gcc/libstdc++-v3/libsupc++/guard.cc
Jakub Jelinek 45ab93d9af non-gcc: Remove trailing whitespace
I've tried to build stage3 with
-Wleading-whitespace=blanks -Wtrailing-whitespace=blank -Wno-error=leading-whitespace=blanks -Wno-error=trailing-whitespace=blank
added to STRICT_WARN and that expectably resulted in about
2744 unique trailing whitespace warnings and 124837 leading whitespace
warnings when excluding *.md files (which obviously is in big part a
generator issue).  Others from that are generator related, I think those
need to be solved later.

The following patch just fixes up the easy case (trailing whitespace),
which could be easily automated:
for i in `find . -name \*.h -o -name \*.cc -o -name \*.c | xargs grep -l '[ 	]$' | grep -v testsuite/`; do sed -i -e 's/[ 	]*$//' $i; done
I've excluded files which I knew are obviously generated or go FE.

Is there anything else we'd want to avoid the changes?

Due to patch size, I've split it between gcc/ part
and rest (include/, libiberty/, libgcc/, libcpp/, libstdc++-v3/;
this part).

2024-10-24  Jakub Jelinek  <jakub@redhat.com>

include/
	* dyn-string.h: Remove trailing whitespace.
	* libiberty.h: Likewise.
	* xregex.h: Likewise.
	* splay-tree.h: Likewise.
	* partition.h: Likewise.
	* plugin-api.h: Likewise.
	* demangle.h: Likewise.
	* vtv-change-permission.h: Likewise.
	* fibheap.h: Likewise.
	* hsa_ext_image.h: Likewise.
	* hashtab.h: Likewise.
	* libcollector.h: Likewise.
	* sort.h: Likewise.
	* symcat.h: Likewise.
	* hsa_ext_amd.h: Likewise.
libcpp/
	* directives.cc: Remove trailing whitespace.
	* mkdeps.cc: Likewise.
	* line-map.cc: Likewise.
	* internal.h: Likewise.
	* files.cc: Likewise.
	* init.cc: Likewise.
	* makeucnid.cc: Likewise.
	* system.h: Likewise.
	* include/line-map.h: Likewise.
	* include/symtab.h: Likewise.
	* include/cpplib.h: Likewise.
	* expr.cc: Likewise.
	* charset.cc: Likewise.
	* macro.cc: Likewise.
	* errors.cc: Likewise.
	* lex.cc: Likewise.
	* traditional.cc: Likewise.
libgcc/
	* crtstuff.c: Remove trailing whitespace.
	* libgcov.h: Likewise.
	* config/alpha/crtfastmath.c: Likewise.
	* config/alpha/vms-gcc_shell_handler.c: Likewise.
	* config/alpha/vms-unwind.h: Likewise.
	* config/pa/linux-atomic.c: Likewise.
	* config/pa/linux-unwind.h: Likewise.
	* config/pa/quadlib.c: Likewise.
	* config/pa/fptr.c: Likewise.
	* config/s390/32/_fixsfdi.c: Likewise.
	* config/s390/32/_fixunssfdi.c: Likewise.
	* config/s390/32/_fixunsdfdi.c: Likewise.
	* config/c6x/pr-support.c: Likewise.
	* config/lm32/_udivsi3.c: Likewise.
	* config/lm32/libgcc_lm32.h: Likewise.
	* config/lm32/_udivmodsi4.c: Likewise.
	* config/lm32/_mulsi3.c: Likewise.
	* config/lm32/_modsi3.c: Likewise.
	* config/lm32/_umodsi3.c: Likewise.
	* config/lm32/_divsi3.c: Likewise.
	* config/darwin-crt3.c: Likewise.
	* config/msp430/mpy.c: Likewise.
	* config/ia64/tf-signs.c: Likewise.
	* config/ia64/fde-vms.c: Likewise.
	* config/ia64/unwind-ia64.c: Likewise.
