gcc/libsanitizer/ubsan/ubsan_handlers.cpp
2023-04-30 09:38:32 +02:00

934 lines
33 KiB
C++

//===-- ubsan_handlers.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Error logging entry points for the UBSan runtime.
//
//===----------------------------------------------------------------------===//
#include "ubsan_platform.h"
#if CAN_SANITIZE_UB
#include "ubsan_handlers.h"
#include "ubsan_diag.h"
#include "ubsan_flags.h"
#include "ubsan_monitor.h"
#include "ubsan_value.h"
#include "sanitizer_common/sanitizer_common.h"
using namespace __sanitizer;
using namespace __ubsan;
namespace __ubsan {
bool ignoreReport(SourceLocation SLoc, ReportOptions Opts, ErrorType ET) {
// We are not allowed to skip error report: if we are in unrecoverable
// handler, we have to terminate the program right now, and therefore
// have to print some diagnostic.
//
// Even if source location is disabled, it doesn't mean that we have
// already report an error to the user: some concurrently running
// thread could have acquired it, but not yet printed the report.
if (Opts.FromUnrecoverableHandler)
return false;
return SLoc.isDisabled() || IsPCSuppressed(ET, Opts.pc, SLoc.getFilename());
}
/// Situations in which we might emit a check for the suitability of a
/// pointer or glvalue. Needs to be kept in sync with CodeGenFunction.h in
/// clang.
enum TypeCheckKind {
/// Checking the operand of a load. Must be suitably sized and aligned.
TCK_Load,
/// Checking the destination of a store. Must be suitably sized and aligned.
TCK_Store,
/// Checking the bound value in a reference binding. Must be suitably sized
/// and aligned, but is not required to refer to an object (until the
/// reference is used), per core issue 453.
TCK_ReferenceBinding,
/// Checking the object expression in a non-static data member access. Must
/// be an object within its lifetime.
TCK_MemberAccess,
/// Checking the 'this' pointer for a call to a non-static member function.
/// Must be an object within its lifetime.
TCK_MemberCall,
/// Checking the 'this' pointer for a constructor call.
TCK_ConstructorCall,
/// Checking the operand of a static_cast to a derived pointer type. Must be
/// null or an object within its lifetime.
TCK_DowncastPointer,
/// Checking the operand of a static_cast to a derived reference type. Must
/// be an object within its lifetime.
TCK_DowncastReference,
/// Checking the operand of a cast to a base object. Must be suitably sized
/// and aligned.
TCK_Upcast,
/// Checking the operand of a cast to a virtual base object. Must be an
/// object within its lifetime.
TCK_UpcastToVirtualBase,
/// Checking the value assigned to a _Nonnull pointer. Must not be null.
TCK_NonnullAssign,
/// Checking the operand of a dynamic_cast or a typeid expression. Must be
/// null or an object within its lifetime.
TCK_DynamicOperation
};
extern const char *const TypeCheckKinds[] = {
"load of", "store to", "reference binding to", "member access within",
"member call on", "constructor call on", "downcast of", "downcast of",
"upcast of", "cast to virtual base of", "_Nonnull binding to",
"dynamic operation on"};
}
static void handleTypeMismatchImpl(TypeMismatchData *Data, ValueHandle Pointer,
ReportOptions Opts) {
Location Loc = Data->Loc.acquire();
uptr Alignment = (uptr)1 << Data->LogAlignment;
ErrorType ET;
if (!Pointer)
ET = (Data->TypeCheckKind == TCK_NonnullAssign)
? ErrorType::NullPointerUseWithNullability
: ErrorType::NullPointerUse;
else if (Pointer & (Alignment - 1))
ET = ErrorType::MisalignedPointerUse;
else
ET = ErrorType::InsufficientObjectSize;
// Use the SourceLocation from Data to track deduplication, even if it's
// invalid.
