mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-26 16:25:00 +08:00
7a9389330e
gcc/: * gcc.c (default_compilers): Add entry for ".go". * common.opt: Add -static-libgo as a driver option. * doc/install.texi (Configuration): Mention libgo as an option for --enable-shared. Mention go as an option for --enable-languages. * doc/invoke.texi (Overall Options): Mention .go as a file name suffix. Mention go as a -x option. * doc/frontends.texi (G++ and GCC): Mention Go as a supported language. * doc/sourcebuild.texi (Top Level): Mention libgo. * doc/standards.texi (Standards): Add section on Go language. Move references for other languages into their own section. * doc/contrib.texi (Contributors): Mention that I contributed the Go frontend. gcc/testsuite/: * lib/go.exp: New file. * lib/go-dg.exp: New file. * lib/go-torture.exp: New file. * lib/target-supports.exp (check_compile): Match // Go. From-SVN: r167407
249 lines
6.1 KiB
Go
249 lines
6.1 KiB
Go
// exec.go -- fork/exec syscall support.
|
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Fork, exec, wait, etc.
|
|
|
|
package syscall
|
|
|
|
import "unsafe"
|
|
|
|
func libc_fcntl(fd int, cmd int, arg int) int __asm__ ("fcntl")
|
|
func libc_fork() Pid_t __asm__ ("fork")
|
|
func libc_chdir(name *byte) int __asm__ ("chdir");
|
|
func libc_dup2(int, int) int __asm__ ("dup2")
|
|
func libc_execve(*byte, **byte, **byte) int __asm__ ("execve")
|
|
func libc_sysexit(int) __asm__ ("_exit")
|
|
func libc_wait4(Pid_t, *int, int, *Rusage) Pid_t __asm__ ("wait4")
|
|
|
|
// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
|
|
// If a dup or exec fails, write the errno int to pipe.
|
|
// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
|
|
// In the child, this function must not acquire any locks, because
|
|
// they might have been locked at the time of the fork. This means
|
|
// no rescheduling, no malloc calls, and no new stack segments.
|
|
func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, traceme bool, dir *byte, fd []int, pipe int) (pid int, err int) {
|
|
// Declare all variables at top in case any
|
|
// declarations require heap allocation (e.g., err1).
|
|
var r1, r2, err1 uintptr;
|
|
var nextfd int;
|
|
var i int;
|
|
|
|
darwin := OS == "darwin";
|
|
|
|
// About to call fork.
|
|
// No more allocation or calls of non-assembly functions.
|
|
child := libc_fork();
|
|
if child == -1 {
|
|
return 0, GetErrno();
|
|
}
|
|
|
|
if child != 0 {
|
|
// parent; return PID
|
|
return int(child), 0
|
|
}
|
|
|
|
// Fork succeeded, now in child.
|
|
|
|
// Enable tracing if requested.
|
|
if traceme {
|
|
if libc_ptrace(_PTRACE_TRACEME, 0, 0, nil) < 0 {
|
|
goto childerror;
|
|
}
|
|
}
|
|
|
|
// Chdir
|
|
if dir != nil {
|
|
r := libc_chdir(dir);
|
|
if r < 0 {
|
|
goto childerror;
|
|
}
|
|
}
|
|
|
|
// Pass 1: look for fd[i] < i and move those up above len(fd)
|
|
// so that pass 2 won't stomp on an fd it needs later.
|
|
nextfd = int(len(fd));
|
|
if pipe < nextfd {
|
|
r := libc_dup2(pipe, nextfd);
|
|
if r == -1 {
|
|
goto childerror;
|
|
}
|
|
libc_fcntl(nextfd, F_SETFD, FD_CLOEXEC);
|
|
pipe = nextfd;
|
|
nextfd++;
|
|
}
|
|
for i = 0; i < len(fd); i++ {
|
|
if fd[i] >= 0 && fd[i] < int(i) {
|
|
r := libc_dup2(fd[i], nextfd);
|
|
if r == -1 {
|
|
goto childerror;
|
|
}
|
|
libc_fcntl(nextfd, F_SETFD, FD_CLOEXEC);
|
|
fd[i] = nextfd;
|
|
nextfd++;
|
|
if nextfd == pipe { // don't stomp on pipe
|
|
nextfd++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pass 2: dup fd[i] down onto i.
|
|
for i = 0; i < len(fd); i++ {
|
|
if fd[i] == -1 {
|
|
libc_close(i);
|
|
continue;
|
|
}
|
|
if fd[i] == int(i) {
|
|
// dup2(i, i) won't clear close-on-exec flag on Linux,
|
|
// probably not elsewhere either.
|
|
r := libc_fcntl(fd[i], F_SETFD, 0);
|
|
if r != 0 {
|
|
goto childerror;
|
|
}
|
|
continue;
|
|
}
|
|
// The new fd is created NOT close-on-exec,
|
|
// which is exactly what we want.
|
|
r := libc_dup2(fd[i], i);
|
|
if r == -1 {
|
|
goto childerror;
|
|
}
|
|
}
|
|
|
|
// By convention, we don't close-on-exec the fds we are
|
|
// started with, so if len(fd) < 3, close 0, 1, 2 as needed.
|
|
// Programs that know they inherit fds >= 3 will need
|
|
// to set them close-on-exec.
|
|
for i = len(fd); i < 3; i++ {
|
|
libc_close(i);
|
|
}
|
|
|
|
// Time to exec.
|
|
libc_execve(argv0, &argv[0], &envv[0]);
|
|
|
|
childerror:
|
|
// send error code on pipe
|
|
var e uintptr = uintptr(GetErrno());
|
|
libc_write(pipe, (*byte)(unsafe.Pointer(&e)),
|
|
Size_t(unsafe.Sizeof(err1)));
|
|
for {
|
|
libc_sysexit(253)
|
|
}
|
|
|
|
// Calling panic is not actually safe,
|
|
// but the for loop above won't break
|
|
// and this shuts up the compiler.
|
|
panic("unreached");
|
|
}
|
|
|
|
func forkExec(argv0 string, argv []string, envv []string, traceme bool, dir string, fd []int) (pid int, err int) {
|
|
var p [2]int;
|
|
var r1 int;
|
|
var err1 uintptr;
|
|
var wstatus WaitStatus;
|
|
|
|
p[0] = -1;
|
|
p[1] = -1;
|
|
|
|
// Convert args to C form.
|
|
argv0p := StringBytePtr(argv0);
|
|
argvp := StringArrayPtr(argv);
|
|
envvp := StringArrayPtr(envv);
|
|
var dirp *byte;
|
|
if len(dir) > 0 {
|
|
dirp = StringBytePtr(dir);
|
|
}
|
|
|
|
// Acquire the fork lock so that no other threads
|
|
// create new fds that are not yet close-on-exec
|
|
// before we fork.
|
|
ForkLock.Lock();
|
|
|
|
// Allocate child status pipe close on exec.
|
|
if err = Pipe(p[0:]); err != 0 {
|
|
goto error;
|
|
}
|
|
var val int;
|
|
if val, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 {
|
|
goto error;
|
|
}
|
|
if val, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 {
|
|
goto error;
|
|
}
|
|
|
|
// Kick off child.
|
|
pid, err = forkAndExecInChild(argv0p, argvp, envvp, traceme, dirp, fd, p[1]);
|
|
if err != 0 {
|
|
error:
|
|
if p[0] >= 0 {
|
|
Close(p[0]);
|
|
Close(p[1]);
|
|
}
|
|
ForkLock.Unlock();
|
|
return 0, err
|
|
}
|
|
ForkLock.Unlock();
|
|
|
|
// Read child error status from pipe.
|
|
Close(p[1]);
|
|
n := libc_read(p[0], (*byte)(unsafe.Pointer(&err1)),
|
|
Size_t(unsafe.Sizeof(err1)));
|
|
err = 0;
|
|
if n < 0 {
|
|
err = GetErrno();
|
|
}
|
|
Close(p[0]);
|
|
if err != 0 || n != 0 {
|
|
if int(n) == unsafe.Sizeof(err1) {
|
|
err = int(err1);
|
|
}
|
|
if err == 0 {
|
|
err = EPIPE;
|
|
}
|
|
|
|
// Child failed; wait for it to exit, to make sure
|
|
// the zombies don't accumulate.
|
|
pid1, err1 := Wait4(pid, &wstatus, 0, nil);
|
|
for err1 == EINTR {
|
|
pid1, err1 = Wait4(pid, &wstatus, 0, nil);
|
|
}
|
|
return 0, err
|
|
}
|
|
|
|
// Read got EOF, so pipe closed on exec, so exec succeeded.
|
|
return pid, 0
|
|
}
|
|
|
|
// Combination of fork and exec, careful to be thread safe.
|
|
func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
|
|
return forkExec(argv0, argv, envv, false, dir, fd);
|
|
}
|
|
|
|
// PtraceForkExec is like ForkExec, but starts the child in a traced state.
|
|
func PtraceForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
|
|
return forkExec(argv0, argv, envv, true, dir, fd);
|
|
}
|
|
|
|
// Ordinary exec.
|
|
func Exec(argv0 string, argv []string, envv []string) (err int) {
|
|
argv_arg := StringArrayPtr(argv);
|
|
envv_arg := StringArrayPtr(envv);
|
|
libc_execve(StringBytePtr(argv0), &argv_arg[0], &envv_arg[0]);
|
|
return GetErrno();
|
|
}
|
|
|
|
func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, errno int) {
|
|
var status int;
|
|
r := libc_wait4(Pid_t(pid), &status, options, rusage);
|
|
wpid = int(r);
|
|
if r < 0 {
|
|
errno = GetErrno();
|
|
}
|
|
if wstatus != nil {
|
|
*wstatus = WaitStatus(status);
|
|
}
|
|
return;
|
|
}
|