	* config/ia64/vms-unwind.h: Likewise.
	* config/ia64/sfp-exceptions.c: Likewise.
	* config/ia64/quadlib.c: Likewise.
	* config/ia64/unwind-ia64.h: Likewise.
	* config/rl78/vregs.h: Likewise.
	* config/arm/bpabi.c: Likewise.
	* config/arm/unwind-arm.c: Likewise.
	* config/arm/pr-support.c: Likewise.
	* config/arm/linux-atomic.c: Likewise.
	* config/arm/bpabi-lib.h: Likewise.
	* config/frv/frvend.c: Likewise.
	* config/frv/cmovw.c: Likewise.
	* config/frv/frvbegin.c: Likewise.
	* config/frv/cmovd.c: Likewise.
	* config/frv/cmovh.c: Likewise.
	* config/aarch64/cpuinfo.c: Likewise.
	* config/i386/crtfastmath.c: Likewise.
	* config/i386/cygming-crtend.c: Likewise.
	* config/i386/32/tf-signs.c: Likewise.
	* config/i386/crtprec.c: Likewise.
	* config/i386/sfp-exceptions.c: Likewise.
	* config/i386/w32-unwind.h: Likewise.
	* config/m32r/initfini.c: Likewise.
	* config/sparc/crtfastmath.c: Likewise.
	* config/gcn/amdgcn_veclib.h: Likewise.
	* config/nios2/linux-atomic.c: Likewise.
	* config/nios2/linux-unwind.h: Likewise.
	* config/nios2/lib2-mul.c: Likewise.
	* config/nios2/lib2-nios2.h: Likewise.
	* config/xtensa/unwind-dw2-xtensa.c: Likewise.
	* config/rs6000/darwin-fallback.c: Likewise.
	* config/rs6000/ibm-ldouble.c: Likewise.
	* config/rs6000/sfp-machine.h: Likewise.
	* config/rs6000/darwin-asm.h: Likewise.
	* config/rs6000/darwin-crt2.c: Likewise.
	* config/rs6000/aix-unwind.h: Likewise.
	* config/rs6000/sfp-exceptions.c: Likewise.
	* config/gthr-vxworks.c: Likewise.
	* config/riscv/atomic.c: Likewise.
	* config/visium/memcpy.c: Likewise.
	* config/darwin-crt-tm.c: Likewise.
	* config/stormy16/lib2funcs.c: Likewise.
	* config/arc/ieee-754/divtab-arc-sf.c: Likewise.
	* config/arc/ieee-754/divtab-arc-df.c: Likewise.
	* config/arc/initfini.c: Likewise.
	* config/sol2/gmon.c: Likewise.
	* config/microblaze/divsi3_table.c: Likewise.
	* config/m68k/fpgnulib.c: Likewise.
	* libgcov-driver.c: Likewise.
	* unwind-dw2.c: Likewise.
	* fp-bit.c: Likewise.
	* dfp-bit.h: Likewise.
	* dfp-bit.c: Likewise.
	* libgcov-driver-system.c: Likewise.
libgcc/config/libbid/
	* _le_td.c: Remove trailing whitespace.
	* bid128_compare.c: Likewise.
	* bid_div_macros.h: Likewise.
	* bid64_to_bid128.c: Likewise.
	* bid64_to_uint32.c: Likewise.
	* bid128_to_uint64.c: Likewise.
	* bid64_div.c: Likewise.
	* bid128_round_integral.c: Likewise.
	* bid_binarydecimal.c: Likewise.
	* bid128_string.c: Likewise.
	* bid_flag_operations.c: Likewise.
	* bid128_to_int64.c: Likewise.
	* _mul_sd.c: Likewise.
	* bid64_mul.c: Likewise.
	* bid128_noncomp.c: Likewise.
	* _gt_dd.c: Likewise.
	* bid64_add.c: Likewise.
	* bid64_string.c: Likewise.
	* bid_from_int.c: Likewise.