if (ignoreReport(Loc.getSourceLocation(), Opts, ET))
return;
SymbolizedStackHolder FallbackLoc;
if (Data->Loc.isInvalid()) {
FallbackLoc.reset(getCallerLocation(Opts.pc));
Loc = FallbackLoc;
}
ScopedReport R(Opts, Loc, ET);
switch (ET) {
case ErrorType::NullPointerUse:
case ErrorType::NullPointerUseWithNullability:
Diag(Loc, DL_Error, ET, "%0 null pointer of type %1")
<< TypeCheckKinds[Data->TypeCheckKind] << Data->Type;
break;
case ErrorType::MisalignedPointerUse:
Diag(Loc, DL_Error, ET, "%0 misaligned address %1 for type %3, "
"which requires %2 byte alignment")
<< TypeCheckKinds[Data->TypeCheckKind] << (void *)Pointer << Alignment
<< Data->Type;
break;
case ErrorType::InsufficientObjectSize:
Diag(Loc, DL_Error, ET, "%0 address %1 with insufficient space "
"for an object of type %2")
<< TypeCheckKinds[Data->TypeCheckKind] << (void *)Pointer << Data->Type;
break;
default:
UNREACHABLE("unexpected error type!");
}
if (Pointer)
Diag(Pointer, DL_Note, ET, "pointer points here");
}
void __ubsan::__ubsan_handle_type_mismatch_v1(TypeMismatchData *Data,
ValueHandle Pointer) {
GET_REPORT_OPTIONS(false);
handleTypeMismatchImpl(Data, Pointer, Opts);
}
void __ubsan::__ubsan_handle_type_mismatch_v1_abort(TypeMismatchData *Data,
ValueHandle Pointer) {
GET_REPORT_OPTIONS(true);
handleTypeMismatchImpl(Data, Pointer, Opts);
Die();
}
static void handleAlignmentAssumptionImpl(AlignmentAssumptionData *Data,
ValueHandle Pointer,
ValueHandle Alignment,
ValueHandle Offset,
ReportOptions Opts) {
Location Loc = Data->Loc.acquire();
SourceLocation AssumptionLoc = Data->AssumptionLoc.acquire();
ErrorType ET = ErrorType::AlignmentAssumption;
if (ignoreReport(Loc.getSourceLocation(), Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
uptr RealPointer = Pointer - Offset;
uptr LSB = LeastSignificantSetBitIndex(RealPointer);
uptr ActualAlignment = uptr(1) << LSB;
uptr Mask = Alignment - 1;
uptr MisAlignmentOffset = RealPointer & Mask;
if (!Offset) {
Diag(Loc, DL_Error, ET,
"assumption of %0 byte alignment for pointer of type %1 failed")
<< Alignment << Data->Type;
} else {
Diag(Loc, DL_Error, ET,
"assumption of %0 byte alignment (with offset of %1 byte) for pointer "
"of type %2 failed")
<< Alignment << Offset << Data->Type;
}
if (!AssumptionLoc.isInvalid())
Diag(AssumptionLoc, DL_Note, ET, "alignment assumption was specified here");
Diag(RealPointer, DL_Note, ET,
"%0address is %1 aligned, misalignment offset is %2 bytes")
<< (Offset ? "offset " : "") << ActualAlignment << MisAlignmentOffset;
}
void __ubsan::__ubsan_handle_alignment_assumption(AlignmentAssumptionData *Data,
ValueHandle Pointer,
ValueHandle Alignment,
ValueHandle Offset) {
GET_REPORT_OPTIONS(false);
handleAlignmentAssumptionImpl(Data, Pointer, Alignment, Offset, Opts);
}
void __ubsan::__ubsan_handle_alignment_assumption_abort(
AlignmentAssumptionData *Data, ValueHandle Pointer, ValueHandle Alignment,
ValueHandle Offset) {
GET_REPORT_OPTIONS(true);
handleAlignmentAssumptionImpl(Data, Pointer, Alignment, Offset, Opts);
Die();
}
/// \brief Common diagnostic emission for various forms of integer overflow.
template <typename T>
static void handleIntegerOverflowImpl(OverflowData *Data, ValueHandle LHS,
const char *Operator, T RHS,
ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
bool IsSigned = Data->Type.isSignedIntegerTy();
ErrorType ET = IsSigned ? ErrorType::SignedIntegerOverflow
: ErrorType::UnsignedIntegerOverflow;
if (ignoreReport(Loc, Opts, ET))
return;
// If this is an unsigned overflow in non-fatal mode, potentially ignore it.
