value, 0),
|
||
endtype);
|
||
return 0;
|
||
|
||
case PLUS_EXPR:
|
||
if (TREE_CODE (endtype) == INTEGER_TYPE
|
||
&& TYPE_PRECISION (endtype) < POINTER_SIZE)
|
||
return 0;
|
||
{
|
||
tree valid0 = initializer_constant_valid_p (TREE_OPERAND (value, 0),
|
||
endtype);
|
||
tree valid1 = initializer_constant_valid_p (TREE_OPERAND (value, 1),
|
||
endtype);
|
||
/* If either term is absolute, use the other terms relocation. */
|
||
if (valid0 == null_pointer_node)
|
||
return valid1;
|
||
if (valid1 == null_pointer_node)
|
||
return valid0;
|
||
return 0;
|
||
}
|
||
|
||
case MINUS_EXPR:
|
||
if (TREE_CODE (endtype) == INTEGER_TYPE
|
||
&& TYPE_PRECISION (endtype) < POINTER_SIZE)
|
||
return 0;
|
||
{
|
||
tree valid0 = initializer_constant_valid_p (TREE_OPERAND (value, 0),
|
||
endtype);
|
||
tree valid1 = initializer_constant_valid_p (TREE_OPERAND (value, 1),
|
||
endtype);
|
||
/* Win if second argument is absolute. */
|
||
if (valid1 == null_pointer_node)
|
||
return valid0;
|
||
/* Win if both arguments have the same relocation.
|
||
Then the value is absolute. */
|
||
if (valid0 == valid1)
|
||
return null_pointer_node;
|
||
return 0;
|
||
}
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* If VALUE is a compound expr all of whose expressions are constant, then
|
||
return its value. Otherwise, return error_mark_node.
|
||
|
||
This is for handling COMPOUND_EXPRs as initializer elements
|
||
which is allowed with a warning when -pedantic is specified. */
|
||
|
||
static tree
|
||
valid_compound_expr_initializer (value, endtype)
|
||
tree value;
|
||
tree endtype;
|
||
{
|
||
if (TREE_CODE (value) == COMPOUND_EXPR)
|
||
{
|
||
if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
|
||
== error_mark_node)
|
||
return error_mark_node;
|
||
return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
|
||
endtype);
|
||
}
|
||
else if (! TREE_CONSTANT (value)
|
||
&& ! initializer_constant_valid_p (value, endtype))
|
||
return error_mark_node;
|
||
else
|
||
return value;
|
||
}
|
||
|
||
/* Perform appropriate conversions on the initial value of a variable,
|
||
store it in the declaration DECL,
|
||
and print any error messages that are appropriate.
|
||
If the init is invalid, store an ERROR_MARK. */
|
||
|
||
void
|
||
store_init_value (decl, init)
|
||
tree decl, init;
|
||
{
|
||
register tree value, type;
|
||
|
||
/* If variable's type was invalidly declared, just ignore it. */
|
||
|
||
type = TREE_TYPE (decl);
|
||
if (TREE_CODE (type) == ERROR_MARK)
|
||
return;
|
||
|
||
/* Digest the specified initializer into an expression. */
|
||
|
||
value = digest_init (type, init, TREE_STATIC (decl),
|
||
TREE_STATIC (decl) || pedantic);
|
||
|
||
/* Store the expression if valid; else report error. */
|
||
|
||
#if 0
|
||
/* Note that this is the only place we can detect the error
|
||
in a case such as struct foo bar = (struct foo) { x, y };
|
||
where there is one initial value which is a constructor expression. */
|
||
if (value == error_mark_node)
|
||
;
|
||
else if (TREE_STATIC (decl) && ! TREE_CONSTANT (value))
|
||
{
|
||
error ("initializer for static variable is not constant");
|
||
value = error_mark_node;
|
||
}
|
||
else if (TREE_STATIC (decl)
|
||
&& initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
|
||
{
|
||
error ("initializer for static variable uses complicated arithmetic");
|
||
value = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
if (pedantic && TREE_CODE (value) == CONSTRUCTOR)
|
||
{
|
||
if (! TREE_CONSTANT (value))
|
||
pedwarn ("aggregate initializer is not constant");
|
||
else if (! TREE_STATIC (value))
|
||
pedwarn ("aggregate initializer uses complicated arithmetic");
|
||
}
|
||
}
|
||
#endif
|
||
|
||
DECL_INITIAL (decl) = value;
|
||
|
||
/* ANSI wants warnings about out-of-range constant initializers. */
|
||
STRIP_TYPE_NOPS (value);
|
||
constant_expression_warning (value);
|
||
}
|
||
|
||
/* Methods for storing and printing names for error messages. */
|
||
|
||
/* Implement a spelling stack that allows components of a name to be pushed
|
||
and popped. Each element on the stack is this structure. */
|
||
|
||
struct spelling
|
||
{
|
||
int kind;
|
||
union
|
||
{
|
||
int i;
|
||
char *s;
|
||
} u;
|
||
};
|
||
|
||
#define SPELLING_STRING 1
|
||
#define SPELLING_MEMBER 2
|
||
#define SPELLING_BOUNDS 3
|
||
|
||
static struct spelling *spelling; /* Next stack element (unused). */
|
||
static struct spelling *spelling_base; /* Spelling stack base. */
|
||
static int spelling_size; /* Size of the spelling stack. */
|
||
|
||
/* Macros to save and restore the spelling stack around push_... functions.
|
||
Alternative to SAVE_SPELLING_STACK. */
|
||
|
||
#define SPELLING_DEPTH() (spelling - spelling_base)
|
||
#define RESTORE_SPELLING_DEPTH(depth) (spelling = spelling_base + depth)
|
||
|
||
/* Save and restore the spelling stack around arbitrary C code. */
|
||
|
||
#define SAVE_SPELLING_DEPTH(code) \
|
||
{ \
|
||
int __depth = SPELLING_DEPTH (); \
|
||
code; \
|
||
RESTORE_SPELLING_DEPTH (__depth); \
|
||
}
|
||
|
||
/* Push an element on the spelling stack with type KIND and assign VALUE
|
||
to MEMBER. */
|
||
|
||
#define PUSH_SPELLING(KIND, VALUE, MEMBER) \
|
||
{ \
|
||
int depth = SPELLING_DEPTH (); \
|
||
\
|
||
if (depth >= spelling_size) \
|
||
{ \
|
||
spelling_size += 10; \
|
||
if (spelling_base == 0) \
|
||
spelling_base \
|
||
= (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling)); \
|
||
else \
|
||
spelling_base \
|
||
= (struct spelling *) xrealloc (spelling_base, \
|
||
spelling_size * sizeof (struct spelling)); \
|
||
RESTORE_SPELLING_DEPTH (depth); \
|
||
} \
|
||
\
|
||
spelling->kind = (KIND); \
|
||
spelling->MEMBER = (VALUE); \
|
||
spelling++; \
|
||
}
|
||
|
||
/* Push STRING on the stack. Printed literally. */
|
||
|
||
static void
|
||
push_string (string)
|
||
char *string;
|
||
{
|
||
PUSH_SPELLING (SPELLING_STRING, string, u.s);
|
||
}
|
||
|
||
/* Push a member name on the stack. Printed as '.' STRING. */
|
||
|
||
static void
|
||
push_member_name (decl)
|
||
tree decl;
|
||
|
||
{
|
||
char *string
|
||
= DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
|
||
PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
|
||
}
|
||
|
||
/* Push an array bounds on the stack. Printed as [BOUNDS]. */
|
||
|
||
static void
|
||
push_array_bounds (bounds)
|
||
int bounds;
|
||
{
|
||
PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
|
||
}
|
||
|
||
/* Compute the maximum size in bytes of the printed spelling. */
|
||
|
||
static int
|
||
spelling_length ()
|
||
{
|
||
register int size = 0;
|
||
register struct spelling *p;
|
||
|
||
for (p = spelling_base; p < spelling; p++)
|
||
{
|
||
if (p->kind == SPELLING_BOUNDS)
|
||
size += 25;
|
||
else
|
||
size += strlen (p->u.s) + 1;
|
||
}
|
||
|
||
return size;
|
||
}
|
||
|
||
/* Print the spelling to BUFFER and return it. */
|
||
|
||
static char *
|
||
print_spelling (buffer)
|
||
register char *buffer;
|
||
{
|
||
register char *d = buffer;
|
||
register char *s;
|
||
register struct spelling *p;
|
||
|
||
for (p = spelling_base; p < spelling; p++)
|
||
if (p->kind == SPELLING_BOUNDS)
|
||
{
|
||
sprintf (d, "[%d]", p->u.i);
|
||
d += strlen (d);
|
||
}
|
||
else
|
||
{
|
||
if (p->kind == SPELLING_MEMBER)
|
||
*d++ = '.';
|
||
for (s = p->u.s; (*d = *s++); d++)
|
||
;
|
||
}
|
||
*d++ = '\0';
|
||
return buffer;
|
||
}
|
||
|
||
/* Provide a means to pass component names derived from the spelling stack. */
|
||
|
||
char initialization_message;
|
||
|
||
/* Interpret the spelling of the given ERRTYPE message. */
|
||
|
||
static char *
|
||
get_spelling (errtype)
|
||
char *errtype;
|
||
{
|
||
static char *buffer;
|
||
static int size = -1;
|
||
|
||
if (errtype == &initialization_message)
|
||
{
|
||
/* Avoid counting chars */
|
||
static char message[] = "initialization of `%s'";
|
||
register int needed = sizeof (message) + spelling_length () + 1;
|
||
char *temp;
|
||
|
||
if (size < 0)
|
||
buffer = (char *) xmalloc (size = needed);
|
||
if (needed > size)
|
||
buffer = (char *) xrealloc (buffer, size = needed);
|
||
|
||
temp = (char *) alloca (needed);
|
||
sprintf (buffer, message, print_spelling (temp));
|
||
return buffer;
|
||
}
|
||
|
||
return errtype;
|
||
}
|
||
|
||
/* Issue an error message for a bad initializer component.
|
||
FORMAT describes the message. OFWHAT is the name for the component.
|
||
LOCAL is a format string for formatting the insertion of the name
|
||
into the message.
|
||
|
||
If OFWHAT is null, the component name is stored on the spelling stack.
|
||
If the component name is a null string, then LOCAL is omitted entirely. */
|
||
|
||
void
|
||
error_init (format, local, ofwhat)
|
||
char *format, *local, *ofwhat;
|
||
{
|
||
char *buffer;
|
||
|
||
if (ofwhat == 0)
|
||
ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
|
||
buffer = (char *) alloca (strlen (local) + strlen (ofwhat) + 2);
|
||
|
||
if (*ofwhat)
|
||
sprintf (buffer, local, ofwhat);
|
||
else
|
||
buffer[0] = 0;
|
||
|
||
error (format, buffer);
|
||
}
|
||
|
||
/* Issue a pedantic warning for a bad initializer component.