	* bid128.c: Likewise.
	* _ge_dd.c: Likewise.
	* _ne_sd.c: Likewise.
	* _dd_to_td.c: Likewise.
	* _unord_sd.c: Likewise.
	* bid64_to_uint64.c: Likewise.
	* _gt_sd.c: Likewise.
	* _sd_to_td.c: Likewise.
	* _addsub_td.c: Likewise.
	* _ne_td.c: Likewise.
	* bid_dpd.c: Likewise.
	* bid128_add.c: Likewise.
	* bid128_next.c: Likewise.
	* _lt_sd.c: Likewise.
	* bid64_next.c: Likewise.
	* bid128_mul.c: Likewise.
	* _lt_dd.c: Likewise.
	* _ge_td.c: Likewise.
	* _unord_dd.c: Likewise.
	* bid64_sqrt.c: Likewise.
	* bid_sqrt_macros.h: Likewise.
	* bid64_fma.c: Likewise.
	* _sd_to_dd.c: Likewise.
	* bid_conf.h: Likewise.
	* bid64_noncomp.c: Likewise.
	* bid_gcc_intrinsics.h: Likewise.
	* _gt_td.c: Likewise.
	* _ge_sd.c: Likewise.
	* bid128_minmax.c: Likewise.
	* bid128_quantize.c: Likewise.
	* bid32_to_bid64.c: Likewise.
	* bid_round.c: Likewise.
	* _td_to_sd.c: Likewise.
	* bid_inline_add.h: Likewise.
	* bid128_fma.c: Likewise.
	* _eq_td.c: Likewise.
	* bid32_to_bid128.c: Likewise.
	* bid64_rem.c: Likewise.
	* bid128_2_str_tables.c: Likewise.
	* _mul_dd.c: Likewise.
	* _dd_to_sd.c: Likewise.
	* bid128_div.c: Likewise.
	* _lt_td.c: Likewise.
	* bid64_compare.c: Likewise.
	* bid64_to_int32.c: Likewise.
	* _unord_td.c: Likewise.
	* bid128_rem.c: Likewise.
	* bid_internal.h: Likewise.
	* bid64_to_int64.c: Likewise.
	* _eq_dd.c: Likewise.
	* _td_to_dd.c: Likewise.
	* bid128_to_int32.c: Likewise.
	* bid128_to_uint32.c: Likewise.
	* _ne_dd.c: Likewise.
	* bid64_quantize.c: Likewise.
	* _le_dd.c: Likewise.
	* bid64_round_integral.c: Likewise.
	* _le_sd.c: Likewise.
	* bid64_minmax.c: Likewise.
libgcc/config/avr/libf7/
	* f7-renames.h: Remove trailing whitespace.
libstdc++-v3/
	* include/debug/debug.h: Remove trailing whitespace.
	* include/parallel/base.h: Likewise.
	* include/parallel/types.h: Likewise.
	* include/parallel/settings.h: Likewise.
	* include/parallel/multiseq_selection.h: Likewise.
	* include/parallel/partition.h: Likewise.
	* include/parallel/random_number.h: Likewise.
	* include/parallel/find_selectors.h: Likewise.
	* include/parallel/partial_sum.h: Likewise.
	* include/parallel/list_partition.h: Likewise.
	* include/parallel/search.h: Likewise.
	* include/parallel/algorithmfwd.h: Likewise.
	* include/parallel/random_shuffle.h: Likewise.
	* include/parallel/multiway_mergesort.h: Likewise.
	* include/parallel/sort.h: Likewise.
	* include/parallel/algobase.h: Likewise.
	* include/parallel/numericfwd.h: Likewise.
	* include/parallel/multiway_merge.h: Likewise.
	* include/parallel/losertree.h: Likewise.
	* include/bits/basic_ios.h: Likewise.
	* include/bits/stringfwd.h: Likewise.
	* include/bits/ostream_insert.h: Likewise.
