gcc/libstdc++-v3/include/bits/valarray_meta.h
Gabriel Dos Reis 971cfc6f10 valarray_array.h (_DEFINE_ARRAY_FUNCTION): Use our object function surrogates.
* include/bits/valarray_array.h (_DEFINE_ARRAY_FUNCTION): Use our
	object function surrogates.
	* include/bits/valarray_meta.h (__shift_left): Fix typo.
	(_BinFunClos<>): Remove.
	(_BinFunBase<>): Likewise.
	(_BinFunBase1<>):Likewise.
	(_BinFunBase2<>): Likewise.
	(_DEFINE_EXPR_RELATIONAL_OPERATOR): Likewise.
	(_DEFINE_EXPR_UNARY_OPERATOR): Adjust definition.
	(_DEFINE_EXPR_BINARY_OPERATOR): Likewise.
	(_DEFINE_EXPR_BINARY_FUNCTION): Likewise.
	* include/std/std_valarray.h: Dont #include <functional> anymore.
	(_Bitwise_or<>, _Bitwise_and<>, _Bitwise_xor<>, _Shift_left<>,
	_Shift_right<>): Remove.
	(_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT): Adjust instantiation.
	(_DEFINE_BINARY_OPERATOR): Tweak definition.
	(_DEFINE_LOGICAL_OPERATOR): Remove.
	* testsuite/26_numerics/valarray_name_lookup.C (main): Add more tests.

From-SVN: r56001
2002-08-02 23:08:40 +00:00

1148 lines
38 KiB
C++

// The template and inlines for the -*- C++ -*- internal _Meta class.
// Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@cmla.ens-cachan.fr>
/** @file valarray_meta.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _CPP_VALARRAY_META_H
#define _CPP_VALARRAY_META_H 1
#pragma GCC system_header
namespace std
{
//
// Implementing a loosened valarray return value is tricky.
// First we need to meet 26.3.1/3: we should not add more than
// two levels of template nesting. Therefore we resort to template
// template to "flatten" loosened return value types.
// At some point we use partial specialization to remove one level
// template nesting due to _Expr<>
//
// This class is NOT defined. It doesn't need to.
template<typename _Tp1, typename _Tp2> class _Constant;
// Implementations of unary functions applied to valarray<>s.
// I use hard-coded object functions here instead of a generic
// approach like pointers to function:
// 1) correctness: some functions take references, others values.
// we can't deduce the correct type afterwards.
// 2) efficiency -- object functions can be easily inlined
// 3) be Koenig-lookup-friendly
struct __abs
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return abs(__t); }
};
struct __cos
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return cos(__t); }
};
struct __acos
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return acos(__t); }
};
struct __cosh
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return cosh(__t); }
};
struct __sin
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return sin(__t); }
};
struct __asin
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return asin(__t); }
};
struct __sinh
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return sinh(__t); }
};
struct __tan
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return tan(__t); }
};
struct __atan
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return atan(__t); }
};
struct __tanh
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return tanh(__t); }
};
struct __exp
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return exp(__t); }
};
struct __log
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return log(__t); }
};
struct __log10
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return log10(__t); }
};
struct __sqrt
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return sqrt(__t); }
};
// In the past, we used to tailor operator applications semantics
// to the specialization of standard function objects (i.e. plus<>, etc.)
// That is incorrect. Therefore we provide our own surrogates.
struct __unary_plus
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return +__t; }
};
struct __negate
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return -__t; }
};
struct __bitwise_not
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return ~__t; }
};
struct __plus
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x + __y; }
};
struct __minus
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x - __y; }
};
struct __multiplies
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x * __y; }
};
struct __divides
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x / __y; }
};
struct __modulus
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x % __y; }
};
struct __bitwise_xor
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x ^ __y; }
};
struct __bitwise_and
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x & __y; }
};
struct __bitwise_or
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x | __y; }
};
struct __shift_left
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x << __y; }
};
struct __shift_right
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x >> __y; }
};
struct __logical_and
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x && __y; }
};
struct __logical_or
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x || __y; }
};
struct __logical_not
{
template<typename _Tp>
bool operator()(const _Tp& __x) const { return !__x; }
};
struct __equal_to
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x == __y; }
};
struct __not_equal_to
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x == __y; }
};
struct __less
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x < __y; }
};
struct __greater
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x > __y; }
};
struct __less_equal
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x <= __y; }
};
struct __greater_equal
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x >= __y; }
};
// The few binary functions we miss.