|
||
FORMAT describes the message. OFWHAT is the name for the component.
|
||
LOCAL is a format string for formatting the insertion of the name
|
||
into the message.
|
||
|
||
If OFWHAT is null, the component name is stored on the spelling stack.
|
||
If the component name is a null string, then LOCAL is omitted entirely. */
|
||
|
||
void
|
||
pedwarn_init (format, local, ofwhat)
|
||
char *format, *local, *ofwhat;
|
||
{
|
||
char *buffer;
|
||
|
||
if (ofwhat == 0)
|
||
ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
|
||
buffer = (char *) alloca (strlen (local) + strlen (ofwhat) + 2);
|
||
|
||
if (*ofwhat)
|
||
sprintf (buffer, local, ofwhat);
|
||
else
|
||
buffer[0] = 0;
|
||
|
||
pedwarn (format, buffer);
|
||
}
|
||
|
||
/* Issue a warning for a bad initializer component.
|
||
FORMAT describes the message. OFWHAT is the name for the component.
|
||
LOCAL is a format string for formatting the insertion of the name
|
||
into the message.
|
||
|
||
If OFWHAT is null, the component name is stored on the spelling stack.
|
||
If the component name is a null string, then LOCAL is omitted entirely. */
|
||
|
||
static void
|
||
warning_init (format, local, ofwhat)
|
||
char *format, *local, *ofwhat;
|
||
{
|
||
char *buffer;
|
||
|
||
if (ofwhat == 0)
|
||
ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
|
||
buffer = (char *) alloca (strlen (local) + strlen (ofwhat) + 2);
|
||
|
||
if (*ofwhat)
|
||
sprintf (buffer, local, ofwhat);
|
||
else
|
||
buffer[0] = 0;
|
||
|
||
warning (format, buffer);
|
||
}
|
||
|
||
/* Digest the parser output INIT as an initializer for type TYPE.
|
||
Return a C expression of type TYPE to represent the initial value.
|
||
|
||
The arguments REQUIRE_CONSTANT and CONSTRUCTOR_CONSTANT request errors
|
||
if non-constant initializers or elements are seen. CONSTRUCTOR_CONSTANT
|
||
applies only to elements of constructors. */
|
||
|
||
static tree
|
||
digest_init (type, init, require_constant, constructor_constant)
|
||
tree type, init;
|
||
int require_constant, constructor_constant;
|
||
{
|
||
enum tree_code code = TREE_CODE (type);
|
||
tree inside_init = init;
|
||
|
||
if (init == error_mark_node)
|
||
return init;
|
||
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
|
||
/* Do not use STRIP_NOPS here. We do not want an enumerator
|
||
whose value is 0 to count as a null pointer constant. */
|
||
if (TREE_CODE (init) == NON_LVALUE_EXPR)
|
||
inside_init = TREE_OPERAND (init, 0);
|
||
|
||
/* Initialization of an array of chars from a string constant
|
||
optionally enclosed in braces. */
|
||
|
||
if (code == ARRAY_TYPE)
|
||
{
|
||
tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
|
||
if ((typ1 == char_type_node
|
||
|| typ1 == signed_char_type_node
|
||
|| typ1 == unsigned_char_type_node
|
||
|| typ1 == unsigned_wchar_type_node
|
||
|| typ1 == signed_wchar_type_node)
|
||
&& ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
|
||
{
|
||
if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
|
||
TYPE_MAIN_VARIANT (type)))
|
||
return inside_init;
|
||
|
||
if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
|
||
!= char_type_node)
|
||
&& TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
|
||
{
|
||
error_init ("char-array%s initialized from wide string",
|
||
" `%s'", NULL);
|
||
return error_mark_node;
|
||
}
|
||
if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
|
||
== char_type_node)
|
||
&& TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
|
||
{
|
||
error_init ("int-array%s initialized from non-wide string",
|
||
" `%s'", NULL);
|
||
return error_mark_node;
|
||
}
|
||
|
||
TREE_TYPE (inside_init) = type;
|
||
if (TYPE_DOMAIN (type) != 0
|
||
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
|
||
{
|
||
register int size = TREE_INT_CST_LOW (TYPE_SIZE (type));
|
||
size = (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
|
||
/* Subtract 1 (or sizeof (wchar_t))
|
||
because it's ok to ignore the terminating null char
|
||
that is counted in the length of the constant. */
|
||
if (size < TREE_STRING_LENGTH (inside_init)
|
||
- (TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node)
|
||
? TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT
|
||
: 1))
|
||
pedwarn_init (
|
||
"initializer-string for array of chars%s is too long",
|
||
" `%s'", NULL);
|
||
}
|
||
return inside_init;
|
||
}
|
||
}
|
||
|
||
/* Any type can be initialized
|
||
from an expression of the same type, optionally with braces. */
|
||
|
||
if (inside_init && TREE_TYPE (inside_init) != 0
|
||
&& (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
|
||
TYPE_MAIN_VARIANT (type))
|
||
|| (code == ARRAY_TYPE
|
||
&& comptypes (TREE_TYPE (inside_init), type))
|
||
|| (code == POINTER_TYPE
|
||
&& (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
|
||
|| TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE)
|
||
&& comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
|
||
TREE_TYPE (type)))))
|
||
{
|
||
if (code == POINTER_TYPE
|
||
&& (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
|
||
|| TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE))
|
||
inside_init = default_conversion (inside_init);
|
||
else if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
|
||
&& TREE_CODE (inside_init) != CONSTRUCTOR)
|
||
{
|
||
error_init ("array%s initialized from non-constant array expression",
|
||
" `%s'", NULL);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (optimize && TREE_CODE (inside_init) == VAR_DECL)
|
||
inside_init = decl_constant_value (inside_init);
|
||
|
||
/* Compound expressions can only occur here if -pedantic or
|
||
-pedantic-errors is specified. In the later case, we always want
|
||
an error. In the former case, we simply want a warning. */
|
||
if (require_constant && pedantic
|
||
&& TREE_CODE (inside_init) == COMPOUND_EXPR)
|
||
{
|
||
inside_init
|
||
= valid_compound_expr_initializer (inside_init,
|
||
TREE_TYPE (inside_init));
|
||
if (inside_init == error_mark_node)
|
||
error_init ("initializer element%s is not constant",
|
||
" for `%s'", NULL);
|
||
else
|
||
pedwarn_init ("initializer element%s is not constant",
|
||
" for `%s'", NULL);
|
||
if (flag_pedantic_errors)
|
||
inside_init = error_mark_node;
|
||
}
|
||
else if (require_constant && ! TREE_CONSTANT (inside_init))
|
||
{
|
||
error_init ("initializer element%s is not constant",
|
||
" for `%s'", NULL);
|
||
inside_init = error_mark_node;
|
||
}
|
||
else if (require_constant
|
||
&& initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
|
||
{
|
||
error_init ("initializer element%s is not computable at load time",
|
||
" for `%s'", NULL);
|
||
inside_init = error_mark_node;
|
||
}
|
||
|
||
return inside_init;
|
||
}
|
||
|
||
/* Handle scalar types, including conversions. */
|
||
|
||
if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
|
||
|| code == ENUMERAL_TYPE || code == COMPLEX_TYPE)
|
||
{
|
||
/* Note that convert_for_assignment calls default_conversion
|
||
for arrays and functions. We must not call it in the
|
||
case where inside_init is a null pointer constant. */
|
||
inside_init
|
||
= convert_for_assignment (type, init, "initialization",
|
||
NULL_TREE, NULL_TREE, 0);
|
||
|
||
if (require_constant && ! TREE_CONSTANT (inside_init))
|
||
{
|
||
error_init ("initializer element%s is not constant",
|
||
" for `%s'", NULL);
|
||
inside_init = error_mark_node;
|
||
}
|
||
else if (require_constant
|
||
&& initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
|
||
{
|
||
error_init ("initializer element%s is not computable at load time",
|
||
" for `%s'", NULL);
|
||
inside_init = error_mark_node;
|
||
}
|
||
|
||
return inside_init;
|
||
}
|
||
|
||
/* Come here only for records and arrays. */
|
||
|
||
if (TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
||
{
|
||
error_init ("variable-sized object%s may not be initialized",
|
||
" `%s'", NULL);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Traditionally, you can write struct foo x = 0;
|
||
and it initializes the first element of x to 0. */
|
||
if (flag_traditional)
|
||
{
|
||
tree top = 0, prev = 0, otype = type;
|
||
while (TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == ARRAY_TYPE
|
||
|| TREE_CODE (type) == QUAL_UNION_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
tree temp = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
|
||
if (prev == 0)
|
||
top = temp;
|
||
else
|
||
TREE_OPERAND (prev, 1) = build_tree_list (NULL_TREE, temp);
|
||
prev = temp;
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
else if (TYPE_FIELDS (type))
|
||
type = TREE_TYPE (TYPE_FIELDS (type));
|
||
else
|
||
{
|
||
error_init ("invalid initializer%s", " for `%s'", NULL);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
if (otype != type)
|
||
{
|
||
TREE_OPERAND (prev, 1)
|
||
= build_tree_list (NULL_TREE,
|
||
digest_init (type, init, require_constant,
|
||
constructor_constant));
|
||
return top;
|
||
}
|
||
else
|
||
return error_mark_node;
|
||
}
|
||
error_init ("invalid initializer%s", " for `%s'", NULL);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Handle initializers that use braces. */
|
||
|
||
/* Type of object we are accumulating a constructor for.
|
||
This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
|
||
static tree constructor_type;
|
||
|
||
/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
|
||
left to fill. */
|
||
static tree constructor_fields;
|
||
|
||
/* For an ARRAY_TYPE, this is the specified index
|
||
at which to store the next element we get.
|
||
This is a special INTEGER_CST node that we modify in place. */
|
||
static tree constructor_index;
|
||
|
||
/* For an ARRAY_TYPE, this is the end index of the range
|
||
to initialize with the next element, or NULL in the ordinary case
|
||
where the element is used just once. */
|
||
static tree constructor_range_end;
|
||
|
||
/* For an ARRAY_TYPE, this is the maximum index. */
|
||
static tree constructor_max_index;
|
||
|
||
/* For a RECORD_TYPE, this is the first field not yet written out. */
|
||
static tree constructor_unfilled_fields;
|
||
|
||
/* For an ARRAY_TYPE, this is the index of the first element
|
||
not yet written out.
|
||
This is a special INTEGER_CST node that we modify in place. */
|
||
static tree constructor_unfilled_index;
|
||
|
||
/* In a RECORD_TYPE, the byte index of the next consecutive field.
|
||
This is so we can generate gaps between fields, when appropriate.