	* include/bits/stl_heap.h: Likewise.
	* include/bits/unordered_map.h: Likewise.
	* include/bits/hashtable_policy.h: Likewise.
	* include/bits/stl_iterator_base_funcs.h: Likewise.
	* include/bits/valarray_before.h: Likewise.
	* include/bits/regex.h: Likewise.
	* include/bits/postypes.h: Likewise.
	* include/bits/stl_iterator.h: Likewise.
	* include/bits/localefwd.h: Likewise.
	* include/bits/stl_algo.h: Likewise.
	* include/bits/ios_base.h: Likewise.
	* include/bits/stl_function.h: Likewise.
	* include/bits/basic_string.h: Likewise.
	* include/bits/hashtable.h: Likewise.
	* include/bits/valarray_after.h: Likewise.
	* include/bits/char_traits.h: Likewise.
	* include/bits/gslice.h: Likewise.
	* include/bits/locale_facets_nonio.h: Likewise.
	* include/bits/mask_array.h: Likewise.
	* include/bits/specfun.h: Likewise.
	* include/bits/random.h: Likewise.
	* include/bits/slice_array.h: Likewise.
	* include/bits/valarray_array.h: Likewise.
	* include/tr1/float.h: Likewise.
	* include/tr1/functional_hash.h: Likewise.
	* include/tr1/math.h: Likewise.
	* include/tr1/hashtable_policy.h: Likewise.
	* include/tr1/stdio.h: Likewise.
	* include/tr1/complex.h: Likewise.
	* include/tr1/stdbool.h: Likewise.
	* include/tr1/stdarg.h: Likewise.
	* include/tr1/inttypes.h: Likewise.
	* include/tr1/fenv.h: Likewise.
	* include/tr1/stdlib.h: Likewise.
	* include/tr1/wchar.h: Likewise.
	* include/tr1/tgmath.h: Likewise.
	* include/tr1/limits.h: Likewise.
	* include/tr1/wctype.h: Likewise.
	* include/tr1/stdint.h: Likewise.
	* include/tr1/ctype.h: Likewise.
	* include/tr1/random.h: Likewise.
	* include/tr1/shared_ptr.h: Likewise.
	* include/ext/mt_allocator.h: Likewise.
	* include/ext/sso_string_base.h: Likewise.
	* include/ext/debug_allocator.h: Likewise.
	* include/ext/vstring_fwd.h: Likewise.
	* include/ext/pointer.h: Likewise.
	* include/ext/pod_char_traits.h: Likewise.
	* include/ext/malloc_allocator.h: Likewise.
	* include/ext/vstring.h: Likewise.
	* include/ext/bitmap_allocator.h: Likewise.
	* include/ext/pool_allocator.h: Likewise.
	* include/ext/type_traits.h: Likewise.
	* include/ext/ropeimpl.h: Likewise.
	* include/ext/codecvt_specializations.h: Likewise.
	* include/ext/throw_allocator.h: Likewise.
	* include/ext/extptr_allocator.h: Likewise.
	* include/ext/atomicity.h: Likewise.
	* include/ext/concurrence.h: Likewise.
	* include/c_compatibility/wchar.h: Likewise.
	* include/c_compatibility/stdint.h: Likewise.
	* include/backward/hash_fun.h: Likewise.
	* include/backward/binders.h: Likewise.
	* include/backward/hashtable.h: Likewise.
	* include/backward/auto_ptr.h: Likewise.
	* libsupc++/eh_arm.cc: Likewise.
	* libsupc++/unwind-cxx.h: Likewise.
	* libsupc++/si_class_type_info.cc: Likewise.
	* libsupc++/vec.cc: Likewise.
	* libsupc++/class_type_info.cc: Likewise.
	* libsupc++/vmi_class_type_info.cc: Likewise.
	* libsupc++/guard_error.cc: Likewise.
	* libsupc++/bad_typeid.cc: Likewise.