struct __atan2
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return atan2(__x, __y); }
};
struct __pow
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return pow(__x, __y); }
};
// We need these bits in order to recover the return type of
// some functions/operators now that we're no longer using
// function templates.
template<typename, typename _Tp>
struct __fun
{
typedef _Tp result_type;
};
// several specializations for relational operators.
template<typename _Tp>
struct __fun<__logical_not, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__logical_and, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__logical_or, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__less, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__greater, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__less_equal, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__greater_equal, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__equal_to, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__not_equal_to, _Tp>
{
typedef bool result_type;
};
//
// Apply function taking a value/const reference closure
//
template<typename _Dom, typename _Arg>
class _FunBase
{
public:
typedef typename _Dom::value_type value_type;
_FunBase(const _Dom& __e, value_type __f(_Arg))
: _M_expr(__e), _M_func(__f) {}
value_type operator[](size_t __i) const
{ return _M_func (_M_expr[__i]); }
size_t size() const { return _M_expr.size ();}
private:
const _Dom& _M_expr;
value_type (*_M_func)(_Arg);
};
template<class _Dom>
struct _ValFunClos<_Expr,_Dom> : _FunBase<_Dom, typename _Dom::value_type>
{
typedef _FunBase<_Dom, typename _Dom::value_type> _Base;
typedef typename _Base::value_type value_type;
typedef value_type _Tp;
_ValFunClos(const _Dom& __e, _Tp __f(_Tp)) : _Base(__e, __f) {}
};
template<typename _Tp>
struct _ValFunClos<_ValArray,_Tp> : _FunBase<valarray<_Tp>, _Tp>
{
typedef _FunBase<valarray<_Tp>, _Tp> _Base;
typedef _Tp value_type;
_ValFunClos(const valarray<_Tp>& __v, _Tp __f(_Tp)) : _Base(__v, __f) {}
};
template<class _Dom>
struct _RefFunClos<_Expr,_Dom> :
_FunBase<_Dom, const typename _Dom::value_type&>
{
typedef _FunBase<_Dom, const typename _Dom::value_type&> _Base;
typedef typename _Base::value_type value_type;
typedef value_type _Tp;
_RefFunClos(const _Dom& __e, _Tp __f(const _Tp&))
: _Base(__e, __f) {}
};
template<typename _Tp>
struct _RefFunClos<_ValArray,_Tp> : _FunBase<valarray<_Tp>, const _Tp&>
{
typedef _FunBase<valarray<_Tp>, const _Tp&> _Base;
typedef _Tp value_type;
_RefFunClos(const valarray<_Tp>& __v, _Tp __f(const _Tp&))
: _Base(__v, __f) {}
};
//
// Unary expression closure.
//
template<class _Oper, class _Arg>
class _UnBase
{
public:
typedef typename _Arg::value_type _Vt;
typedef typename __fun<_Oper, _Vt>::result_type value_type;
_UnBase(const _Arg& __e) : _M_expr(__e) {}
value_type operator[](size_t __i) const
{ return _M_expr[__i]; }
size_t size() const { return _M_expr.size(); }
private:
const _Arg& _M_expr;
};
template<class _Oper, class _Dom>
struct _UnClos<_Oper, _Expr, _Dom> : _UnBase<_Oper, _Dom>
{
typedef _Dom _Arg;
typedef _UnBase<_Oper, _Dom> _Base;
typedef typename _Base::value_type value_type;
_UnClos(const _Arg& __e) : _Base(__e) {}
};
template<class _Oper, typename _Tp>
struct _UnClos<_Oper, _ValArray, _Tp> : _UnBase<_Oper, valarray<_Tp> >
{
typedef valarray<_Tp> _Arg;
typedef _UnBase<_Oper, valarray<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_UnClos(const _Arg& __e) : _Base(__e) {}
};
//
// Binary expression closure.