if (!IsSigned && !Opts.FromUnrecoverableHandler &&
flags()->silence_unsigned_overflow)
return;
ScopedReport R(Opts, Loc, ET);
Diag(Loc, DL_Error, ET, "%0 integer overflow: "
"%1 %2 %3 cannot be represented in type %4")
<< (IsSigned ? "signed" : "unsigned") << Value(Data->Type, LHS)
<< Operator << RHS << Data->Type;
}
#define UBSAN_OVERFLOW_HANDLER(handler_name, op, unrecoverable) \
void __ubsan::handler_name(OverflowData *Data, ValueHandle LHS, \
ValueHandle RHS) { \
GET_REPORT_OPTIONS(unrecoverable); \
handleIntegerOverflowImpl(Data, LHS, op, Value(Data->Type, RHS), Opts); \
if (unrecoverable) \
Die(); \
}
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_add_overflow, "+", false)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_add_overflow_abort, "+", true)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_sub_overflow, "-", false)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_sub_overflow_abort, "-", true)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_mul_overflow, "*", false)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_mul_overflow_abort, "*", true)
static void handleNegateOverflowImpl(OverflowData *Data, ValueHandle OldVal,
ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
bool IsSigned = Data->Type.isSignedIntegerTy();
ErrorType ET = IsSigned ? ErrorType::SignedIntegerOverflow
: ErrorType::UnsignedIntegerOverflow;
if (ignoreReport(Loc, Opts, ET))
return;
if (!IsSigned && flags()->silence_unsigned_overflow)
return;
ScopedReport R(Opts, Loc, ET);
if (IsSigned)
Diag(Loc, DL_Error, ET,
"negation of %0 cannot be represented in type %1; "
"cast to an unsigned type to negate this value to itself")
<< Value(Data->Type, OldVal) << Data->Type;
else
Diag(Loc, DL_Error, ET, "negation of %0 cannot be represented in type %1")
<< Value(Data->Type, OldVal) << Data->Type;
}
void __ubsan::__ubsan_handle_negate_overflow(OverflowData *Data,
ValueHandle OldVal) {
GET_REPORT_OPTIONS(false);
handleNegateOverflowImpl(Data, OldVal, Opts);
}
void __ubsan::__ubsan_handle_negate_overflow_abort(OverflowData *Data,
ValueHandle OldVal) {
GET_REPORT_OPTIONS(true);
handleNegateOverflowImpl(Data, OldVal, Opts);
Die();
}
static void handleDivremOverflowImpl(OverflowData *Data, ValueHandle LHS,
ValueHandle RHS, ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
Value LHSVal(Data->Type, LHS);
Value RHSVal(Data->Type, RHS);
ErrorType ET;
if (RHSVal.isMinusOne())
ET = ErrorType::SignedIntegerOverflow;
else if (Data->Type.isIntegerTy())
ET = ErrorType::IntegerDivideByZero;
else
ET = ErrorType::FloatDivideByZero;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
switch (ET) {
case ErrorType::SignedIntegerOverflow:
Diag(Loc, DL_Error, ET,
"division of %0 by -1 cannot be represented in type %1")
<< LHSVal << Data->Type;
break;
default:
Diag(Loc, DL_Error, ET, "division by zero");
break;
}
}
void __ubsan::__ubsan_handle_divrem_overflow(OverflowData *Data,
ValueHandle LHS, ValueHandle RHS) {
GET_REPORT_OPTIONS(false);
handleDivremOverflowImpl(Data, LHS, RHS, Opts);
}
void __ubsan::__ubsan_handle_divrem_overflow_abort(OverflowData *Data,
ValueHandle LHS,
ValueHandle RHS) {
GET_REPORT_OPTIONS(true);
handleDivremOverflowImpl(Data, LHS, RHS, Opts);
Die();
}
static void handleShiftOutOfBoundsImpl(ShiftOutOfBoundsData *Data,
ValueHandle LHS, ValueHandle RHS,
ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
Value LHSVal(Data->LHSType, LHS);
Value RHSVal(Data->RHSType, RHS);
ErrorType ET;
if (RHSVal.isNegative() ||
RHSVal.getPositiveIntValue() >= Data->LHSType.getIntegerBitWidth())
ET = ErrorType::InvalidShiftExponent;
else
ET = ErrorType::InvalidShiftBase;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
if (ET == ErrorType::InvalidShiftExponent) {