	* libsupc++/eh_personality.cc: Likewise.
	* libsupc++/atexit_arm.cc: Likewise.
	* libsupc++/pmem_type_info.cc: Likewise.
	* libsupc++/vterminate.cc: Likewise.
	* libsupc++/eh_terminate.cc: Likewise.
	* libsupc++/bad_cast.cc: Likewise.
	* libsupc++/exception_ptr.h: Likewise.
	* libsupc++/eh_throw.cc: Likewise.
	* libsupc++/bad_alloc.cc: Likewise.
	* libsupc++/nested_exception.cc: Likewise.
	* libsupc++/pointer_type_info.cc: Likewise.
	* libsupc++/pbase_type_info.cc: Likewise.
	* libsupc++/bad_array_new.cc: Likewise.
	* libsupc++/pure.cc: Likewise.
	* libsupc++/eh_exception.cc: Likewise.
	* libsupc++/bad_array_length.cc: Likewise.
	* libsupc++/cxxabi.h: Likewise.
	* libsupc++/guard.cc: Likewise.
	* libsupc++/eh_catch.cc: Likewise.
	* libsupc++/cxxabi_forced.h: Likewise.
	* libsupc++/tinfo.h: Likewise.
2024-10-25 10:03:17 +02:00

492 lines
13 KiB
C++

// Copyright (C) 2002-2024 Free Software Foundation, Inc.
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3, or (at your option)
// any later version.
// GCC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
// Written by Mark Mitchell, CodeSourcery LLC, <mark@codesourcery.com>
// Thread support written by Jason Merrill, Red Hat Inc. <jason@redhat.com>
#include <bits/c++config.h>
#include <cxxabi.h>
#include <exception>
#include <new>
#ifdef __USING_MCFGTHREAD__
#include <mcfgthread/cxa.h>
namespace __cxxabiv1 {
extern "C" int
__cxa_guard_acquire (__guard* g)
{
return __MCF_cxa_guard_acquire(g);
}
extern "C" void
__cxa_guard_release (__guard* g) _GLIBCXX_NOTHROW
{
__MCF_cxa_guard_release(g);
}
extern "C" void
__cxa_guard_abort (__guard* g) _GLIBCXX_NOTHROW
{
__MCF_cxa_guard_abort(g);
}
} // namespace __cxxabiv1
#else // __USING_MCFGTHREAD__
#include <ext/atomicity.h>
#include <ext/concurrence.h>
#include <bits/atomic_lockfree_defines.h>
#if defined(__GTHREADS) && defined(__GTHREAD_HAS_COND) \
&& (ATOMIC_INT_LOCK_FREE > 1) && defined(_GLIBCXX_HAVE_LINUX_FUTEX)
# include <climits>
# include <syscall.h>
# include <unistd.h>
# define _GLIBCXX_USE_FUTEX
# define _GLIBCXX_FUTEX_WAIT 0
# define _GLIBCXX_FUTEX_WAKE 1
#endif
// The IA64/generic ABI uses the first byte of the guard variable.
// The ARM EABI uses the least significant bit.
// Thread-safe static local initialization support.
#ifdef __GTHREADS
# ifndef _GLIBCXX_USE_FUTEX
namespace
{
// A single mutex controlling all static initializations.
static __gnu_cxx::__recursive_mutex* static_mutex;
typedef char fake_recursive_mutex[sizeof(__gnu_cxx::__recursive_mutex)]
__attribute__ ((aligned(__alignof__(__gnu_cxx::__recursive_mutex))));
fake_recursive_mutex fake_mutex;
static void init()
{ static_mutex = new (&fake_mutex) __gnu_cxx::__recursive_mutex(); }
__gnu_cxx::__recursive_mutex&
get_static_mutex()
{
static __gthread_once_t once = __GTHREAD_ONCE_INIT;
__gthread_once(&once, init);
return *static_mutex;
}
// Simple wrapper for exception safety.