//
template<class _Oper, class _FirstArg, class _SecondArg>
class _BinBase
{
public:
typedef typename _FirstArg::value_type _Vt;
typedef typename __fun<_Oper, _Vt>::result_type value_type;
_BinBase(const _FirstArg& __e1, const _SecondArg& __e2)
: _M_expr1(__e1), _M_expr2(__e2) {}
value_type operator[](size_t __i) const
{ return _Oper()(_M_expr1[__i], _M_expr2[__i]); }
size_t size() const { return _M_expr1.size(); }
private:
const _FirstArg& _M_expr1;
const _SecondArg& _M_expr2;
};
template<class _Oper, class _Clos>
class _BinBase2
{
public:
typedef typename _Clos::value_type _Vt;
typedef typename __fun<_Oper, _Vt>::result_type value_type;
_BinBase2(const _Clos& __e, const _Vt& __t)
: _M_expr1(__e), _M_expr2(__t) {}
value_type operator[](size_t __i) const
{ return _Oper()(_M_expr1[__i], _M_expr2); }
size_t size() const { return _M_expr1.size(); }
private:
const _Clos& _M_expr1;
const _Vt& _M_expr2;
};
template<class _Oper, class _Clos>
class _BinBase1
{
public:
typedef typename _Clos::value_type _Vt;
typedef typename __fun<_Oper, _Vt>::result_type value_type;
_BinBase1(const _Vt& __t, const _Clos& __e)
: _M_expr1(__t), _M_expr2(__e) {}
value_type operator[](size_t __i) const
{ return _Oper()(_M_expr1, _M_expr2[__i]); }
size_t size() const { return _M_expr2.size(); }
private:
const _Vt& _M_expr1;
const _Clos& _M_expr2;
};
template<class _Oper, class _Dom1, class _Dom2>
struct _BinClos<_Oper, _Expr, _Expr, _Dom1, _Dom2>
: _BinBase<_Oper,_Dom1,_Dom2>
{
typedef _BinBase<_Oper,_Dom1,_Dom2> _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Dom1& __e1, const _Dom2& __e2) : _Base(__e1, __e2) {}
};
template<class _Oper, typename _Tp>
struct _BinClos<_Oper,_ValArray,_ValArray,_Tp,_Tp>
: _BinBase<_Oper,valarray<_Tp>,valarray<_Tp> >
{
typedef _BinBase<_Oper,valarray<_Tp>,valarray<_Tp> > _Base;
typedef _Tp value_type;
_BinClos(const valarray<_Tp>& __v, const valarray<_Tp>& __w)
: _Base(__v, __w) {}
};
template<class _Oper, class _Dom>
struct _BinClos<_Oper,_Expr,_ValArray,_Dom,typename _Dom::value_type>
: _BinBase<_Oper,_Dom,valarray<typename _Dom::value_type> >
{
typedef typename _Dom::value_type _Tp;
typedef _BinBase<_Oper,_Dom,valarray<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Dom& __e1, const valarray<_Tp>& __e2)
: _Base(__e1, __e2) {}
};
template<class _Oper, class _Dom>
struct _BinClos<_Oper,_ValArray,_Expr,typename _Dom::value_type,_Dom>
: _BinBase<_Oper,valarray<typename _Dom::value_type>,_Dom>
{
typedef typename _Dom::value_type _Tp;
typedef _BinBase<_Oper,valarray<_Tp>,_Dom> _Base;
typedef typename _Base::value_type value_type;
_BinClos(const valarray<_Tp>& __e1, const _Dom& __e2)
: _Base(__e1, __e2) {}
};
template<class _Oper, class _Dom>
struct _BinClos<_Oper,_Expr,_Constant,_Dom,typename _Dom::value_type>
: _BinBase2<_Oper,_Dom>
{
typedef typename _Dom::value_type _Tp;
typedef _BinBase2<_Oper,_Dom> _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Dom& __e1, const _Tp& __e2) : _Base(__e1, __e2) {}
};
template<class _Oper, class _Dom>
struct _BinClos<_Oper,_Constant,_Expr,typename _Dom::value_type,_Dom>
: _BinBase1<_Oper,_Dom>
{
typedef typename _Dom::value_type _Tp;
typedef _BinBase1<_Oper,_Dom> _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Tp& __e1, const _Dom& __e2) : _Base(__e1, __e2) {}
};
template<class _Oper, typename _Tp>
struct _BinClos<_Oper,_ValArray,_Constant,_Tp,_Tp>
: _BinBase2<_Oper,valarray<_Tp> >
{
typedef _BinBase2<_Oper,valarray<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_BinClos(const valarray<_Tp>& __v, const _Tp& __t) : _Base(__v, __t) {}
};
template<class _Oper, typename _Tp>
struct _BinClos<_Oper,_Constant,_ValArray,_Tp,_Tp>
: _BinBase1<_Oper,valarray<_Tp> >
{
typedef _BinBase1<_Oper,valarray<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Tp& __t, const valarray<_Tp>& __v) : _Base(__t, __v) {}
};
//
// slice_array closure.