|
||
This is a special INTEGER_CST node that we modify in place. */
|
||
static tree constructor_bit_index;
|
||
|
||
/* If we are saving up the elements rather than allocating them,
|
||
this is the list of elements so far (in reverse order,
|
||
most recent first). */
|
||
static tree constructor_elements;
|
||
|
||
/* 1 if so far this constructor's elements are all compile-time constants. */
|
||
static int constructor_constant;
|
||
|
||
/* 1 if so far this constructor's elements are all valid address constants. */
|
||
static int constructor_simple;
|
||
|
||
/* 1 if this constructor is erroneous so far. */
|
||
static int constructor_erroneous;
|
||
|
||
/* 1 if have called defer_addressed_constants. */
|
||
static int constructor_subconstants_deferred;
|
||
|
||
/* Structure for managing pending initializer elements, organized as an
|
||
AVL tree. */
|
||
|
||
struct init_node
|
||
{
|
||
struct init_node *left, *right;
|
||
struct init_node *parent;
|
||
int balance;
|
||
tree purpose;
|
||
tree value;
|
||
};
|
||
|
||
/* Tree of pending elements at this constructor level.
|
||
These are elements encountered out of order
|
||
which belong at places we haven't reached yet in actually
|
||
writing the output. */
|
||
static struct init_node *constructor_pending_elts;
|
||
|
||
/* The SPELLING_DEPTH of this constructor. */
|
||
static int constructor_depth;
|
||
|
||
/* 0 if implicitly pushing constructor levels is allowed. */
|
||
int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages. */
|
||
|
||
static int require_constant_value;
|
||
static int require_constant_elements;
|
||
|
||
/* 1 if it is ok to output this constructor as we read it.
|
||
0 means must accumulate a CONSTRUCTOR expression. */
|
||
static int constructor_incremental;
|
||
|
||
/* DECL node for which an initializer is being read.
|
||
0 means we are reading a constructor expression
|
||
such as (struct foo) {...}. */
|
||
static tree constructor_decl;
|
||
|
||
/* start_init saves the ASMSPEC arg here for really_start_incremental_init. */
|
||
static char *constructor_asmspec;
|
||
|
||
/* Nonzero if this is an initializer for a top-level decl. */
|
||
static int constructor_top_level;
|
||
|
||
|
||
/* This stack has a level for each implicit or explicit level of
|
||
structuring in the initializer, including the outermost one. It
|
||
saves the values of most of the variables above. */
|
||
|
||
struct constructor_stack
|
||
{
|
||
struct constructor_stack *next;
|
||
tree type;
|
||
tree fields;
|
||
tree index;
|
||
tree range_end;
|
||
tree max_index;
|
||
tree unfilled_index;
|
||
tree unfilled_fields;
|
||
tree bit_index;
|
||
tree elements;
|
||
int offset;
|
||
struct init_node *pending_elts;
|
||
int depth;
|
||
/* If nonzero, this value should replace the entire
|
||
constructor at this level. */
|
||
tree replacement_value;
|
||
char constant;
|
||
char simple;
|
||
char implicit;
|
||
char incremental;
|
||
char erroneous;
|
||
char outer;
|
||
};
|
||
|
||
struct constructor_stack *constructor_stack;
|
||
|
||
/* This stack records separate initializers that are nested.
|
||
Nested initializers can't happen in ANSI C, but GNU C allows them
|
||
in cases like { ... (struct foo) { ... } ... }. */
|
||
|
||
struct initializer_stack
|
||
{
|
||
struct initializer_stack *next;
|
||
tree decl;
|
||
char *asmspec;
|
||
struct constructor_stack *constructor_stack;
|
||
tree elements;
|
||
struct spelling *spelling;
|
||
struct spelling *spelling_base;
|
||
int spelling_size;
|
||
char top_level;
|
||
char incremental;
|
||
char require_constant_value;
|
||
char require_constant_elements;
|
||
char deferred;
|
||
};
|
||
|
||
struct initializer_stack *initializer_stack;
|
||
|
||
/* Prepare to parse and output the initializer for variable DECL. */
|
||
|
||
void
|
||
start_init (decl, asmspec_tree, top_level)
|
||
tree decl;
|
||
tree asmspec_tree;
|
||
int top_level;
|
||
{
|
||
char *locus;
|
||
struct initializer_stack *p
|
||
= (struct initializer_stack *) xmalloc (sizeof (struct initializer_stack));
|
||
char *asmspec = 0;
|
||
|
||
if (asmspec_tree)
|
||
asmspec = TREE_STRING_POINTER (asmspec_tree);
|
||
|
||
p->decl = constructor_decl;
|
||
p->asmspec = constructor_asmspec;
|
||
p->incremental = constructor_incremental;
|
||
p->require_constant_value = require_constant_value;
|
||
p->require_constant_elements = require_constant_elements;
|
||
p->constructor_stack = constructor_stack;
|
||
p->elements = constructor_elements;
|
||
p->spelling = spelling;
|
||
p->spelling_base = spelling_base;
|
||
p->spelling_size = spelling_size;
|
||
p->deferred = constructor_subconstants_deferred;
|
||
p->top_level = constructor_top_level;
|
||
p->next = initializer_stack;
|
||
initializer_stack = p;
|
||
|
||
constructor_decl = decl;
|
||
constructor_incremental = top_level;
|
||
constructor_asmspec = asmspec;
|
||
constructor_subconstants_deferred = 0;
|
||
constructor_top_level = top_level;
|
||
|
||
if (decl != 0)
|
||
{
|
||
require_constant_value = TREE_STATIC (decl);
|
||
require_constant_elements
|
||
= ((TREE_STATIC (decl) || pedantic)
|
||
/* For a scalar, you can always use any value to initialize,
|
||
even within braces. */
|
||
&& (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
|
||
|| TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
|
||
|| TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
|
||
locus = IDENTIFIER_POINTER (DECL_NAME (decl));
|
||
constructor_incremental |= TREE_STATIC (decl);
|
||
}
|
||
else
|
||
{
|
||
require_constant_value = 0;
|
||
require_constant_elements = 0;
|
||
locus = "(anonymous)";
|
||
}
|
||
|
||
constructor_stack = 0;
|
||
|
||
missing_braces_mentioned = 0;
|
||
|
||
spelling_base = 0;
|
||
spelling_size = 0;
|
||
RESTORE_SPELLING_DEPTH (0);
|
||
|
||
if (locus)
|
||
push_string (locus);
|
||
}
|
||
|
||
void
|
||
finish_init ()
|
||
{
|
||
struct initializer_stack *p = initializer_stack;
|
||
|
||
/* Output subconstants (string constants, usually)
|
||
that were referenced within this initializer and saved up.
|
||
Must do this if and only if we called defer_addressed_constants. */
|
||
if (constructor_subconstants_deferred)
|
||
output_deferred_addressed_constants ();
|
||
|
||
/* Free the whole constructor stack of this initializer. */
|
||
while (constructor_stack)
|
||
{
|
||
struct constructor_stack *q = constructor_stack;
|
||
constructor_stack = q->next;
|
||
free (q);
|
||
}
|
||
|
||
/* Pop back to the data of the outer initializer (if any). */
|
||
constructor_decl = p->decl;
|
||
constructor_asmspec = p->asmspec;
|
||
constructor_incremental = p->incremental;
|
||
require_constant_value = p->require_constant_value;
|
||
require_constant_elements = p->require_constant_elements;
|
||
constructor_stack = p->constructor_stack;
|
||
constructor_elements = p->elements;
|
||
spelling = p->spelling;
|
||
spelling_base = p->spelling_base;
|
||
spelling_size = p->spelling_size;
|
||
constructor_subconstants_deferred = p->deferred;
|
||
constructor_top_level = p->top_level;
|
||
initializer_stack = p->next;
|
||
free (p);
|
||
}
|
||
|
||
/* Call here when we see the initializer is surrounded by braces.
|
||
This is instead of a call to push_init_level;
|
||
it is matched by a call to pop_init_level.
|
||
|
||
TYPE is the type to initialize, for a constructor expression.
|
||
For an initializer for a decl, TYPE is zero. */
|
||
|
||
void
|
||
really_start_incremental_init (type)
|
||
tree type;
|
||
{
|
||
struct constructor_stack *p
|
||
= (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
|
||
|
||
if (type == 0)
|
||
type = TREE_TYPE (constructor_decl);
|
||
|
||
/* Turn off constructor_incremental if type is a struct with bitfields.
|
||
Do this before the first push, so that the corrected value
|
||
is available in finish_init. */
|
||
check_init_type_bitfields (type);
|
||
|
||
p->type = constructor_type;
|
||
p->fields = constructor_fields;
|
||
p->index = constructor_index;
|
||
p->range_end = constructor_range_end;
|
||
p->max_index = constructor_max_index;
|
||
p->unfilled_index = constructor_unfilled_index;
|
||
p->unfilled_fields = constructor_unfilled_fields;
|
||
p->bit_index = constructor_bit_index;
|
||
p->elements = constructor_elements;
|
||
p->constant = constructor_constant;
|
||
p->simple = constructor_simple;
|
||
p->erroneous = constructor_erroneous;
|
||
p->pending_elts = constructor_pending_elts;
|
||
p->depth = constructor_depth;
|
||
p->replacement_value = 0;
|
||
p->implicit = 0;
|
||
p->incremental = constructor_incremental;
|
||
p->outer = 0;
|
||
p->next = 0;
|
||
constructor_stack = p;
|
||
|
||
constructor_constant = 1;
|
||
constructor_simple = 1;
|
||
constructor_depth = SPELLING_DEPTH ();
|
||
constructor_elements = 0;
|
||
constructor_pending_elts = 0;
|
||
constructor_type = type;
|
||
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
constructor_fields = TYPE_FIELDS (constructor_type);
|
||
/* Skip any nameless bit fields at the beginning. */
|
||
while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
|
||
&& DECL_NAME (constructor_fields) == 0)
|
||
constructor_fields = TREE_CHAIN (constructor_fields);
|
||
constructor_unfilled_fields = constructor_fields;
|
||
constructor_bit_index = copy_node (integer_zero_node);
|
||
TREE_TYPE (constructor_bit_index) = sbitsizetype;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
constructor_range_end = 0;
|
||
if (TYPE_DOMAIN (constructor_type))
|
||
{
|
||
constructor_max_index
|
||
= TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
|
||
constructor_index
|
||
= copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
|
||
}
|
||
else
|
||
constructor_index = copy_node (integer_zero_node);
|
||
constructor_unfilled_index = copy_node (constructor_index);
|
||
}
|
||
else
|
||
{
|
||
/* Handle the case of int x = {5}; */
|
||
constructor_fields = constructor_type;
|
||
constructor_unfilled_fields = constructor_type;
|
||
}
|
||
|
||
if (constructor_incremental)
|
||
{
|
||
int momentary = suspend_momentary ();
|
||
push_obstacks_nochange ();
|
||
if (TREE_PERMANENT (constructor_decl))
|
||
end_temporary_allocation ();
|
||
make_decl_rtl (constructor_decl, constructor_asmspec,
|
||
constructor_top_level);
|
||
assemble_variable (constructor_decl, constructor_top_level, 0, 1);
|
||
pop_obstacks ();
|
||
resume_momentary (momentary);
|
||
}
|
||
|
||
if (constructor_incremental)
|
||
{
|
||
defer_addressed_constants ();
|
||
constructor_subconstants_deferred = 1;
|
||
}
|
||
}
|
||
|
||
/* Push down into a subobject, for initialization.