if (RHSVal.isNegative())
Diag(Loc, DL_Error, ET, "shift exponent %0 is negative") << RHSVal;
else
Diag(Loc, DL_Error, ET,
"shift exponent %0 is too large for %1-bit type %2")
<< RHSVal << Data->LHSType.getIntegerBitWidth() << Data->LHSType;
} else {
if (LHSVal.isNegative())
Diag(Loc, DL_Error, ET, "left shift of negative value %0") << LHSVal;
else
Diag(Loc, DL_Error, ET,
"left shift of %0 by %1 places cannot be represented in type %2")
<< LHSVal << RHSVal << Data->LHSType;
}
}
void __ubsan::__ubsan_handle_shift_out_of_bounds(ShiftOutOfBoundsData *Data,
ValueHandle LHS,
ValueHandle RHS) {
GET_REPORT_OPTIONS(false);
handleShiftOutOfBoundsImpl(Data, LHS, RHS, Opts);
}
void __ubsan::__ubsan_handle_shift_out_of_bounds_abort(
ShiftOutOfBoundsData *Data,
ValueHandle LHS,
ValueHandle RHS) {
GET_REPORT_OPTIONS(true);
handleShiftOutOfBoundsImpl(Data, LHS, RHS, Opts);
Die();
}
static void handleOutOfBoundsImpl(OutOfBoundsData *Data, ValueHandle Index,
ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
ErrorType ET = ErrorType::OutOfBoundsIndex;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
Value IndexVal(Data->IndexType, Index);
Diag(Loc, DL_Error, ET, "index %0 out of bounds for type %1")
<< IndexVal << Data->ArrayType;
}
void __ubsan::__ubsan_handle_out_of_bounds(OutOfBoundsData *Data,
ValueHandle Index) {
GET_REPORT_OPTIONS(false);
handleOutOfBoundsImpl(Data, Index, Opts);
}
void __ubsan::__ubsan_handle_out_of_bounds_abort(OutOfBoundsData *Data,
ValueHandle Index) {
GET_REPORT_OPTIONS(true);
handleOutOfBoundsImpl(Data, Index, Opts);
Die();
}
static void handleBuiltinUnreachableImpl(UnreachableData *Data,
ReportOptions Opts) {
ErrorType ET = ErrorType::UnreachableCall;
ScopedReport R(Opts, Data->Loc, ET);
Diag(Data->Loc, DL_Error, ET,
"execution reached an unreachable program point");
}
void __ubsan::__ubsan_handle_builtin_unreachable(UnreachableData *Data) {
GET_REPORT_OPTIONS(true);
handleBuiltinUnreachableImpl(Data, Opts);
Die();
}
static void handleMissingReturnImpl(UnreachableData *Data, ReportOptions Opts) {
ErrorType ET = ErrorType::MissingReturn;
ScopedReport R(Opts, Data->Loc, ET);
Diag(Data->Loc, DL_Error, ET,
"execution reached the end of a value-returning function "
"without returning a value");
}
void __ubsan::__ubsan_handle_missing_return(UnreachableData *Data) {
GET_REPORT_OPTIONS(true);
handleMissingReturnImpl(Data, Opts);
Die();
}
static void handleVLABoundNotPositive(VLABoundData *Data, ValueHandle Bound,
ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
ErrorType ET = ErrorType::NonPositiveVLAIndex;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
Diag(Loc, DL_Error, ET, "variable length array bound evaluates to "
"non-positive value %0")
<< Value(Data->Type, Bound);
}
void __ubsan::__ubsan_handle_vla_bound_not_positive(VLABoundData *Data,
ValueHandle Bound) {
GET_REPORT_OPTIONS(false);
handleVLABoundNotPositive(Data, Bound, Opts);
}
void __ubsan::__ubsan_handle_vla_bound_not_positive_abort(VLABoundData *Data,
ValueHandle Bound) {
GET_REPORT_OPTIONS(true);
handleVLABoundNotPositive(Data, Bound, Opts);
Die();
}
static bool looksLikeFloatCastOverflowDataV1(void *Data) {
// First field is either a pointer to filename or a pointer to a
// TypeDescriptor.
u8 *FilenameOrTypeDescriptor;
internal_memcpy(&FilenameOrTypeDescriptor, Data,
sizeof(FilenameOrTypeDescriptor));
// Heuristic: For float_cast_overflow, the TypeKind will be either TK_Integer
// (0x0), TK_Float (0x1) or TK_Unknown (0xff). If both types are known,
// adding both bytes will be 0 or 1 (for BE or LE). If it were a filename,
// adding two printable characters will not yield such a value. Otherwise,
// if one of them is 0xff, this is most likely TK_Unknown type descriptor.