//
template<typename _Dom> class _SBase {
public:
typedef typename _Dom::value_type value_type;
_SBase (const _Dom& __e, const slice& __s)
: _M_expr (__e), _M_slice (__s) {}
value_type operator[] (size_t __i) const
{ return _M_expr[_M_slice.start () + __i * _M_slice.stride ()]; }
size_t size() const { return _M_slice.size (); }
private:
const _Dom& _M_expr;
const slice& _M_slice;
};
template<typename _Tp> class _SBase<_Array<_Tp> > {
public:
typedef _Tp value_type;
_SBase (_Array<_Tp> __a, const slice& __s)
: _M_array (__a._M_data+__s.start()), _M_size (__s.size()),
_M_stride (__s.stride()) {}
value_type operator[] (size_t __i) const
{ return _M_array._M_data[__i * _M_stride]; }
size_t size() const { return _M_size; }
private:
const _Array<_Tp> _M_array;
const size_t _M_size;
const size_t _M_stride;
};
template<class _Dom> struct _SClos<_Expr,_Dom> : _SBase<_Dom> {
typedef _SBase<_Dom> _Base;
typedef typename _Base::value_type value_type;
_SClos (const _Dom& __e, const slice& __s) : _Base (__e, __s) {}
};
template<typename _Tp>
struct _SClos<_ValArray,_Tp> : _SBase<_Array<_Tp> > {
typedef _SBase<_Array<_Tp> > _Base;
typedef _Tp value_type;
_SClos (_Array<_Tp> __a, const slice& __s) : _Base (__a, __s) {}
};
//
// gslice_array closure.
//
template<class _Dom> class _GBase {
public:
typedef typename _Dom::value_type value_type;
_GBase (const _Dom& __e, const valarray<size_t>& __i)
: _M_expr (__e), _M_index(__i) {}
value_type operator[] (size_t __i) const
{ return _M_expr[_M_index[__i]]; }
size_t size () const { return _M_index.size(); }
private:
const _Dom& _M_expr;
const valarray<size_t>& _M_index;
};
template<typename _Tp> class _GBase<_Array<_Tp> > {
public:
typedef _Tp value_type;
_GBase (_Array<_Tp> __a, const valarray<size_t>& __i)
: _M_array (__a), _M_index(__i) {}
value_type operator[] (size_t __i) const
{ return _M_array._M_data[_M_index[__i]]; }
size_t size () const { return _M_index.size(); }
private:
const _Array<_Tp> _M_array;
const valarray<size_t>& _M_index;
};
template<class _Dom> struct _GClos<_Expr,_Dom> : _GBase<_Dom> {
typedef _GBase<_Dom> _Base;
typedef typename _Base::value_type value_type;
_GClos (const _Dom& __e, const valarray<size_t>& __i)
: _Base (__e, __i) {}
};
template<typename _Tp>
struct _GClos<_ValArray,_Tp> : _GBase<_Array<_Tp> > {
typedef _GBase<_Array<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_GClos (_Array<_Tp> __a, const valarray<size_t>& __i)
: _Base (__a, __i) {}
};
//
// indirect_array closure
//
template<class _Dom> class _IBase {
public:
typedef typename _Dom::value_type value_type;
_IBase (const _Dom& __e, const valarray<size_t>& __i)
: _M_expr (__e), _M_index (__i) {}
value_type operator[] (size_t __i) const
{ return _M_expr[_M_index[__i]]; }
size_t size() const { return _M_index.size(); }
private:
const _Dom& _M_expr;
const valarray<size_t>& _M_index;
};
template<class _Dom> struct _IClos<_Expr,_Dom> : _IBase<_Dom> {
typedef _IBase<_Dom> _Base;
typedef typename _Base::value_type value_type;
_IClos (const _Dom& __e, const valarray<size_t>& __i)