|
||
If this is for an explicit set of braces, IMPLICIT is 0.
|
||
If it is because the next element belongs at a lower level,
|
||
IMPLICIT is 1. */
|
||
|
||
void
|
||
push_init_level (implicit)
|
||
int implicit;
|
||
{
|
||
struct constructor_stack *p;
|
||
|
||
/* If we've exhausted any levels that didn't have braces,
|
||
pop them now. */
|
||
while (constructor_stack->implicit)
|
||
{
|
||
if ((TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
&& constructor_fields == 0)
|
||
process_init_element (pop_init_level (1));
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& tree_int_cst_lt (constructor_max_index, constructor_index))
|
||
process_init_element (pop_init_level (1));
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* Structure elements may require alignment. Do this now if necessary
|
||
for the subaggregate, and if it comes next in sequence. Don't do
|
||
this for subaggregates that will go on the pending list. */
|
||
if (constructor_incremental && constructor_type != 0
|
||
&& TREE_CODE (constructor_type) == RECORD_TYPE && constructor_fields
|
||
&& constructor_fields == constructor_unfilled_fields)
|
||
{
|
||
/* Advance to offset of this element. */
|
||
if (! tree_int_cst_equal (constructor_bit_index,
|
||
DECL_FIELD_BITPOS (constructor_fields)))
|
||
{
|
||
/* By using unsigned arithmetic, the result will be correct even
|
||
in case of overflows, if BITS_PER_UNIT is a power of two. */
|
||
unsigned next = (TREE_INT_CST_LOW
|
||
(DECL_FIELD_BITPOS (constructor_fields))
|
||
/ (unsigned)BITS_PER_UNIT);
|
||
unsigned here = (TREE_INT_CST_LOW (constructor_bit_index)
|
||
/ (unsigned)BITS_PER_UNIT);
|
||
|
||
assemble_zeros ((next - here)
|
||
* (unsigned)BITS_PER_UNIT
|
||
/ (unsigned)BITS_PER_UNIT);
|
||
}
|
||
/* Indicate that we have now filled the structure up to the current
|
||
field. */
|
||
constructor_unfilled_fields = constructor_fields;
|
||
}
|
||
|
||
p = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
|
||
p->type = constructor_type;
|
||
p->fields = constructor_fields;
|
||
p->index = constructor_index;
|
||
p->range_end = constructor_range_end;
|
||
p->max_index = constructor_max_index;
|
||
p->unfilled_index = constructor_unfilled_index;
|
||
p->unfilled_fields = constructor_unfilled_fields;
|
||
p->bit_index = constructor_bit_index;
|
||
p->elements = constructor_elements;
|
||
p->constant = constructor_constant;
|
||
p->simple = constructor_simple;
|
||
p->erroneous = constructor_erroneous;
|
||
p->pending_elts = constructor_pending_elts;
|
||
p->depth = constructor_depth;
|
||
p->replacement_value = 0;
|
||
p->implicit = implicit;
|
||
p->incremental = constructor_incremental;
|
||
p->outer = 0;
|
||
p->next = constructor_stack;
|
||
constructor_stack = p;
|
||
|
||
constructor_constant = 1;
|
||
constructor_simple = 1;
|
||
constructor_depth = SPELLING_DEPTH ();
|
||
constructor_elements = 0;
|
||
constructor_pending_elts = 0;
|
||
|
||
/* Don't die if an entire brace-pair level is superfluous
|
||
in the containing level. */
|
||
if (constructor_type == 0)
|
||
;
|
||
else if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
/* Don't die if there are extra init elts at the end. */
|
||
if (constructor_fields == 0)
|
||
constructor_type = 0;
|
||
else
|
||
{
|
||
constructor_type = TREE_TYPE (constructor_fields);
|
||
push_member_name (constructor_fields);
|
||
constructor_depth++;
|
||
if (constructor_fields != constructor_unfilled_fields)
|
||
constructor_incremental = 0;
|
||
}
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
constructor_type = TREE_TYPE (constructor_type);
|
||
push_array_bounds (TREE_INT_CST_LOW (constructor_index));
|
||
constructor_depth++;
|
||
if (! tree_int_cst_equal (constructor_index, constructor_unfilled_index)
|
||
|| constructor_range_end != 0)
|
||
constructor_incremental = 0;
|
||
}
|
||
|
||
if (constructor_type == 0)
|
||
{
|
||
error_init ("extra brace group at end of initializer%s",
|
||
" for `%s'", NULL);
|
||
constructor_fields = 0;
|
||
constructor_unfilled_fields = 0;
|
||
return;
|
||
}
|
||
|
||
/* Turn off constructor_incremental if type is a struct with bitfields. */
|
||
check_init_type_bitfields (constructor_type);
|
||
|
||
if (implicit && warn_missing_braces && !missing_braces_mentioned)
|
||
{
|
||
missing_braces_mentioned = 1;
|
||
warning_init ("missing braces around initializer%s", " for `%s'", NULL);
|
||
}
|
||
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
constructor_fields = TYPE_FIELDS (constructor_type);
|
||
/* Skip any nameless bit fields at the beginning. */
|
||
while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
|
||
&& DECL_NAME (constructor_fields) == 0)
|
||
constructor_fields = TREE_CHAIN (constructor_fields);
|
||
constructor_unfilled_fields = constructor_fields;
|
||
constructor_bit_index = copy_node (integer_zero_node);
|
||
TREE_TYPE (constructor_bit_index) = sbitsizetype;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
constructor_range_end = 0;
|
||
if (TYPE_DOMAIN (constructor_type))
|
||
{
|
||
constructor_max_index
|
||
= TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
|
||
constructor_index
|
||
= copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
|
||
}
|
||
else
|
||
constructor_index = copy_node (integer_zero_node);
|
||
constructor_unfilled_index = copy_node (constructor_index);
|
||
}
|
||
else
|
||
{
|
||
warning_init ("braces around scalar initializer%s", " for `%s'", NULL);
|
||
constructor_fields = constructor_type;
|
||
constructor_unfilled_fields = constructor_type;
|
||
}
|
||
}
|
||
|
||
/* Don't read a struct incrementally if it has any bitfields,
|
||
because the incremental reading code doesn't know how to
|
||
handle bitfields yet. */
|
||
|
||
static void
|
||
check_init_type_bitfields (type)
|
||
tree type;
|
||
{
|
||
if (TREE_CODE (type) == RECORD_TYPE)
|
||
{
|
||
tree tail;
|
||
for (tail = TYPE_FIELDS (type); tail;
|
||
tail = TREE_CHAIN (tail))
|
||
{
|
||
if (DECL_C_BIT_FIELD (tail)
|
||
/* This catches cases like `int foo : 8;'. */
|
||
|| DECL_MODE (tail) != TYPE_MODE (TREE_TYPE (tail)))
|
||
{
|
||
constructor_incremental = 0;
|
||
break;
|
||
}
|
||
|
||
check_init_type_bitfields (TREE_TYPE (tail));
|
||
}
|
||
}
|
||
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
check_init_type_bitfields (TREE_TYPE (type));
|
||
}
|
||
|
||
/* At the end of an implicit or explicit brace level,
|
||
finish up that level of constructor.
|
||
If we were outputting the elements as they are read, return 0
|
||
from inner levels (process_init_element ignores that),
|
||
but return error_mark_node from the outermost level
|
||
(that's what we want to put in DECL_INITIAL).