u16 MaybeFromTypeKind =
FilenameOrTypeDescriptor[0] + FilenameOrTypeDescriptor[1];
return MaybeFromTypeKind < 2 || FilenameOrTypeDescriptor[0] == 0xff ||
FilenameOrTypeDescriptor[1] == 0xff;
}
static void handleFloatCastOverflow(void *DataPtr, ValueHandle From,
ReportOptions Opts) {
SymbolizedStackHolder CallerLoc;
Location Loc;
const TypeDescriptor *FromType, *ToType;
ErrorType ET = ErrorType::FloatCastOverflow;
if (looksLikeFloatCastOverflowDataV1(DataPtr)) {
auto Data = reinterpret_cast<FloatCastOverflowData *>(DataPtr);
CallerLoc.reset(getCallerLocation(Opts.pc));
Loc = CallerLoc;
FromType = &Data->FromType;
ToType = &Data->ToType;
} else {
auto Data = reinterpret_cast<FloatCastOverflowDataV2 *>(DataPtr);
SourceLocation SLoc = Data->Loc.acquire();
if (ignoreReport(SLoc, Opts, ET))
return;
Loc = SLoc;
FromType = &Data->FromType;
ToType = &Data->ToType;
}
ScopedReport R(Opts, Loc, ET);
Diag(Loc, DL_Error, ET,
"%0 is outside the range of representable values of type %2")
<< Value(*FromType, From) << *FromType << *ToType;
}
void __ubsan::__ubsan_handle_float_cast_overflow(void *Data, ValueHandle From) {
GET_REPORT_OPTIONS(false);
handleFloatCastOverflow(Data, From, Opts);
}
void __ubsan::__ubsan_handle_float_cast_overflow_abort(void *Data,
ValueHandle From) {
GET_REPORT_OPTIONS(true);
handleFloatCastOverflow(Data, From, Opts);
Die();
}
static void handleLoadInvalidValue(InvalidValueData *Data, ValueHandle Val,
ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
// This check could be more precise if we used different handlers for
// -fsanitize=bool and -fsanitize=enum.
bool IsBool = (0 == internal_strcmp(Data->Type.getTypeName(), "'bool'")) ||
(0 == internal_strncmp(Data->Type.getTypeName(), "'BOOL'", 6));
ErrorType ET =
IsBool ? ErrorType::InvalidBoolLoad : ErrorType::InvalidEnumLoad;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
Diag(Loc, DL_Error, ET,
"load of value %0, which is not a valid value for type %1")
<< Value(Data->Type, Val) << Data->Type;
}
void __ubsan::__ubsan_handle_load_invalid_value(InvalidValueData *Data,
ValueHandle Val) {
GET_REPORT_OPTIONS(false);
handleLoadInvalidValue(Data, Val, Opts);
}
void __ubsan::__ubsan_handle_load_invalid_value_abort(InvalidValueData *Data,
ValueHandle Val) {
GET_REPORT_OPTIONS(true);
handleLoadInvalidValue(Data, Val, Opts);
Die();
}
static void handleImplicitConversion(ImplicitConversionData *Data,
ReportOptions Opts, ValueHandle Src,
ValueHandle Dst) {
SourceLocation Loc = Data->Loc.acquire();
ErrorType ET = ErrorType::GenericUB;
const TypeDescriptor &SrcTy = Data->FromType;
const TypeDescriptor &DstTy = Data->ToType;
bool SrcSigned = SrcTy.isSignedIntegerTy();
bool DstSigned = DstTy.isSignedIntegerTy();
switch (Data->Kind) {
case ICCK_IntegerTruncation: { // Legacy, no longer used.
// Let's figure out what it should be as per the new types, and upgrade.
// If both types are unsigned, then it's an unsigned truncation.