: _Base (__e, __i) {}
};
template<typename _Tp>
struct _IClos<_ValArray,_Tp> : _IBase<valarray<_Tp> > {
typedef _IBase<valarray<_Tp> > _Base;
typedef _Tp value_type;
_IClos (const valarray<_Tp>& __a, const valarray<size_t>& __i)
: _Base (__a, __i) {}
};
//
// class _Expr
//
template<class _Clos, typename _Tp>
class _Expr
{
public:
typedef _Tp value_type;
_Expr(const _Clos&);
const _Clos& operator()() const;
value_type operator[](size_t) const;
valarray<value_type> operator[](slice) const;
valarray<value_type> operator[](const gslice&) const;
valarray<value_type> operator[](const valarray<bool>&) const;
valarray<value_type> operator[](const valarray<size_t>&) const;
_Expr<_UnClos<__unary_plus,std::_Expr,_Clos>, value_type>
operator+() const;
_Expr<_UnClos<__negate,std::_Expr,_Clos>, value_type>
operator-() const;
_Expr<_UnClos<__bitwise_not,std::_Expr,_Clos>, value_type>
operator~() const;
_Expr<_UnClos<__logical_not,std::_Expr,_Clos>, bool>
operator!() const;
size_t size() const;
value_type sum() const;
valarray<value_type> shift(int) const;
valarray<value_type> cshift(int) const;
value_type min() const;
value_type max() const;
valarray<value_type> apply(value_type (*)(const value_type&)) const;
valarray<value_type> apply(value_type (*)(value_type)) const;
private:
const _Clos _M_closure;
};
template<class _Clos, typename _Tp>
inline
_Expr<_Clos,_Tp>::_Expr(const _Clos& __c) : _M_closure(__c) {}
template<class _Clos, typename _Tp>
inline const _Clos&
_Expr<_Clos,_Tp>::operator()() const
{ return _M_closure; }
template<class _Clos, typename _Tp>
inline _Tp
_Expr<_Clos,_Tp>::operator[](size_t __i) const
{ return _M_closure[__i]; }
template<class _Clos, typename _Tp>
inline valarray<_Tp>
_Expr<_Clos,_Tp>::operator[](slice __s) const
{ return _M_closure[__s]; }
template<class _Clos, typename _Tp>
inline valarray<_Tp>
_Expr<_Clos,_Tp>::operator[](const gslice& __gs) const
{ return _M_closure[__gs]; }
template<class _Clos, typename _Tp>
inline valarray<_Tp>
_Expr<_Clos,_Tp>::operator[](const valarray<bool>& __m) const
{ return _M_closure[__m]; }
template<class _Clos, typename _Tp>
inline valarray<_Tp>
_Expr<_Clos,_Tp>::operator[](const valarray<size_t>& __i) const
{ return _M_closure[__i]; }
template<class _Clos, typename _Tp>
inline size_t
_Expr<_Clos,_Tp>::size() const { return _M_closure.size (); }
template<class _Clos, typename _Tp>
inline valarray<_Tp>
_Expr<_Clos, _Tp>::shift(int __n) const
{ return valarray<_Tp>(_M_closure).shift(__n); }
template<class _Clos, typename _Tp>
inline valarray<_Tp>
_Expr<_Clos, _Tp>::cshift(int __n) const
{ return valarray<_Tp>(_M_closure).cshift(__n); }
template<class _Clos, typename _Tp>
inline valarray<_Tp>
_Expr<_Clos, _Tp>::apply(_Tp __f(const _Tp&)) const
{ return valarray<_Tp>(_M_closure).apply(__f); }
template<class _Clos, typename _Tp>
inline valarray<_Tp>
_Expr<_Clos, _Tp>::apply(_Tp __f(_Tp)) const
{ return valarray<_Tp>(_M_closure).apply(__f); }
// XXX: replace this with a more robust summation algorithm.