struct mutex_wrapper
{
bool unlock;
mutex_wrapper() : unlock(true)
{ get_static_mutex().lock(); }
~mutex_wrapper()
{
if (unlock)
static_mutex->unlock();
}
};
}
# endif
# if defined(__GTHREAD_HAS_COND) && !defined(_GLIBCXX_USE_FUTEX)
namespace
{
// A single condition variable controlling all static initializations.
static __gnu_cxx::__cond* static_cond;
// using a fake type to avoid initializing a static class.
typedef char fake_cond_t[sizeof(__gnu_cxx::__cond)]
__attribute__ ((aligned(__alignof__(__gnu_cxx::__cond))));
fake_cond_t fake_cond;
static void init_static_cond()
{ static_cond = new (&fake_cond) __gnu_cxx::__cond(); }
__gnu_cxx::__cond&
get_static_cond()
{
static __gthread_once_t once = __GTHREAD_ONCE_INIT;
__gthread_once(&once, init_static_cond);
return *static_cond;
}
}
# endif
# ifndef _GLIBCXX_GUARD_TEST_AND_ACQUIRE
// Test the guard variable with a memory load with
// acquire semantics.
inline bool
__test_and_acquire (__cxxabiv1::__guard *g)
{
unsigned char __c;
unsigned char *__p = reinterpret_cast<unsigned char *>(g);
__atomic_load (__p, &__c, __ATOMIC_ACQUIRE);
(void) __p;
return _GLIBCXX_GUARD_TEST(&__c);
}
# define _GLIBCXX_GUARD_TEST_AND_ACQUIRE(G) __test_and_acquire (G)
# endif
# ifndef _GLIBCXX_GUARD_SET_AND_RELEASE
// Set the guard variable to 1 with memory order release semantics.
inline void
__set_and_release (__cxxabiv1::__guard *g)
{
unsigned char *__p = reinterpret_cast<unsigned char *>(g);
unsigned char val = 1;
__atomic_store (__p, &val, __ATOMIC_RELEASE);
(void) __p;
}
# define _GLIBCXX_GUARD_SET_AND_RELEASE(G) __set_and_release (G)
# endif
#else /* !__GTHREADS */
# undef _GLIBCXX_GUARD_TEST_AND_ACQUIRE
# undef _GLIBCXX_GUARD_SET_AND_RELEASE
# define _GLIBCXX_GUARD_SET_AND_RELEASE(G) _GLIBCXX_GUARD_SET (G)
#endif /* __GTHREADS */
//
// Here are C++ run-time routines for guarded initialization of static
// variables. There are 4 scenarios under which these routines are called:
//
// 1. Threads not supported (__GTHREADS not defined)
// 2. Threads are supported but not enabled at run-time.
// 3. Threads enabled at run-time but __gthreads_* are not fully POSIX.
// 4. Threads enabled at run-time and __gthreads_* support all POSIX threads
// primitives we need here.
//
// The old code supported scenarios 1-3 but was broken since it used a global
// mutex for all threads and had the mutex locked during the whole duration of
// initialization of a guarded static variable. The following created a
// dead-lock with the old code.
//
// Thread 1 acquires the global mutex.
// Thread 1 starts initializing static variable.
// Thread 1 creates thread 2 during initialization.
// Thread 2 attempts to acquire mutex to initialize another variable.
// Thread 2 blocks since thread 1 is locking the mutex.
// Thread 1 waits for result from thread 2 and also blocks. A deadlock.
//
// The new code here can handle this situation and thus is more robust. However,
// we need to use the POSIX thread condition variable, which is not supported
// in all platforms, notably older versions of Microsoft Windows. The gthr*.h
// headers define a symbol __GTHREAD_HAS_COND for platforms that support POSIX
// like condition variables. For platforms that do not support condition
// variables, we need to fall back to the old code.
// If _GLIBCXX_USE_FUTEX, no global mutex or condition variable is used,
// only atomic operations are used together with futex syscall.