// Else, it is a signed truncation.
if (!SrcSigned && !DstSigned) {
ET = ErrorType::ImplicitUnsignedIntegerTruncation;
} else {
ET = ErrorType::ImplicitSignedIntegerTruncation;
}
break;
}
case ICCK_UnsignedIntegerTruncation:
ET = ErrorType::ImplicitUnsignedIntegerTruncation;
break;
case ICCK_SignedIntegerTruncation:
ET = ErrorType::ImplicitSignedIntegerTruncation;
break;
case ICCK_IntegerSignChange:
ET = ErrorType::ImplicitIntegerSignChange;
break;
case ICCK_SignedIntegerTruncationOrSignChange:
ET = ErrorType::ImplicitSignedIntegerTruncationOrSignChange;
break;
}
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
// FIXME: is it possible to dump the values as hex with fixed width?
Diag(Loc, DL_Error, ET,
"implicit conversion from type %0 of value %1 (%2-bit, %3signed) to "
"type %4 changed the value to %5 (%6-bit, %7signed)")
<< SrcTy << Value(SrcTy, Src) << SrcTy.getIntegerBitWidth()
<< (SrcSigned ? "" : "un") << DstTy << Value(DstTy, Dst)
<< DstTy.getIntegerBitWidth() << (DstSigned ? "" : "un");
}
void __ubsan::__ubsan_handle_implicit_conversion(ImplicitConversionData *Data,
ValueHandle Src,
ValueHandle Dst) {
GET_REPORT_OPTIONS(false);
handleImplicitConversion(Data, Opts, Src, Dst);
}
void __ubsan::__ubsan_handle_implicit_conversion_abort(
ImplicitConversionData *Data, ValueHandle Src, ValueHandle Dst) {
GET_REPORT_OPTIONS(true);
handleImplicitConversion(Data, Opts, Src, Dst);
Die();
}
static void handleInvalidBuiltin(InvalidBuiltinData *Data, ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
ErrorType ET = ErrorType::InvalidBuiltin;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
Diag(Loc, DL_Error, ET,
"passing zero to %0, which is not a valid argument")
<< ((Data->Kind == BCK_CTZPassedZero) ? "ctz()" : "clz()");
}
void __ubsan::__ubsan_handle_invalid_builtin(InvalidBuiltinData *Data) {
GET_REPORT_OPTIONS(true);
handleInvalidBuiltin(Data, Opts);
}
void __ubsan::__ubsan_handle_invalid_builtin_abort(InvalidBuiltinData *Data) {
GET_REPORT_OPTIONS(true);
handleInvalidBuiltin(Data, Opts);
Die();
}
static void handleInvalidObjCCast(InvalidObjCCast *Data, ValueHandle Pointer,
ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
ErrorType ET = ErrorType::InvalidObjCCast;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
const char *GivenClass = getObjCClassName(Pointer);
const char *GivenClassStr = GivenClass ? GivenClass : "<unknown type>";
Diag(Loc, DL_Error, ET,
"invalid ObjC cast, object is a '%0', but expected a %1")
<< GivenClassStr << Data->ExpectedType;
}
void __ubsan::__ubsan_handle_invalid_objc_cast(InvalidObjCCast *Data,
ValueHandle Pointer) {
GET_REPORT_OPTIONS(false);
handleInvalidObjCCast(Data, Pointer, Opts);
}
void __ubsan::__ubsan_handle_invalid_objc_cast_abort(InvalidObjCCast *Data,
ValueHandle Pointer) {
GET_REPORT_OPTIONS(true);
handleInvalidObjCCast(Data, Pointer, Opts);
Die();
}
static void handleNonNullReturn(NonNullReturnData *Data, SourceLocation *LocPtr,
ReportOptions Opts, bool IsAttr) {
if (!LocPtr)
UNREACHABLE("source location pointer is null!");
SourceLocation Loc = LocPtr->acquire();
ErrorType ET = IsAttr ? ErrorType::InvalidNullReturn
: ErrorType::InvalidNullReturnWithNullability;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
Diag(Loc, DL_Error, ET,
"null pointer returned from function declared to never return null");
if (!Data->AttrLoc.isInvalid())
Diag(Data->AttrLoc, DL_Note, ET, "%0 specified here")
<< (IsAttr ? "returns_nonnull attribute"
: "_Nonnull return type annotation");
}
void __ubsan::__ubsan_handle_nonnull_return_v1(NonNullReturnData *Data,
SourceLocation *LocPtr) {
GET_REPORT_OPTIONS(false);
handleNonNullReturn(Data, LocPtr, Opts, true);
}
void __ubsan::__ubsan_handle_nonnull_return_v1_abort(NonNullReturnData *Data,
SourceLocation *LocPtr) {
GET_REPORT_OPTIONS(true);
handleNonNullReturn(Data, LocPtr, Opts, true);
Die();
}
void __ubsan::__ubsan_handle_nullability_return_v1(NonNullReturnData *Data,
SourceLocation *LocPtr) {
GET_REPORT_OPTIONS(false);
handleNonNullReturn(Data, LocPtr, Opts, false);
}
void __ubsan::__ubsan_handle_nullability_return_v1_abort(
NonNullReturnData *Data, SourceLocation *LocPtr) {
GET_REPORT_OPTIONS(true);
handleNonNullReturn(Data, LocPtr, Opts, false);
Die();
}
static void handleNonNullArg(NonNullArgData *Data, ReportOptions Opts,
bool IsAttr) {
SourceLocation Loc = Data->Loc.acquire();
ErrorType ET = IsAttr ? ErrorType::InvalidNullArgument
: ErrorType::InvalidNullArgumentWithNullability;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
Diag(Loc, DL_Error, ET,
"null pointer passed as argument %0, which is declared to "
"never be null")
<< Data->ArgIndex;
if (!Data->AttrLoc.isInvalid())
Diag(Data->AttrLoc, DL_Note, ET, "%0 specified here")
<< (IsAttr ? "nonnull attribute" : "_Nonnull type annotation");
}
void __ubsan::__ubsan_handle_nonnull_arg(NonNullArgData *Data) {
GET_REPORT_OPTIONS(false);
handleNonNullArg(Data, Opts, true);
}
void __ubsan::__ubsan_handle_nonnull_arg_abort(NonNullArgData *Data) {
GET_REPORT_OPTIONS(true);
handleNonNullArg(Data, Opts, true);
Die();
}
void __ubsan::__ubsan_handle_nullability_arg(NonNullArgData *Data) {
GET_REPORT_OPTIONS(false);
handleNonNullArg(Data, Opts, false);
}
void __ubsan::__ubsan_handle_nullability_arg_abort(NonNullArgData *Data) {
GET_REPORT_OPTIONS(true);
handleNonNullArg(Data, Opts, false);
Die();
}
static void handlePointerOverflowImpl(PointerOverflowData *Data,
ValueHandle Base,
ValueHandle Result,
ReportOptions Opts) {
SourceLocation Loc = Data->Loc.acquire();
ErrorType ET;
if (Base == 0 && Result == 0)
ET = ErrorType::NullptrWithOffset;
else if (Base == 0 && Result != 0)
ET = ErrorType::NullptrWithNonZeroOffset;
else if (Base != 0 && Result == 0)
ET = ErrorType::NullptrAfterNonZeroOffset;
else
ET = ErrorType::PointerOverflow;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
if (ET == ErrorType::NullptrWithOffset) {
Diag(Loc, DL_Error, ET, "applying zero offset to null pointer");
} else if (ET == ErrorType::NullptrWithNonZeroOffset) {
Diag(Loc, DL_Error, ET, "applying non-zero offset %0 to null pointer")
<< Result;
} else if (ET == ErrorType::NullptrAfterNonZeroOffset) {
Diag(
Loc, DL_Error, ET,
"applying non-zero offset to non-null pointer %0 produced null pointer")
<< (void *)Base;
} else if ((sptr(Base) >= 0) == (sptr(Result) >= 0)) {
if (Base > Result)
Diag(Loc, DL_Error, ET,
"addition of unsigned offset to %0 overflowed to %1")
<< (void *)Base << (void *)Result;
else
Diag(Loc, DL_Error, ET,
"subtraction of unsigned offset from %0 overflowed to %1")
<< (void *)Base << (void *)Result;
} else {
Diag(Loc, DL_Error, ET,
"pointer index expression with base %0 overflowed to %1")
<< (void *)Base << (void *)Result;
}
}
void __ubsan::__ubsan_handle_pointer_overflow(PointerOverflowData *Data,
ValueHandle Base,
ValueHandle Result) {
GET_REPORT_OPTIONS(false);
handlePointerOverflowImpl(Data, Base, Result, Opts);
}
void __ubsan::__ubsan_handle_pointer_overflow_abort(PointerOverflowData *Data,
ValueHandle Base,
ValueHandle Result) {
GET_REPORT_OPTIONS(true);
handlePointerOverflowImpl(Data, Base, Result, Opts);
Die();
}
static void handleCFIBadIcall(CFICheckFailData *Data, ValueHandle Function,
ReportOptions Opts) {
if (Data->CheckKind != CFITCK_ICall && Data->CheckKind != CFITCK_NVMFCall)
Die();
SourceLocation Loc = Data->Loc.acquire();
ErrorType ET = ErrorType::CFIBadType;
if (ignoreReport(Loc, Opts, ET))
return;
ScopedReport R(Opts, Loc, ET);
const char *CheckKindStr = Data->CheckKind == CFITCK_NVMFCall
? "non-virtual pointer to member function call"
: "indirect function call";
Diag(Loc, DL_Error, ET,
"control flow integrity check for type %0 failed during %1")
<< Data->Type << CheckKindStr;
SymbolizedStackHolder FLoc(getSymbolizedLocation(Function));
const char *FName = FLoc.get()->info.function;
if (!FName)
FName = "(unknown)";
Diag(FLoc, DL_Note, ET, "%0 defined here") << FName;
// If the failure involved different DSOs for the check location and icall
// target, report the DSO names.