template<class _Clos, typename _Tp>
inline _Tp
_Expr<_Clos,_Tp>::sum() const
{
size_t __n = _M_closure.size();
if (__n == 0)
return _Tp();
else
{
_Tp __s = _M_closure[--__n];
while (__n != 0)
__s += _M_closure[--__n];
return __s;
}
}
template<class _Clos, typename _Tp>
inline _Tp
_Expr<_Clos, _Tp>::min() const
{ return __valarray_min(_M_closure); }
template<class _Clos, typename _Tp>
inline _Tp
_Expr<_Clos, _Tp>::max() const
{ return __valarray_max(_M_closure); }
template<class _Dom, typename _Tp>
inline _Expr<_UnClos<__logical_not,_Expr,_Dom>, bool>
_Expr<_Dom,_Tp>::operator!() const
{
typedef _UnClos<__logical_not,std::_Expr,_Dom> _Closure;
return _Expr<_Closure,_Tp>(_Closure(this->_M_closure));
}
#define _DEFINE_EXPR_UNARY_OPERATOR(_Op, _Name) \
template<class _Dom, typename _Tp> \
inline _Expr<_UnClos<_Name,std::_Expr,_Dom>,_Tp> \
_Expr<_Dom,_Tp>::operator _Op() const \
{ \
typedef _UnClos<_Name,std::_Expr,_Dom> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(this->_M_closure)); \
}
_DEFINE_EXPR_UNARY_OPERATOR(+, __unary_plus)
_DEFINE_EXPR_UNARY_OPERATOR(-, __negate)
_DEFINE_EXPR_UNARY_OPERATOR(~, __bitwise_not)
#undef _DEFINE_EXPR_UNARY_OPERATOR
#define _DEFINE_EXPR_BINARY_OPERATOR(_Op, _Name) \
template<class _Dom1, class _Dom2> \
inline _Expr<_BinClos<_Name,_Expr,_Expr,_Dom1,_Dom2>, \
typename __fun<_Name, typename _Dom1::value_type>::result_type>\
operator _Op(const _Expr<_Dom1,typename _Dom1::value_type>& __v, \
const _Expr<_Dom2,typename _Dom2::value_type>& __w) \
{ \
typedef typename _Dom1::value_type _Arg; \
typedef typename __fun<_Name, _Arg>::result_type _Value; \
typedef _BinClos<_Name,_Expr,_Expr,_Dom1,_Dom2> _Closure; \
return _Expr<_Closure,_Value>(_Closure(__v(), __w())); \
} \
\
template<class _Dom> \
inline _Expr<_BinClos<_Name,_Expr,_Constant,_Dom,typename _Dom::value_type>,\
typename __fun<_Name, typename _Dom::value_type>::result_type>\
operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __v, \
const typename _Dom::value_type& __t) \
{ \
typedef typename _Dom::value_type _Arg; \
typedef typename __fun<_Name, _Arg>::result_type _Value; \
typedef _BinClos<_Name,_Expr,_Constant,_Dom,_Arg> _Closure; \
return _Expr<_Closure,_Value>(_Closure(__v(), __t)); \
} \
\
template<class _Dom> \
inline _Expr<_BinClos<_Name,_Constant,_Expr,typename _Dom::value_type,_Dom>,\
typename __fun<_Name, typename _Dom::value_type>::result_type>\
operator _Op(const typename _Dom::value_type& __t, \
const _Expr<_Dom,typename _Dom::value_type>& __v) \
{ \
typedef typename _Dom::value_type _Arg; \
typedef typename __fun<_Name, _Arg>::result_type _Value; \
typedef _BinClos<_Name,_Constant,_Expr,_Arg,_Dom> _Closure; \
return _Expr<_Closure,_Value>(_Closure(__t, __v())); \
} \
\
template<class _Dom> \
inline _Expr<_BinClos<_Name,_Expr,_ValArray,_Dom,typename _Dom::value_type>,\
typename __fun<_Name, typename _Dom::value_type>::result_type>\
operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __e, \