// Valid values of the first integer in guard are:
// 0 No thread encountered the guarded init
// yet or it has been aborted.
// _GLIBCXX_GUARD_BIT The guarded static var has been successfully
// initialized.
// _GLIBCXX_GUARD_PENDING_BIT The guarded static var is being initialized
// and no other thread is waiting for its
// initialization.
// (_GLIBCXX_GUARD_PENDING_BIT The guarded static var is being initialized
// | _GLIBCXX_GUARD_WAITING_BIT) and some other threads are waiting until
// it is initialized.
namespace __cxxabiv1
{
#ifdef _GLIBCXX_USE_FUTEX
namespace
{
static inline int __guard_test_bit (const int __byte, const int __val)
{
union { int __i; char __c[sizeof (int)]; } __u = { 0 };
__u.__c[__byte] = __val;
return __u.__i;
}
}
#endif
static inline int
init_in_progress_flag(__guard* g)
{ return ((char *)g)[1]; }
static inline void
set_init_in_progress_flag(__guard* g, int v)
{ ((char *)g)[1] = v; }
static inline void
throw_recursive_init_exception()
{
#if __cpp_exceptions
throw __gnu_cxx::recursive_init_error();
#else
// Use __builtin_trap so we don't require abort().
__builtin_trap();
#endif
}
// acquire() is a helper function used to acquire guard if thread support is
// not compiled in or is compiled in but not enabled at run-time.
static int
acquire(__guard *g)
{
// Quit if the object is already initialized.
if (_GLIBCXX_GUARD_TEST(g))
return 0;
if (init_in_progress_flag(g))
throw_recursive_init_exception();
set_init_in_progress_flag(g, 1);
return 1;
}
extern "C"
int __cxa_guard_acquire (__guard *g)
{
#ifdef __GTHREADS
// If the target can reorder loads, we need to insert a read memory
// barrier so that accesses to the guarded variable happen after the
// guard test.
if (_GLIBCXX_GUARD_TEST_AND_ACQUIRE (g))
return 0;
# ifdef _GLIBCXX_USE_FUTEX
// If __atomic_* and futex syscall are supported, don't use any global
// mutex.
// Use the same bits in the guard variable whether single-threaded or not,
// so that __cxa_guard_release and __cxa_guard_abort match the logic here
// even if __libc_single_threaded becomes false between now and then.
if (__gnu_cxx::__is_single_threaded())
{
// No need to use atomics, and no need to wait for other threads.
int *gi = (int *) (void *) g;
if (*gi == 0)
{
*gi = _GLIBCXX_GUARD_PENDING_BIT;
return 1;
}
else
throw_recursive_init_exception();
}
else
{
int *gi = (int *) (void *) g;
const int guard_bit = _GLIBCXX_GUARD_BIT;
const int pending_bit = _GLIBCXX_GUARD_PENDING_BIT;
const int waiting_bit = _GLIBCXX_GUARD_WAITING_BIT;
while (1)
{
int expected(0);
if (__atomic_compare_exchange_n(gi, &expected, pending_bit, false,
__ATOMIC_ACQ_REL,
__ATOMIC_ACQUIRE))
{
// This thread should do the initialization.
return 1;
}
if (expected == guard_bit)
{
// Already initialized.
return 0;
}
if (expected == pending_bit)
{
// Use acquire here.
int newv = expected | waiting_bit;
if (!__atomic_compare_exchange_n(gi, &expected, newv, false,
__ATOMIC_ACQ_REL,
__ATOMIC_ACQUIRE))
{
if (expected == guard_bit)
{
// Make a thread that failed to set the
// waiting bit exit the function earlier,
// if it detects that another thread has
// successfully finished initialising.
return 0;
}
if (expected == 0)
continue;
}
expected = newv;
}
syscall (SYS_futex, gi, _GLIBCXX_FUTEX_WAIT, expected, 0);
}
}
# else // ! _GLIBCXX_USE_FUTEX
if (__gthread_active_p ())
{
mutex_wrapper mw;
while (1) // When this loop is executing, mutex is locked.
{
# ifdef __GTHREAD_HAS_COND
// The static is already initialized.
if (_GLIBCXX_GUARD_TEST(g))
return 0; // The mutex will be unlocked via wrapper
if (init_in_progress_flag(g))
{
// The guarded static is currently being initialized by
// another thread, so we release mutex and wait for the
// condition variable. We will lock the mutex again after
// this.
get_static_cond().wait_recursive(&get_static_mutex());
}
else
{
set_init_in_progress_flag(g, 1);
return 1; // The mutex will be unlocked via wrapper.
}
# else
// This provides compatibility with older systems not supporting
// POSIX like condition variables.
if (acquire(g))
{
mw.unlock = false;
return 1; // The mutex still locked.
}
return 0; // The mutex will be unlocked via wrapper.
# endif
}
}
# endif
#endif // ! __GTHREADS
return acquire (g);
}
extern "C"
void __cxa_guard_abort (__guard *g) noexcept
{
#ifdef _GLIBCXX_USE_FUTEX
// If __atomic_* and futex syscall are supported, don't use any global
// mutex.
if (__gnu_cxx::__is_single_threaded())
{
// No need to use atomics, and no other threads to wake.
int *gi = (int *) (void *) g;
*gi = 0;
return;
}
else
{
int *gi = (int *) (void *) g;
const int waiting_bit = _GLIBCXX_GUARD_WAITING_BIT;
int old = __atomic_exchange_n (gi, 0, __ATOMIC_ACQ_REL);
if ((old & waiting_bit) != 0)
syscall (SYS_futex, gi, _GLIBCXX_FUTEX_WAKE, INT_MAX);
return;
}
#elif defined(__GTHREAD_HAS_COND)
if (__gthread_active_p())
{
mutex_wrapper mw;
set_init_in_progress_flag(g, 0);
// If we abort, we still need to wake up all other threads waiting for
// the condition variable.
get_static_cond().broadcast();
return;
}
#endif
set_init_in_progress_flag(g, 0);
#if defined(__GTHREADS) && !defined(__GTHREAD_HAS_COND)
// This provides compatibility with older systems not supporting POSIX like
// condition variables.
if (__gthread_active_p ())
static_mutex->unlock();
#endif
}
extern "C"
void __cxa_guard_release (__guard *g) noexcept
{
#ifdef _GLIBCXX_USE_FUTEX
// If __atomic_* and futex syscall are supported, don't use any global
// mutex.
if (__gnu_cxx::__is_single_threaded())
{
int *gi = (int *) (void *) g;
*gi = _GLIBCXX_GUARD_BIT;
return;
}
else
{
int *gi = (int *) (void *) g;
const int guard_bit = _GLIBCXX_GUARD_BIT;
const int waiting_bit = _GLIBCXX_GUARD_WAITING_BIT;
int old = __atomic_exchange_n (gi, guard_bit, __ATOMIC_ACQ_REL);
if ((old & waiting_bit) != 0)
syscall (SYS_futex, gi, _GLIBCXX_FUTEX_WAKE, INT_MAX);
return;
}
#elif defined(__GTHREAD_HAS_COND)
if (__gthread_active_p())
{
mutex_wrapper mw;
set_init_in_progress_flag(g, 0);
_GLIBCXX_GUARD_SET_AND_RELEASE(g);
get_static_cond().broadcast();
return;
}
#endif
set_init_in_progress_flag(g, 0);
_GLIBCXX_GUARD_SET_AND_RELEASE (g);
#if defined(__GTHREADS) && !defined(__GTHREAD_HAS_COND)
// This provides compatibility with older systems not supporting POSIX like
// condition variables.
if (__gthread_active_p())
static_mutex->unlock();
#endif
}
}
#endif // __USING_MCFGTHREAD__