|
||
Otherwise, return a CONSTRUCTOR expression. */
|
||
|
||
tree
|
||
pop_init_level (implicit)
|
||
int implicit;
|
||
{
|
||
struct constructor_stack *p;
|
||
int size = 0;
|
||
tree constructor = 0;
|
||
|
||
if (implicit == 0)
|
||
{
|
||
/* When we come to an explicit close brace,
|
||
pop any inner levels that didn't have explicit braces. */
|
||
while (constructor_stack->implicit)
|
||
process_init_element (pop_init_level (1));
|
||
}
|
||
|
||
p = constructor_stack;
|
||
|
||
if (constructor_type != 0)
|
||
size = int_size_in_bytes (constructor_type);
|
||
|
||
/* Warn when some struct elements are implicitly initialized to zero. */
|
||
if (extra_warnings
|
||
&& constructor_type
|
||
&& TREE_CODE (constructor_type) == RECORD_TYPE
|
||
&& constructor_unfilled_fields)
|
||
{
|
||
push_member_name (constructor_unfilled_fields);
|
||
warning_init ("missing initializer%s", " for `%s'", NULL);
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
}
|
||
|
||
/* Now output all pending elements. */
|
||
output_pending_init_elements (1);
|
||
|
||
#if 0 /* c-parse.in warns about {}. */
|
||
/* In ANSI, each brace level must have at least one element. */
|
||
if (! implicit && pedantic
|
||
&& (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
? integer_zerop (constructor_unfilled_index)
|
||
: constructor_unfilled_fields == TYPE_FIELDS (constructor_type)))
|
||
pedwarn_init ("empty braces in initializer%s", " for `%s'", NULL);
|
||
#endif
|
||
|
||
/* Pad out the end of the structure. */
|
||
|
||
if (p->replacement_value)
|
||
{
|
||
/* If this closes a superfluous brace pair,
|
||
just pass out the element between them. */
|
||
constructor = p->replacement_value;
|
||
/* If this is the top level thing within the initializer,
|
||
and it's for a variable, then since we already called
|
||
assemble_variable, we must output the value now. */
|
||
if (p->next == 0 && constructor_decl != 0
|
||
&& constructor_incremental)
|
||
{
|
||
constructor = digest_init (constructor_type, constructor,
|
||
require_constant_value,
|
||
require_constant_elements);
|
||
|
||
/* If initializing an array of unknown size,
|
||
determine the size now. */
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& TYPE_DOMAIN (constructor_type) == 0)
|
||
{
|
||
int failure;
|
||
int momentary_p;
|
||
|
||
push_obstacks_nochange ();
|
||
if (TREE_PERMANENT (constructor_type))
|
||
end_temporary_allocation ();
|
||
|
||
momentary_p = suspend_momentary ();
|
||
|
||
/* We shouldn't have an incomplete array type within
|
||
some other type. */
|
||
if (constructor_stack->next)
|
||
abort ();
|
||
|
||
failure
|
||
= complete_array_type (constructor_type,
|
||
constructor, 0);
|
||
if (failure)
|
||
abort ();
|
||
|
||
size = int_size_in_bytes (constructor_type);
|
||
resume_momentary (momentary_p);
|
||
pop_obstacks ();
|
||
}
|
||
|
||
output_constant (constructor, size);
|
||
}
|
||
}
|
||
else if (constructor_type == 0)
|
||
;
|
||
else if (TREE_CODE (constructor_type) != RECORD_TYPE
|
||
&& TREE_CODE (constructor_type) != UNION_TYPE
|
||
&& TREE_CODE (constructor_type) != ARRAY_TYPE
|
||
&& ! constructor_incremental)
|
||
{
|
||
/* A nonincremental scalar initializer--just return
|
||
the element, after verifying there is just one. */
|
||
if (constructor_elements == 0)
|
||
{
|
||
error_init ("empty scalar initializer%s",
|
||
" for `%s'", NULL);
|
||
constructor = error_mark_node;
|
||
}
|
||
else if (TREE_CHAIN (constructor_elements) != 0)
|
||
{
|
||
error_init ("extra elements in scalar initializer%s",
|
||
" for `%s'", NULL);
|
||
constructor = TREE_VALUE (constructor_elements);
|
||
}
|
||
else
|
||
constructor = TREE_VALUE (constructor_elements);
|
||
}
|
||
else if (! constructor_incremental)
|
||
{
|
||
if (constructor_erroneous)
|
||
constructor = error_mark_node;
|
||
else
|
||
{
|
||
int momentary = suspend_momentary ();
|
||
|
||
constructor = build (CONSTRUCTOR, constructor_type, NULL_TREE,
|
||
nreverse (constructor_elements));
|
||
if (constructor_constant)
|
||
TREE_CONSTANT (constructor) = 1;
|
||
if (constructor_constant && constructor_simple)
|
||
TREE_STATIC (constructor) = 1;
|
||
|
||
resume_momentary (momentary);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree filled;
|
||
int momentary = suspend_momentary ();
|
||
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
/* Find the offset of the end of that field. */
|
||
filled = size_binop (CEIL_DIV_EXPR,
|
||
constructor_bit_index,
|
||
size_int (BITS_PER_UNIT));
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
/* If initializing an array of unknown size,
|
||
determine the size now. */
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& TYPE_DOMAIN (constructor_type) == 0)
|
||
{
|
||
tree maxindex
|
||
= size_binop (MINUS_EXPR,
|
||
constructor_unfilled_index,
|
||
integer_one_node);
|
||
|
||
push_obstacks_nochange ();
|
||
if (TREE_PERMANENT (constructor_type))
|
||
end_temporary_allocation ();
|
||
maxindex = copy_node (maxindex);
|
||
TYPE_DOMAIN (constructor_type) = build_index_type (maxindex);
|
||
TREE_TYPE (maxindex) = TYPE_DOMAIN (constructor_type);
|
||
|
||
/* TYPE_MAX_VALUE is always one less than the number of elements
|
||
in the array, because we start counting at zero. Therefore,
|
||
warn only if the value is less than zero. */
|
||
if (pedantic
|
||
&& (tree_int_cst_sgn (TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
|
||
< 0))
|
||
error_with_decl (constructor_decl,
|
||
"zero or negative array size `%s'");
|
||
layout_type (constructor_type);
|
||
size = int_size_in_bytes (constructor_type);
|
||
pop_obstacks ();
|
||
}
|
||
|
||
filled = size_binop (MULT_EXPR, constructor_unfilled_index,
|
||
size_in_bytes (TREE_TYPE (constructor_type)));
|
||
}
|
||
else
|
||
filled = 0;
|
||
|
||
if (filled != 0)
|
||
assemble_zeros (size - TREE_INT_CST_LOW (filled));
|
||
|
||
resume_momentary (momentary);
|
||
}
|
||
|
||
|
||
constructor_type = p->type;
|
||
constructor_fields = p->fields;
|
||
constructor_index = p->index;
|
||
constructor_range_end = p->range_end;
|
||
constructor_max_index = p->max_index;
|
||
constructor_unfilled_index = p->unfilled_index;
|
||
constructor_unfilled_fields = p->unfilled_fields;
|
||
constructor_bit_index = p->bit_index;
|
||
constructor_elements = p->elements;
|
||
constructor_constant = p->constant;
|
||
constructor_simple = p->simple;
|
||
constructor_erroneous = p->erroneous;
|
||
constructor_pending_elts = p->pending_elts;
|
||
constructor_depth = p->depth;
|
||
constructor_incremental = p->incremental;
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
|
||
constructor_stack = p->next;
|
||
free (p);
|
||
|
||
if (constructor == 0)
|
||
{
|
||
if (constructor_stack == 0)
|
||
return error_mark_node;
|
||
return NULL_TREE;
|
||
}
|
||
return constructor;
|
||
}
|
||
|
||
/* Within an array initializer, specify the next index to be initialized.
|
||
FIRST is that index. If LAST is nonzero, then initialize a range
|
||
of indices, running from FIRST through LAST. */
|
||
|
||
void
|
||
set_init_index (first, last)
|
||
tree first, last;
|
||
{
|
||
while ((TREE_CODE (first) == NOP_EXPR
|
||
|| TREE_CODE (first) == CONVERT_EXPR
|
||
|| TREE_CODE (first) == NON_LVALUE_EXPR)
|
||
&& (TYPE_MODE (TREE_TYPE (first))
|
||
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
|
||
(first) = TREE_OPERAND (first, 0);
|
||
if (last)
|
||
while ((TREE_CODE (last) == NOP_EXPR
|
||
|| TREE_CODE (last) == CONVERT_EXPR
|
||
|| TREE_CODE (last) == NON_LVALUE_EXPR)
|
||
&& (TYPE_MODE (TREE_TYPE (last))
|
||
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
|
||
(last) = TREE_OPERAND (last, 0);
|
||
|
||
if (TREE_CODE (first) != INTEGER_CST)
|
||
error_init ("nonconstant array index in initializer%s", " for `%s'", NULL);
|
||
else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
|
||
error_init ("nonconstant array index in initializer%s", " for `%s'", NULL);
|
||
else if (! constructor_unfilled_index)
|
||
error_init ("array index in non-array initializer%s", " for `%s'", NULL);
|
||
else if (tree_int_cst_lt (first, constructor_unfilled_index))
|
||
error_init ("duplicate array index in initializer%s", " for `%s'", NULL);
|
||
else
|
||
{
|
||
TREE_INT_CST_LOW (constructor_index) = TREE_INT_CST_LOW (first);
|
||
TREE_INT_CST_HIGH (constructor_index) = TREE_INT_CST_HIGH (first);
|
||
|
||
if (last != 0 && tree_int_cst_lt (last, first))
|
||
error_init ("empty index range in initializer%s", " for `%s'", NULL);
|
||
else
|
||
{
|
||
if (pedantic)
|
||
pedwarn ("ANSI C forbids specifying element to initialize");
|
||
constructor_range_end = last;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Within a struct initializer, specify the next field to be initialized. */
|
||
|
||
void
|
||
set_init_label (fieldname)
|
||
tree fieldname;
|
||
{
|
||
tree tail;
|
||
int passed = 0;
|
||
|
||
/* Don't die if an entire brace-pair level is superfluous
|
||
in the containing level. */
|
||
if (constructor_type == 0)
|
||
return;
|
||
|
||
for (tail = TYPE_FIELDS (constructor_type); tail;
|
||
tail = TREE_CHAIN (tail))
|
||
{
|
||
if (tail == constructor_unfilled_fields)
|
||
passed = 1;
|
||
if (DECL_NAME (tail) == fieldname)
|
||
break;
|
||
}
|
||
|
||
if (tail == 0)
|
||
error ("unknown field `%s' specified in initializer",
|
||
IDENTIFIER_POINTER (fieldname));
|
||
else if (!passed)
|
||
error ("field `%s' already initialized",
|
||
IDENTIFIER_POINTER (fieldname));
|
||
else
|
||
{
|
||
constructor_fields = tail;
|
||
if (pedantic)
|
||
pedwarn ("ANSI C forbids specifying structure member to initialize");
|
||
}
|
||
}
|
||
|
||
/* Add a new initializer to the tree of pending initializers. PURPOSE
|
||
indentifies the initializer, either array index or field in a structure.