const char *DstModule = FLoc.get()->info.module;
if (!DstModule)
DstModule = "(unknown)";
const char *SrcModule = Symbolizer::GetOrInit()->GetModuleNameForPc(Opts.pc);
if (!SrcModule)
SrcModule = "(unknown)";
if (internal_strcmp(SrcModule, DstModule))
Diag(Loc, DL_Note, ET,
"check failed in %0, destination function located in %1")
<< SrcModule << DstModule;
}
namespace __ubsan {
#ifdef UBSAN_CAN_USE_CXXABI
#ifdef _WIN32
extern "C" void __ubsan_handle_cfi_bad_type_default(CFICheckFailData *Data,
ValueHandle Vtable,
bool ValidVtable,
ReportOptions Opts) {
Die();
}
WIN_WEAK_ALIAS(__ubsan_handle_cfi_bad_type, __ubsan_handle_cfi_bad_type_default)
#else
SANITIZER_WEAK_ATTRIBUTE
#endif
void __ubsan_handle_cfi_bad_type(CFICheckFailData *Data, ValueHandle Vtable,
bool ValidVtable, ReportOptions Opts);
#else
void __ubsan_handle_cfi_bad_type(CFICheckFailData *Data, ValueHandle Vtable,
bool ValidVtable, ReportOptions Opts) {
Die();
}
#endif
} // namespace __ubsan
void __ubsan::__ubsan_handle_cfi_bad_icall(CFIBadIcallData *CallData,
ValueHandle Function) {
GET_REPORT_OPTIONS(false);
CFICheckFailData Data = {CFITCK_ICall, CallData->Loc, CallData->Type};
handleCFIBadIcall(&Data, Function, Opts);
}
void __ubsan::__ubsan_handle_cfi_bad_icall_abort(CFIBadIcallData *CallData,
ValueHandle Function) {
GET_REPORT_OPTIONS(true);
CFICheckFailData Data = {CFITCK_ICall, CallData->Loc, CallData->Type};
handleCFIBadIcall(&Data, Function, Opts);
Die();
}
void __ubsan::__ubsan_handle_cfi_check_fail(CFICheckFailData *Data,
ValueHandle Value,
uptr ValidVtable) {
GET_REPORT_OPTIONS(false);
if (Data->CheckKind == CFITCK_ICall || Data->CheckKind == CFITCK_NVMFCall)
handleCFIBadIcall(Data, Value, Opts);
else
__ubsan_handle_cfi_bad_type(Data, Value, ValidVtable, Opts);
}
void __ubsan::__ubsan_handle_cfi_check_fail_abort(CFICheckFailData *Data,
ValueHandle Value,
uptr ValidVtable) {
GET_REPORT_OPTIONS(true);
if (Data->CheckKind == CFITCK_ICall || Data->CheckKind == CFITCK_NVMFCall)
handleCFIBadIcall(Data, Value, Opts);
else
__ubsan_handle_cfi_bad_type(Data, Value, ValidVtable, Opts);
Die();
}
#endif // CAN_SANITIZE_UB