const valarray<typename _Dom::value_type>& __v) \
{ \
typedef typename _Dom::value_type _Arg; \
typedef typename __fun<_Name, _Arg>::result_type _Value; \
typedef _BinClos<_Name,_Expr,_ValArray,_Dom,_Arg> _Closure; \
return _Expr<_Closure,_Value>(_Closure(__e(), __v)); \
} \
\
template<class _Dom> \
inline _Expr<_BinClos<_Name,_ValArray,_Expr,typename _Dom::value_type,_Dom>,\
typename __fun<_Name, typename _Dom::value_type>::result_type>\
operator _Op(const valarray<typename _Dom::value_type>& __v, \
const _Expr<_Dom,typename _Dom::value_type>& __e) \
{ \
typedef typename _Dom::value_type _Tp; \
typedef typename __fun<_Name, _Tp>::result_type _Value; \
typedef _BinClos<_Name,_ValArray,_Expr,_Tp,_Dom> _Closure; \
return _Expr<_Closure,_Value> (_Closure (__v, __e ())); \
}
_DEFINE_EXPR_BINARY_OPERATOR(+, __plus)
_DEFINE_EXPR_BINARY_OPERATOR(-, __minus)
_DEFINE_EXPR_BINARY_OPERATOR(*, __multiplies)
_DEFINE_EXPR_BINARY_OPERATOR(/, __divides)
_DEFINE_EXPR_BINARY_OPERATOR(%, __modulus)
_DEFINE_EXPR_BINARY_OPERATOR(^, __bitwise_xor)
_DEFINE_EXPR_BINARY_OPERATOR(&, __bitwise_and)
_DEFINE_EXPR_BINARY_OPERATOR(|, __bitwise_or)
_DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)
_DEFINE_EXPR_BINARY_OPERATOR(>>, __shift_right)
_DEFINE_EXPR_BINARY_OPERATOR(&&, __logical_and)
_DEFINE_EXPR_BINARY_OPERATOR(||, __logical_or)
_DEFINE_EXPR_BINARY_OPERATOR(==, __equal_to)
_DEFINE_EXPR_BINARY_OPERATOR(!=, __not_equal_to)
_DEFINE_EXPR_BINARY_OPERATOR(<, __less)
_DEFINE_EXPR_BINARY_OPERATOR(>, __greater)
_DEFINE_EXPR_BINARY_OPERATOR(<=, __less_equal)
_DEFINE_EXPR_BINARY_OPERATOR(>=, __greater_equal)
#undef _DEFINE_EXPR_BINARY_OPERATOR
#define _DEFINE_EXPR_UNARY_FUNCTION(_Name) \
template<class _Dom> \
inline _Expr<_UnClos<__##_Name,_Expr,_Dom>,typename _Dom::value_type>\
_Name(const _Expr<_Dom,typename _Dom::value_type>& __e) \
{ \
typedef typename _Dom::value_type _Tp; \
typedef _UnClos<__##_Name,_Expr,_Dom> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(__e())); \
} \
\
template<typename _Tp> \
inline _Expr<_UnClos<__##_Name,_ValArray,_Tp>,_Tp> \
_Name(const valarray<_Tp>& __v) \
{ \
typedef _UnClos<__##_Name,_ValArray,_Tp> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(__v)); \
}
_DEFINE_EXPR_UNARY_FUNCTION(abs)
_DEFINE_EXPR_UNARY_FUNCTION(cos)
_DEFINE_EXPR_UNARY_FUNCTION(acos)
_DEFINE_EXPR_UNARY_FUNCTION(cosh)
_DEFINE_EXPR_UNARY_FUNCTION(sin)
_DEFINE_EXPR_UNARY_FUNCTION(asin)
_DEFINE_EXPR_UNARY_FUNCTION(sinh)
_DEFINE_EXPR_UNARY_FUNCTION(tan)
_DEFINE_EXPR_UNARY_FUNCTION(tanh)
_DEFINE_EXPR_UNARY_FUNCTION(atan)
_DEFINE_EXPR_UNARY_FUNCTION(exp)
_DEFINE_EXPR_UNARY_FUNCTION(log)
_DEFINE_EXPR_UNARY_FUNCTION(log10)
_DEFINE_EXPR_UNARY_FUNCTION(sqrt)
#undef _DEFINE_EXPR_UNARY_FUNCTION
#define _DEFINE_EXPR_BINARY_FUNCTION(_Fun) \
template<class _Dom1, class _Dom2> \
inline _Expr<_BinClos<__##_Fun,_Expr,_Expr,_Dom1,_Dom2>, \
typename _Dom1::value_type> \