|
||
VALUE is the value of that index or field. */
|
||
|
||
static void
|
||
add_pending_init (purpose, value)
|
||
tree purpose, value;
|
||
{
|
||
struct init_node *p, **q, *r;
|
||
|
||
q = &constructor_pending_elts;
|
||
p = 0;
|
||
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
while (*q != 0)
|
||
{
|
||
p = *q;
|
||
if (tree_int_cst_lt (purpose, p->purpose))
|
||
q = &p->left;
|
||
else if (tree_int_cst_lt (p->purpose, purpose))
|
||
q = &p->right;
|
||
else
|
||
abort ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
while (*q != NULL)
|
||
{
|
||
p = *q;
|
||
if (tree_int_cst_lt (DECL_FIELD_BITPOS (purpose),
|
||
DECL_FIELD_BITPOS (p->purpose)))
|
||
q = &p->left;
|
||
else if (tree_int_cst_lt (DECL_FIELD_BITPOS (p->purpose),
|
||
DECL_FIELD_BITPOS (purpose)))
|
||
q = &p->right;
|
||
else
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
r = (struct init_node *) oballoc (sizeof (struct init_node));
|
||
r->purpose = purpose;
|
||
r->value = value;
|
||
|
||
*q = r;
|
||
r->parent = p;
|
||
r->left = 0;
|
||
r->right = 0;
|
||
r->balance = 0;
|
||
|
||
while (p)
|
||
{
|
||
struct init_node *s;
|
||
|
||
if (r == p->left)
|
||
{
|
||
if (p->balance == 0)
|
||
p->balance = -1;
|
||
else if (p->balance < 0)
|
||
{
|
||
if (r->balance < 0)
|
||
{
|
||
/* L rotation. */
|
||
p->left = r->right;
|
||
if (p->left)
|
||
p->left->parent = p;
|
||
r->right = p;
|
||
|
||
p->balance = 0;
|
||
r->balance = 0;
|
||
|
||
s = p->parent;
|
||
p->parent = r;
|
||
r->parent = s;
|
||
if (s)
|
||
{
|
||
if (s->left == p)
|
||
s->left = r;
|
||
else
|
||
s->right = r;
|
||
}
|
||
else
|
||
constructor_pending_elts = r;
|
||
}
|
||
else
|
||
{
|
||
/* LR rotation. */
|
||
struct init_node *t = r->right;
|
||
|
||
r->right = t->left;
|
||
if (r->right)
|
||
r->right->parent = r;
|
||
t->left = r;
|
||
|
||
p->left = t->right;
|
||
if (p->left)
|
||
p->left->parent = p;
|
||
t->right = p;
|
||
|
||
p->balance = t->balance < 0;
|
||
r->balance = -(t->balance > 0);
|
||
t->balance = 0;
|
||
|
||
s = p->parent;
|
||
p->parent = t;
|
||
r->parent = t;
|
||
t->parent = s;
|
||
if (s)
|
||
{
|
||
if (s->left == p)
|
||
s->left = t;
|
||
else
|
||
s->right = t;
|
||
}
|
||
else
|
||
constructor_pending_elts = t;
|
||
}
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* p->balance == +1; growth of left side balances the node. */
|
||
p->balance = 0;
|
||
break;
|
||
}
|
||
}
|
||
else /* r == p->right */
|
||
{
|
||
if (p->balance == 0)
|
||
/* Growth propagation from right side. */
|
||
p->balance++;
|
||
else if (p->balance > 0)
|
||
{
|
||
if (r->balance > 0)
|
||
{
|
||
/* R rotation. */
|
||
p->right = r->left;
|
||
if (p->right)
|
||
p->right->parent = p;
|
||
r->left = p;
|
||
|
||
p->balance = 0;
|
||
r->balance = 0;
|
||
|
||
s = p->parent;
|
||
p->parent = r;
|
||
r->parent = s;
|
||
if (s)
|
||
{
|
||
if (s->left == p)
|
||
s->left = r;
|
||
else
|
||
s->right = r;
|
||
}
|
||
else
|
||
constructor_pending_elts = r;
|
||
}
|
||
else /* r->balance == -1 */
|
||
{
|
||
/* RL rotation */
|
||
struct init_node *t = r->left;
|
||
|
||
r->left = t->right;
|
||
if (r->left)
|
||
r->left->parent = r;
|
||
t->right = r;
|
||
|
||
p->right = t->left;
|
||
if (p->right)
|
||
p->right->parent = p;
|
||
t->left = p;
|
||
|
||
r->balance = (t->balance < 0);
|
||
p->balance = -(t->balance > 0);
|
||
t->balance = 0;
|
||
|
||
s = p->parent;
|
||
p->parent = t;
|
||
r->parent = t;
|
||
t->parent = s;
|
||
if (s)
|
||
{
|
||
if (s->left == p)
|
||
s->left = t;
|
||
else
|
||
s->right = t;
|
||
}
|
||
else
|
||
constructor_pending_elts = t;
|
||
}
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* p->balance == -1; growth of right side balances the node. */
|
||
p->balance = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
r = p;
|
||
p = p->parent;
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if FIELD is equal to the index of a pending initializer. */
|
||
|
||
static int
|
||
pending_init_member (field)
|
||
tree field;
|
||
{
|
||
struct init_node *p;
|
||
|
||
p = constructor_pending_elts;
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
while (p)
|
||
{
|
||
if (tree_int_cst_equal (field, p->purpose))
|
||
return 1;
|
||
else if (tree_int_cst_lt (field, p->purpose))
|
||
p = p->left;
|
||
else
|
||
p = p->right;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
while (p)
|
||
{
|
||
if (field == p->purpose)
|
||
return 1;
|
||
else if (tree_int_cst_lt (DECL_FIELD_BITPOS (field),
|
||
DECL_FIELD_BITPOS (p->purpose)))
|
||
p = p->left;
|
||
else
|
||
p = p->right;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* "Output" the next constructor element.
|
||
At top level, really output it to assembler code now.
|
||
Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
|
||
TYPE is the data type that the containing data type wants here.
|
||
FIELD is the field (a FIELD_DECL) or the index that this element fills.
|
||
|
||
PENDING if non-nil means output pending elements that belong
|
||
right after this element. (PENDING is normally 1;
|
||
it is 0 while outputting pending elements, to avoid recursion.) */
|
||
|
||
static void
|
||
output_init_element (value, type, field, pending)
|
||
tree value, type, field;
|
||
int pending;
|
||
{
|
||
int duplicate = 0;
|
||
|
||
if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
|
||
|| (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
|
||
&& !(TREE_CODE (value) == STRING_CST
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
|
||
&& !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
|
||
TYPE_MAIN_VARIANT (type))))
|
||
value = default_conversion (value);
|
||
|
||
if (value == error_mark_node)
|
||
constructor_erroneous = 1;
|
||
else if (!TREE_CONSTANT (value))
|
||
constructor_constant = 0;
|
||
else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
|
||
|| ((TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
&& DECL_C_BIT_FIELD (field)
|
||
&& TREE_CODE (value) != INTEGER_CST))
|
||
constructor_simple = 0;
|
||
|
||
if (require_constant_value && ! TREE_CONSTANT (value))
|
||
{
|
||
error_init ("initializer element%s is not constant",
|
||
" for `%s'", NULL);
|
||
value = error_mark_node;
|
||
}
|
||
else if (require_constant_elements
|
||
&& initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
|
||
{
|
||
error_init ("initializer element%s is not computable at load time",
|
||
" for `%s'", NULL);
|
||
value = error_mark_node;
|
||
}
|
||
|
||
/* If this element duplicates one on constructor_pending_elts,
|
||
print a message and ignore it. Don't do this when we're
|
||
processing elements taken off constructor_pending_elts,
|
||
because we'd always get spurious errors. */
|
||
if (pending)
|
||
{
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE
|
||
|| TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
if (pending_init_member (field))
|
||
{
|
||
error_init ("duplicate initializer%s", " for `%s'", NULL);
|
||
duplicate = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If this element doesn't come next in sequence,
|
||
put it on constructor_pending_elts. */
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& !tree_int_cst_equal (field, constructor_unfilled_index))
|
||
{
|
||
if (! duplicate)
|
||
/* The copy_node is needed in case field is actually
|
||
constructor_index, which is modified in place. */
|
||
add_pending_init (copy_node (field),
|
||
digest_init (type, value, require_constant_value,
|
||
require_constant_elements));
|
||
}
|
||
else if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
&& field != constructor_unfilled_fields)
|
||
{
|
||
/* We do this for records but not for unions. In a union,
|
||
no matter which field is specified, it can be initialized
|
||
right away since it starts at the beginning of the union. */
|
||
if (!duplicate)
|
||
add_pending_init (field,
|
||
digest_init (type, value, require_constant_value,
|
||
require_constant_elements));
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, output this element either to
|
||
constructor_elements or to the assembler file. */
|
||
|
||
if (!duplicate)
|
||
{
|
||
if (! constructor_incremental)
|
||
{
|
||
if (field && TREE_CODE (field) == INTEGER_CST)
|
||
field = copy_node (field);
|
||
constructor_elements
|
||
= tree_cons (field, digest_init (type, value,
|
||
require_constant_value,
|
||
require_constant_elements),
|
||
constructor_elements);
|
||
}
|
||
else
|
||
{
|
||
/* Structure elements may require alignment.
|
||
Do this, if necessary. */
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE)
|
||
{
|
||
/* Advance to offset of this element. */
|
||
if (! tree_int_cst_equal (constructor_bit_index,
|
||
DECL_FIELD_BITPOS (field)))
|
||
{
|
||
/* By using unsigned arithmetic, the result will be
|
||
correct even in case of overflows, if BITS_PER_UNIT
|
||
is a power of two. */
|
||
unsigned next = (TREE_INT_CST_LOW
|
||
(DECL_FIELD_BITPOS (field))
|
||
/ (unsigned)BITS_PER_UNIT);
|
||
unsigned here = (TREE_INT_CST_LOW
|
||
(constructor_bit_index)
|
||
/ (unsigned)BITS_PER_UNIT);
|
||
|
||
assemble_zeros ((next - here)
|
||
* (unsigned)BITS_PER_UNIT
|
||
/ (unsigned)BITS_PER_UNIT);
|
||
}
|
||
}
|
||
output_constant (digest_init (type, value,
|
||
require_constant_value,
|
||
require_constant_elements),
|
||
int_size_in_bytes (type));
|
||
|
||
/* For a record or union,
|
||
keep track of end position of last field. */
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
tree temp = size_binop (PLUS_EXPR, DECL_FIELD_BITPOS (field),
|
||
DECL_SIZE (field));
|
||
TREE_INT_CST_LOW (constructor_bit_index)
|
||
= TREE_INT_CST_LOW (temp);
|
||
TREE_INT_CST_HIGH (constructor_bit_index)
|
||
= TREE_INT_CST_HIGH (temp);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Advance the variable that indicates sequential elements output. */
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
tree tem = size_binop (PLUS_EXPR, constructor_unfilled_index,
|
||
integer_one_node);
|
||
TREE_INT_CST_LOW (constructor_unfilled_index)
|
||
= TREE_INT_CST_LOW (tem);
|
||
TREE_INT_CST_HIGH (constructor_unfilled_index)
|
||
= TREE_INT_CST_HIGH (tem);
|
||
}
|
||
else if (TREE_CODE (constructor_type) == RECORD_TYPE)
|
||
constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
|
||
else if (TREE_CODE (constructor_type) == UNION_TYPE)
|
||
constructor_unfilled_fields = 0;
|
||
|
||
/* Now output any pending elements which have become next. */
|
||
if (pending)
|
||
output_pending_init_elements (0);
|
||
}
|
||
}
|
||
|
||
/* Output any pending elements which have become next.
|
||
As we output elements, constructor_unfilled_{fields,index}
|
||
advances, which may cause other elements to become next;
|
||
if so, they too are output.
|
||
|
||
If ALL is 0, we return when there are
|
||
no more pending elements to output now.
|
||
|
||
If ALL is 1, we output space as necessary so that
|
||
we can output all the pending elements. */
|
||
|
||
static void
|
||
output_pending_init_elements (all)
|
||
int all;
|
||
{
|
||
struct init_node *elt = constructor_pending_elts;
|
||
tree next;
|
||
|
||
retry:
|
||
|
||
/* Look thru the whole pending tree.
|
||
If we find an element that should be output now,
|
||
output it. Otherwise, set NEXT to the element
|
||
that comes first among those still pending. */
|
||
|
||
next = 0;
|
||
while (elt)
|
||
{
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
if (tree_int_cst_equal (elt->purpose,
|
||
constructor_unfilled_index))
|
||
output_init_element (elt->value,
|
||
TREE_TYPE (constructor_type),
|
||
constructor_unfilled_index, 0);
|
||
else if (tree_int_cst_lt (constructor_unfilled_index,
|
||
elt->purpose))
|
||
{
|
||
/* Advance to the next smaller node. */
|
||
if (elt->left)
|
||
elt = elt->left;
|
||
else
|
||
{
|
||
/* We have reached the smallest node bigger than the
|
||
current unfilled index. Fill the space first. */
|
||
next = elt->purpose;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Advance to the next bigger node. */
|
||
if (elt->right)
|
||
elt = elt->right;
|
||
else
|
||
{
|
||
/* We have reached the biggest node in a subtree. Find
|
||
the parent of it, which is the next bigger node. */
|
||
while (elt->parent && elt->parent->right == elt)
|
||
elt = elt->parent;
|
||
elt = elt->parent;
|
||
if (elt && tree_int_cst_lt (constructor_unfilled_index,
|
||
elt->purpose))
|
||
{
|
||
next = elt->purpose;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
/* If the current record is complete we are done. */
|
||
if (constructor_unfilled_fields == 0)
|
||
break;
|
||
if (elt->purpose == constructor_unfilled_fields)
|
||
{
|
||
output_init_element (elt->value,
|
||
TREE_TYPE (constructor_unfilled_fields),
|
||
constructor_unfilled_fields,
|
||
0);
|
||
}
|
||
else if (tree_int_cst_lt (DECL_FIELD_BITPOS (constructor_unfilled_fields),
|
||
DECL_FIELD_BITPOS (elt->purpose)))
|
||
{
|
||
/* Advance to the next smaller node. */
|
||
if (elt->left)
|
||
elt = elt->left;
|
||
else
|
||
{
|
||
/* We have reached the smallest node bigger than the
|
||
current unfilled field. Fill the space first. */
|
||
next = elt->purpose;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Advance to the next bigger node. */
|
||
if (elt->right)
|
||
elt = elt->right;
|
||
else
|
||
{
|
||
/* We have reached the biggest node in a subtree. Find
|
||
the parent of it, which is the next bigger node. */
|
||
while (elt->parent && elt->parent->right == elt)
|
||
elt = elt->parent;
|
||
elt = elt->parent;
|
||
if (elt
|
||
&& tree_int_cst_lt (DECL_FIELD_BITPOS (constructor_unfilled_fields),
|
||
DECL_FIELD_BITPOS (elt->purpose)))
|
||
{
|
||
next = elt->purpose;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Ordinarily return, but not if we want to output all
|
||
and there are elements left. */
|
||
if (! (all && next != 0))
|
||
return;
|
||
|
||
/* Generate space up to the position of NEXT. */
|
||
if (constructor_incremental)
|
||
{
|
||
tree filled;
|
||
tree nextpos_tree = size_int (0);
|
||
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
tree tail;
|
||
/* Find the last field written out, if any. */
|
||
for (tail = TYPE_FIELDS (constructor_type); tail;
|
||
tail = TREE_CHAIN (tail))
|
||
if (TREE_CHAIN (tail) == constructor_unfilled_fields)
|
||
break;
|
||
|
||
if (tail)
|
||
/* Find the offset of the end of that field. */
|
||
filled = size_binop (CEIL_DIV_EXPR,
|
||
size_binop (PLUS_EXPR,
|
||
DECL_FIELD_BITPOS (tail),
|
||
DECL_SIZE (tail)),
|
||
size_int (BITS_PER_UNIT));
|
||
else
|
||
filled = size_int (0);
|
||
|
||
nextpos_tree = size_binop (CEIL_DIV_EXPR,
|
||
DECL_FIELD_BITPOS (next),
|
||
size_int (BITS_PER_UNIT));
|
||
|
||
TREE_INT_CST_HIGH (constructor_bit_index)
|
||
= TREE_INT_CST_HIGH (DECL_FIELD_BITPOS (next));
|
||
TREE_INT_CST_LOW (constructor_bit_index)
|
||
= TREE_INT_CST_LOW (DECL_FIELD_BITPOS (next));
|
||
constructor_unfilled_fields = next;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
filled = size_binop (MULT_EXPR, constructor_unfilled_index,
|
||
size_in_bytes (TREE_TYPE (constructor_type)));
|
||
nextpos_tree
|
||
= size_binop (MULT_EXPR, next,
|
||
size_in_bytes (TREE_TYPE (constructor_type)));
|
||
TREE_INT_CST_LOW (constructor_unfilled_index)
|
||
= TREE_INT_CST_LOW (next);
|
||
TREE_INT_CST_HIGH (constructor_unfilled_index)
|
||
= TREE_INT_CST_HIGH (next);
|
||
}
|
||
else
|
||
filled = 0;
|
||
|
||
if (filled)
|
||
{
|
||
int nextpos = TREE_INT_CST_LOW (nextpos_tree);
|
||
|
||
assemble_zeros (nextpos - TREE_INT_CST_LOW (filled));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If it's not incremental, just skip over the gap,
|
||
so that after jumping to retry we will output the next
|
||
successive element. */
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
constructor_unfilled_fields = next;
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
TREE_INT_CST_LOW (constructor_unfilled_index)
|
||
= TREE_INT_CST_LOW (next);
|
||
TREE_INT_CST_HIGH (constructor_unfilled_index)
|
||
= TREE_INT_CST_HIGH (next);
|
||
}
|
||
}
|
||
|
||
/* ELT now points to the node in the pending tree with the next
|
||
initializer to output. */
|
||
goto retry;
|
||
}
|
||
|
||
/* Add one non-braced element to the current constructor level.
|
||
This adjusts the current position within the constructor's type.
|
||
This may also start or terminate implicit levels
|
||
to handle a partly-braced initializer.
|
||
|
||
Once this has found the correct level for the new element,
|
||
it calls output_init_element.
|
||
|
||
Note: if we are incrementally outputting this constructor,
|
||
this function may be called with a null argument
|
||
representing a sub-constructor that was already incrementally output.
|
||
When that happens, we output nothing, but we do the bookkeeping
|
||
to skip past that element of the current constructor. */
|
||
|
||
void
|
||
process_init_element (value)
|
||
tree value;
|
||
{
|
||
tree orig_value = value;
|
||
int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;
|
||
|
||
/* Handle superfluous braces around string cst as in
|
||
char x[] = {"foo"}; */
|
||
if (string_flag
|
||
&& constructor_type
|
||
&& TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
|
||
&& integer_zerop (constructor_unfilled_index))
|
||
{
|
||
constructor_stack->replacement_value = value;
|
||
return;
|
||
}
|
||
|
||
if (constructor_stack->replacement_value != 0)
|
||
{
|
||
error_init ("excess elements in struct initializer%s",
|
||
" after `%s'", NULL_PTR);
|
||
return;
|
||
}
|
||
|
||
/* Ignore elements of a brace group if it is entirely superfluous
|
||
and has already been diagnosed. */
|
||
if (constructor_type == 0)
|
||
return;
|
||
|
||
/* If we've exhausted any levels that didn't have braces,
|
||
pop them now. */
|
||
while (constructor_stack->implicit)
|
||
{
|
||
if ((TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
&& constructor_fields == 0)
|
||
process_init_element (pop_init_level (1));
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& (constructor_max_index == 0
|
||
|| tree_int_cst_lt (constructor_max_index,
|
||
constructor_index)))
|
||
process_init_element (pop_init_level (1));
|
||
else
|
||
break;
|
||
}
|
||
|
||
while (1)
|
||
{
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE)
|
||
{
|
||
tree fieldtype;
|
||
enum tree_code fieldcode;
|
||
|
||
if (constructor_fields == 0)
|
||
{
|
||
pedwarn_init ("excess elements in struct initializer%s",
|
||
" after `%s'", NULL_PTR);
|
||
break;
|
||
}
|
||
|
||
fieldtype = TREE_TYPE (constructor_fields);
|
||
if (fieldtype != error_mark_node)
|
||
fieldtype = TYPE_MAIN_VARIANT (fieldtype);
|
||
fieldcode = TREE_CODE (fieldtype);
|
||
|
||
/* Accept a string constant to initialize a subarray. */
|
||
if (value != 0
|
||
&& fieldcode == ARRAY_TYPE
|
||
&& TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
|
||
&& string_flag)
|
||
value = orig_value;
|
||
/* Otherwise, if we have come to a subaggregate,
|
||
and we don't have an element of its type, push into it. */
|
||
else if (value != 0 && !constructor_no_implicit
|
||
&& value != error_mark_node
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
|
||
&& (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
|
||
|| fieldcode == UNION_TYPE))
|
||
{
|
||
push_init_level (1);
|
||
continue;
|
||
}
|
||
|
||
if (value)
|
||
{
|
||
push_member_name (constructor_fields);
|
||
output_init_element (value, fieldtype, constructor_fields, 1);
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
}
|
||
else
|
||
/* Do the bookkeeping for an element that was
|
||
directly output as a constructor. */
|
||
{
|
||
/* For a record, keep track of end position of last field. */
|
||
tree temp = size_binop (PLUS_EXPR,
|
||
DECL_FIELD_BITPOS (constructor_fields),
|
||
DECL_SIZE (constructor_fields));
|
||
TREE_INT_CST_LOW (constructor_bit_index)
|
||
= TREE_INT_CST_LOW (temp);
|
||
TREE_INT_CST_HIGH (constructor_bit_index)
|
||
= TREE_INT_CST_HIGH (temp);
|
||
|
||
constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
|
||
}
|
||
|
||
constructor_fields = TREE_CHAIN (constructor_fields);
|
||
/* Skip any nameless bit fields at the beginning. */
|
||
while (constructor_fields != 0
|
||
&& DECL_C_BIT_FIELD (constructor_fields)
|
||
&& DECL_NAME (constructor_fields) == 0)
|
||
constructor_fields = TREE_CHAIN (constructor_fields);
|
||
break;
|
||
}
|
||
if (TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
tree fieldtype;
|
||
enum tree_code fieldcode;
|
||
|
||
if (constructor_fields == 0)
|
||
{
|
||
pedwarn_init ("excess elements in union initializer%s",
|
||
" after `%s'", NULL_PTR);
|
||
break;
|
||
}
|
||
|
||
fieldtype = TREE_TYPE (constructor_fields);
|
||
if (fieldtype != error_mark_node)
|
||
fieldtype = TYPE_MAIN_VARIANT (fieldtype);
|
||
fieldcode = TREE_CODE (fieldtype);
|
||
|
||
/* Accept a string constant to initialize a subarray. */
|
||
if (value != 0
|
||
&& fieldcode == ARRAY_TYPE
|
||
&& TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
|
||
&& string_flag)
|
||
value = orig_value;
|
||
/* Otherwise, if we have come to a subaggregate,
|
||
and we don't have an element of its type, push into it. */
|
||
else if (value != 0 && !constructor_no_implicit
|
||
&& value != error_mark_node
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
|
||
&& (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
|
||
|| fieldcode == UNION_TYPE))
|
||
{
|
||
push_init_level (1);
|
||
continue;
|
||
}
|
||
|
||
if (value)
|
||
{
|
||
push_member_name (constructor_fields);
|
||
output_init_element (value, fieldtype, constructor_fields, 1);
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
}
|
||
else
|
||
/* Do the bookkeeping for an element that was
|
||
directly output as a constructor. */
|
||
{
|
||
TREE_INT_CST_LOW (constructor_bit_index)
|
||
= TREE_INT_CST_LOW (DECL_SIZE (constructor_fields));
|
||
TREE_INT_CST_HIGH (constructor_bit_index)
|
||
= TREE_INT_CST_HIGH (DECL_SIZE (constructor_fields));
|
||
|
||
constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
|
||
}
|
||
|
||
constructor_fields = 0;
|
||
break;
|
||
}
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
|
||
enum tree_code eltcode = TREE_CODE (elttype);
|
||
|
||
/* Accept a string constant to initialize a subarray. */
|
||
if (value != 0
|
||
&& eltcode == ARRAY_TYPE
|
||
&& TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
|
||
&& string_flag)
|
||
value = orig_value;
|
||
/* Otherwise, if we have come to a subaggregate,
|
||
and we don't have an element of its type, push into it. */
|
||
else if (value != 0 && !constructor_no_implicit
|
||
&& value != error_mark_node
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
|
||
&& (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
|
||
|| eltcode == UNION_TYPE))
|
||
{
|
||
push_init_level (1);
|
||
continue;
|
||
}
|
||
|
||
if (constructor_max_index != 0
|
||
&& tree_int_cst_lt (constructor_max_index, constructor_index))
|
||
{
|
||
pedwarn_init ("excess elements in array initializer%s",
|
||
" after `%s'", NULL_PTR);
|
||
break;
|
||
}
|
||
|
||
/* In the case of [LO .. HI] = VALUE, only evaluate VALUE once. */
|
||
if (constructor_range_end)
|
||
{
|
||
if (constructor_max_index != 0
|
||
&& tree_int_cst_lt (constructor_max_index,
|
||
constructor_range_end))
|
||
{
|
||
pedwarn_init ("excess elements in array initializer%s",
|
||
" after `%s'", NULL_PTR);
|
||
TREE_INT_CST_HIGH (constructor_range_end)
|
||
= TREE_INT_CST_HIGH (constructor_max_index);
|
||
TREE_INT_CST_LOW (constructor_range_end)
|
||
= TREE_INT_CST_LOW (constructor_max_index);
|
||
}
|
||
|
||
value = save_expr (value);
|
||
}
|
||
|
||
/* Now output the actual element.
|
||
Ordinarily, output once.
|
||
If there is a range, repeat it till we advance past the range. */
|
||
do
|
||
{
|
||
tree tem;
|
||
|
||
if (value)
|
||
{
|
||
push_array_bounds (TREE_INT_CST_LOW (constructor_index));
|
||
output_init_element (value, elttype, constructor_index, 1);
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
}
|
||
|
||
tem = size_binop (PLUS_EXPR, constructor_index,
|
||
integer_one_node);
|
||
TREE_INT_CST_LOW (constructor_index) = TREE_INT_CST_LOW (tem);
|
||
TREE_INT_CST_HIGH (constructor_index) = TREE_INT_CST_HIGH (tem);
|
||
|
||
if (!value)
|
||
/* If we are doing the bookkeeping for an element that was
|
||
directly output as a constructor,
|
||
we must update constructor_unfilled_index. */
|
||
{
|
||
TREE_INT_CST_LOW (constructor_unfilled_index)
|
||
= TREE_INT_CST_LOW (constructor_index);
|
||
TREE_INT_CST_HIGH (constructor_unfilled_index)
|
||
= TREE_INT_CST_HIGH (constructor_index);
|
||
}
|
||
}
|
||
while (! (constructor_range_end == 0
|
||
|| tree_int_cst_lt (constructor_range_end,
|
||
constructor_index)));
|
||
|
||
break;
|
||
}
|
||
|
||
/* Handle the sole element allowed in a braced initializer
|
||
for a scalar variable. */
|
||
if (constructor_fields == 0)
|
||
{
|
||
pedwarn_init ("excess elements in scalar initializer%s",
|
||
" after `%s'", NULL_PTR);
|
||
break;
|
||
}
|
||
|
||
if (value)
|
||
output_init_element (value, constructor_type, NULL_TREE, 1);
|
||
constructor_fields = 0;
|
||
break;
|
||
}
|
||
|
||
/* If the (lexically) previous elments are not now saved,
|
||
we can discard the storage for them. */
|
||
if (constructor_incremental && constructor_pending_elts == 0 && value != 0
|
||
&& constructor_stack == 0)
|
||
clear_momentary ();
|
||
}
|
||
|
||
/* Expand an ASM statement with operands, handling output operands
|
||
that are not variables or INDIRECT_REFS by transforming such
|
||
cases into cases that expand_asm_operands can handle.
|
||
|
||
Arguments are same as for expand_asm_operands. */
|
||
|
||
void
|
||
c_expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
|
||
tree string, outputs, inputs, clobbers;
|
||
int vol;
|
||
char *filename;
|
||
int line;
|
||
{
|
||
int noutputs = list_length (outputs);
|
||
register int i;
|
||
/* o[I] is the place that output number I should be written. */
|
||
register tree *o = (tree *) alloca (noutputs * sizeof (tree));
|
||
register tree tail;
|
||
|
||
if (TREE_CODE (string) == ADDR_EXPR)
|
||
string = TREE_OPERAND (string, 0);
|
||
if (TREE_CODE (string) != STRING_CST)
|
||
{
|
||
error ("asm template is not a string constant");
|
||
return;
|
||
}
|
||
|
||
/* Record the contents of OUTPUTS before it is modified. */
|
||
for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
|
||
o[i] = TREE_VALUE (tail);
|
||
|
||
/* Perform default conversions on array and function inputs. */
|
||
/* Don't do this for other types--
|
||
it would screw up operands expected to be in memory. */
|
||
for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), i++)
|
||
if (TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == ARRAY_TYPE
|
||
|| TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == FUNCTION_TYPE)
|
||
TREE_VALUE (tail) = default_conversion (TREE_VALUE (tail));
|
||
|
||
/* Generate the ASM_OPERANDS insn;
|
||
store into the TREE_VALUEs of OUTPUTS some trees for
|
||
where the values were actually stored. */
|
||
expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line);
|
||
|
||
/* Copy all the intermediate outputs into the specified outputs. */
|
||
for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
|
||
{
|
||
if (o[i] != TREE_VALUE (tail))
|
||
{
|
||
expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)),
|
||
NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
||
free_temp_slots ();
|
||
}
|
||
/* Detect modification of read-only values.
|
||
(Otherwise done by build_modify_expr.) */
|
||
else
|
||
{
|
||
tree type = TREE_TYPE (o[i]);
|
||
if (TREE_READONLY (o[i])
|
||
|| TYPE_READONLY (type)
|
||
|| ((TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE)
|
||
&& C_TYPE_FIELDS_READONLY (type)))
|
||
readonly_warning (o[i], "modification by `asm'");
|
||
}
|
||
}
|
||
|
||
/* Those MODIFY_EXPRs could do autoincrements. */
|
||
emit_queue ();
|
||
}
|
||
|
||
/* Expand a C `return' statement.
|
||
RETVAL is the expression for what to return,
|
||
or a null pointer for `return;' with no value. */
|
||
|
||
void
|
||
c_expand_return (retval)
|
||
tree retval;
|
||
{
|
||
tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
|
||
|
||
if (TREE_THIS_VOLATILE (current_function_decl))
|
||
warning ("function declared `noreturn' has a `return' statement");
|
||
|
||
if (!retval)
|
||
{
|
||
current_function_returns_null = 1;
|
||
if (warn_return_type && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
|
||
warning ("`return' with no value, in function returning non-void");
|
||
expand_null_return ();
|
||
}
|
||
else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
|
||
{
|
||
current_function_returns_null = 1;
|
||
if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
|
||
pedwarn ("`return' with a value, in function returning void");
|
||
expand_return (retval);
|
||
}
|
||
else
|
||
{
|
||
tree t = convert_for_assignment (valtype, retval, "return",
|
||
NULL_TREE, NULL_TREE, 0);
|
||
tree res = DECL_RESULT (current_function_decl);
|
||
tree inner;
|
||
|
||
if (t == error_mark_node)
|
||
return;
|
||
|
||
inner = t = convert (TREE_TYPE (res), t);
|
||
|
||
/* Strip any conversions, additions, and subtractions, and see if
|
||
we are returning the address of a local variable. Warn if so. */
|
||
while (1)
|
||
{
|
||
switch (TREE_CODE (inner))
|
||
{
|
||
case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
|
||
case PLUS_EXPR:
|
||
inner = TREE_OPERAND (inner, 0);
|
||
continue;
|
||
|
||
case MINUS_EXPR:
|
||
/* If the second operand of the MINUS_EXPR has a pointer
|
||
type (or is converted from it), this may be valid, so
|
||
don't give a warning. */
|
||
{
|
||
tree op1 = TREE_OPERAND (inner, 1);
|
||
|
||
while (! POINTER_TYPE_P (TREE_TYPE (op1))
|
||
&& (TREE_CODE (op1) == NOP_EXPR
|
||
|| TREE_CODE (op1) == NON_LVALUE_EXPR
|
||
|| TREE_CODE (op1) == CONVERT_EXPR))
|
||
op1 = TREE_OPERAND (op1, 0);
|
||
|
||
if (POINTER_TYPE_P (TREE_TYPE (op1)))
|
||
break;
|
||
|
||
inner = TREE_OPERAND (inner, 0);
|
||
continue;
|
||
}
|
||
|
||
case ADDR_EXPR:
|
||
inner = TREE_OPERAND (inner, 0);
|
||
|
||
while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
|
||
inner = TREE_OPERAND (inner, 0);
|
||
|
||
if (TREE_CODE (inner) == VAR_DECL
|
||
&& ! DECL_EXTERNAL (inner)
|
||
&& ! TREE_STATIC (inner)
|
||
&& DECL_CONTEXT (inner) == current_function_decl)
|
||
warning ("function returns address of local variable");
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
t = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_return (t);
|
||
current_function_returns_value = 1;
|
||
}
|
||
}
|
||
|
||
/* Start a C switch statement, testing expression EXP.
|
||
Return EXP if it is valid, an error node otherwise. */
|
||
|
||
tree
|
||
c_expand_start_case (exp)
|
||
tree exp;
|
||
{
|
||
register enum tree_code code = TREE_CODE (TREE_TYPE (exp));
|
||
tree type = TREE_TYPE (exp);
|
||
|
||
if (code != INTEGER_TYPE && code != ENUMERAL_TYPE && code != ERROR_MARK)
|
||
{
|
||
error ("switch quantity not an integer");
|
||
exp = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
tree index;
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
|
||
|
||
if (warn_traditional
|
||
&& (type == long_integer_type_node
|
||
|| type == long_unsigned_type_node))
|
||
pedwarn ("`long' switch expression not converted to `int' in ANSI C");
|
||
|
||
exp = default_conversion (exp);
|
||
type = TREE_TYPE (exp);
|
||
index = get_unwidened (exp, NULL_TREE);
|
||
/* We can't strip a conversion from a signed type to an unsigned,
|
||
because if we did, int_fits_type_p would do the wrong thing
|
||
when checking case values for being in range,
|
||
and it's too hard to do the right thing. */
|
||
if (TREE_UNSIGNED (TREE_TYPE (exp))
|
||
== TREE_UNSIGNED (TREE_TYPE (index)))
|
||
exp = index;
|
||
}
|
||
|
||
expand_start_case (1, exp, type, "switch statement");
|
||
|
||
return exp;
|
||
}
|