_Fun(const _Expr<_Dom1,typename _Dom1::value_type>& __e1, \
const _Expr<_Dom2,typename _Dom2::value_type>& __e2) \
{ \
typedef typename _Dom1::value_type _Tp; \
typedef _BinClos<__##_Fun,_Expr,_Expr,_Dom1,_Dom2> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(__e1(), __e2())); \
} \
\
template<class _Dom> \
inline _Expr<_BinClos<__##_Fun, _Expr, _ValArray, _Dom, \
typename _Dom::value_type>, \
typename _Dom::value_type> \
_Fun(const _Expr<_Dom,typename _Dom::value_type>& __e, \
const valarray<typename _Dom::value_type>& __v) \
{ \
typedef typename _Dom::value_type _Tp; \
typedef _BinClos<__##_Fun, _Expr, _ValArray, _Dom, _Tp> _Closure;\
return _Expr<_Closure,_Tp>(_Closure(__e(), __v)); \
} \
\
template<class _Dom> \
inline _Expr<_BinClos<__##_Fun, _ValArray, _Expr, \
typename _Dom::value_type,_Dom>, \
typename _Dom::value_type> \
_Fun(const valarray<typename _Dom::valarray>& __v, \
const _Expr<_Dom,typename _Dom::value_type>& __e) \
{ \
typedef typename _Dom::value_type _Tp; \
typedef _BinClos<__##_Fun,_ValArray,_Expr,_Tp,_Dom> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(__v, __e())); \
} \
\
template<class _Dom> \
inline _Expr<_BinClos<__##_Fun,_Expr,_Constant,_Dom, \
typename _Dom::value_type>, \
typename _Dom::value_type> \
_Fun(const _Expr<_Dom, typename _Dom::value_type>& __e, \
const typename _Dom::value_type& __t) \
{ \
typedef typename _Dom::value_type _Tp; \
typedef _BinClos<__##_Fun,_Expr,_Constant,_Dom,_Tp> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(__e(), __t)); \
} \
\
template<class _Dom> \
inline _Expr<_BinClos<__##_Fun,_Constant,_Expr, \
typename _Dom::value_type,_Dom>, \
typename _Dom::value_type> \
_Fun(const typename _Dom::value_type& __t, \
const _Expr<_Dom,typename _Dom::value_type>& __e) \
{ \
typedef typename _Dom::value_type _Tp; \
typedef _BinClos<__##_Fun, _Constant,_Expr,_Tp,_Dom> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(__t, __e())); \
} \
\
template<typename _Tp> \
inline _Expr<_BinClos<__##_Fun,_ValArray,_ValArray,_Tp,_Tp>, _Tp> \
_Fun(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \
{ \
typedef _BinClos<__##_Fun,_ValArray,_ValArray,_Tp,_Tp> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(__v, __w)); \
} \
\
template<typename _Tp> \
inline _Expr<_BinClos<__##_Fun,_ValArray,_Constant,_Tp,_Tp>,_Tp> \
_Fun(const valarray<_Tp>& __v, const _Tp& __t) \
{ \
typedef _BinClos<__##_Fun,_ValArray,_Constant,_Tp,_Tp> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(__v, __t)); \
} \
\
template<typename _Tp> \
inline _Expr<_BinClos<__##_Fun,_Constant,_ValArray,_Tp,_Tp>,_Tp> \
_Fun(const _Tp& __t, const valarray<_Tp>& __v) \
{ \
typedef _BinClos<__##_Fun,_Constant,_ValArray,_Tp,_Tp> _Closure; \
return _Expr<_Closure,_Tp>(_Closure(__t, __v)); \
}
_DEFINE_EXPR_BINARY_FUNCTION(atan2)
_DEFINE_EXPR_BINARY_FUNCTION(pow)
#undef _DEFINE_EXPR_BINARY_FUNCTION
} // std::
#endif /* _CPP_VALARRAY_META_H */
// Local Variables:
// mode:c++
// End: