mirror of
git://gcc.gnu.org/git/gcc.git
synced 2024-12-24 11:29:31 +08:00
20bbd3cd53
* Makefile.in: Rebuilt. * Makefile.am (gctest_LDADD): Added THREADLIB. (TESTS): New macro. * configure: Rebuilt. * configure.in (INCLUDES): New subst. From-SVN: r30332
1180 lines
33 KiB
C
1180 lines
33 KiB
C
|
|
/*
|
|
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
|
|
* Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
|
|
*
|
|
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
|
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
*
|
|
* Permission is hereby granted to use or copy this program
|
|
* for any purpose, provided the above notices are retained on all copies.
|
|
* Permission to modify the code and to distribute modified code is granted,
|
|
* provided the above notices are retained, and a notice that the code was
|
|
* modified is included with the above copyright notice.
|
|
*
|
|
*/
|
|
|
|
|
|
# include <stdio.h>
|
|
# include "gc_priv.h"
|
|
# include "gc_mark.h"
|
|
|
|
/* We put this here to minimize the risk of inlining. */
|
|
/*VARARGS*/
|
|
#ifdef __WATCOMC__
|
|
void GC_noop(void *p, ...) {}
|
|
#else
|
|
void GC_noop() {}
|
|
#endif
|
|
|
|
/* Single argument version, robust against whole program analysis. */
|
|
void GC_noop1(x)
|
|
word x;
|
|
{
|
|
static VOLATILE word sink;
|
|
|
|
sink = x;
|
|
}
|
|
|
|
/* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */
|
|
|
|
word GC_n_mark_procs = 0;
|
|
|
|
/* Initialize GC_obj_kinds properly and standard free lists properly. */
|
|
/* This must be done statically since they may be accessed before */
|
|
/* GC_init is called. */
|
|
/* It's done here, since we need to deal with mark descriptors. */
|
|
struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {
|
|
/* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,
|
|
0 | DS_LENGTH, FALSE, FALSE },
|
|
/* NORMAL */ { &GC_objfreelist[0], 0,
|
|
# if defined(ADD_BYTE_AT_END) && ALIGNMENT > DS_TAGS
|
|
(word)(-ALIGNMENT) | DS_LENGTH,
|
|
# else
|
|
0 | DS_LENGTH,
|
|
# endif
|
|
TRUE /* add length to descr */, TRUE },
|
|
/* UNCOLLECTABLE */
|
|
{ &GC_uobjfreelist[0], 0,
|
|
0 | DS_LENGTH, TRUE /* add length to descr */, TRUE },
|
|
# ifdef ATOMIC_UNCOLLECTABLE
|
|
/* AUNCOLLECTABLE */
|
|
{ &GC_auobjfreelist[0], 0,
|
|
0 | DS_LENGTH, FALSE /* add length to descr */, FALSE },
|
|
# endif
|
|
# ifdef STUBBORN_ALLOC
|
|
/*STUBBORN*/ { &GC_sobjfreelist[0], 0,
|
|
0 | DS_LENGTH, TRUE /* add length to descr */, TRUE },
|
|
# endif
|
|
};
|
|
|
|
# ifdef ATOMIC_UNCOLLECTABLE
|
|
# ifdef STUBBORN_ALLOC
|
|
int GC_n_kinds = 5;
|
|
# else
|
|
int GC_n_kinds = 4;
|
|
# endif
|
|
# else
|
|
# ifdef STUBBORN_ALLOC
|
|
int GC_n_kinds = 4;
|
|
# else
|
|
int GC_n_kinds = 3;
|
|
# endif
|
|
# endif
|
|
|
|
|
|
# ifndef INITIAL_MARK_STACK_SIZE
|
|
# define INITIAL_MARK_STACK_SIZE (1*HBLKSIZE)
|
|
/* INITIAL_MARK_STACK_SIZE * sizeof(mse) should be a */
|
|
/* multiple of HBLKSIZE. */
|
|
/* The incremental collector actually likes a larger */
|
|
/* size, since it want to push all marked dirty objs */
|
|
/* before marking anything new. Currently we let it */
|
|
/* grow dynamically. */
|
|
# endif
|
|
|
|
/*
|
|
* Limits of stack for GC_mark routine.
|
|
* All ranges between GC_mark_stack(incl.) and GC_mark_stack_top(incl.) still
|
|
* need to be marked from.
|
|
*/
|
|
|
|
word GC_n_rescuing_pages; /* Number of dirty pages we marked from */
|
|
/* excludes ptrfree pages, etc. */
|
|
|
|
mse * GC_mark_stack;
|
|
|
|
word GC_mark_stack_size = 0;
|
|
|
|
mse * GC_mark_stack_top;
|
|
|
|
static struct hblk * scan_ptr;
|
|
|
|
mark_state_t GC_mark_state = MS_NONE;
|
|
|
|
GC_bool GC_mark_stack_too_small = FALSE;
|
|
|
|
GC_bool GC_objects_are_marked = FALSE; /* Are there collectable marked */
|
|
/* objects in the heap? */
|
|
|
|
/* Is a collection in progress? Note that this can return true in the */
|
|
/* nonincremental case, if a collection has been abandoned and the */
|
|
/* mark state is now MS_INVALID. */
|
|
GC_bool GC_collection_in_progress()
|
|
{
|
|
return(GC_mark_state != MS_NONE);
|
|
}
|
|
|
|
/* clear all mark bits in the header */
|
|
void GC_clear_hdr_marks(hhdr)
|
|
register hdr * hhdr;
|
|
{
|
|
BZERO(hhdr -> hb_marks, MARK_BITS_SZ*sizeof(word));
|
|
}
|
|
|
|
/* Set all mark bits in the header. Used for uncollectable blocks. */
|
|
void GC_set_hdr_marks(hhdr)
|
|
register hdr * hhdr;
|
|
{
|
|
register int i;
|
|
|
|
for (i = 0; i < MARK_BITS_SZ; ++i) {
|
|
hhdr -> hb_marks[i] = ONES;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear all mark bits associated with block h.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static void clear_marks_for_block(h, dummy)
|
|
struct hblk *h;
|
|
word dummy;
|
|
{
|
|
register hdr * hhdr = HDR(h);
|
|
|
|
if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) return;
|
|
/* Mark bit for these is cleared only once the object is */
|
|
/* explicitly deallocated. This either frees the block, or */
|
|
/* the bit is cleared once the object is on the free list. */
|
|
GC_clear_hdr_marks(hhdr);
|
|
}
|
|
|
|
/* Slow but general routines for setting/clearing/asking about mark bits */
|
|
void GC_set_mark_bit(p)
|
|
ptr_t p;
|
|
{
|
|
register struct hblk *h = HBLKPTR(p);
|
|
register hdr * hhdr = HDR(h);
|
|
register int word_no = (word *)p - (word *)h;
|
|
|
|
set_mark_bit_from_hdr(hhdr, word_no);
|
|
}
|
|
|
|
void GC_clear_mark_bit(p)
|
|
ptr_t p;
|
|
{
|
|
register struct hblk *h = HBLKPTR(p);
|
|
register hdr * hhdr = HDR(h);
|
|
register int word_no = (word *)p - (word *)h;
|
|
|
|
clear_mark_bit_from_hdr(hhdr, word_no);
|
|
}
|
|
|
|
GC_bool GC_is_marked(p)
|
|
ptr_t p;
|
|
{
|
|
register struct hblk *h = HBLKPTR(p);
|
|
register hdr * hhdr = HDR(h);
|
|
register int word_no = (word *)p - (word *)h;
|
|
|
|
return(mark_bit_from_hdr(hhdr, word_no));
|
|
}
|
|
|
|
|
|
/*
|
|
* Clear mark bits in all allocated heap blocks. This invalidates
|
|
* the marker invariant, and sets GC_mark_state to reflect this.
|
|
* (This implicitly starts marking to reestablish the invariant.)
|
|
*/
|
|
void GC_clear_marks()
|
|
{
|
|
GC_apply_to_all_blocks(clear_marks_for_block, (word)0);
|
|
GC_objects_are_marked = FALSE;
|
|
GC_mark_state = MS_INVALID;
|
|
scan_ptr = 0;
|
|
# ifdef GATHERSTATS
|
|
/* Counters reflect currently marked objects: reset here */
|
|
GC_composite_in_use = 0;
|
|
GC_atomic_in_use = 0;
|
|
# endif
|
|
|
|
}
|
|
|
|
/* Initiate a garbage collection. Initiates a full collection if the */
|
|
/* mark state is invalid. */
|
|
/*ARGSUSED*/
|
|
void GC_initiate_gc()
|
|
{
|
|
if (GC_dirty_maintained) GC_read_dirty();
|
|
# ifdef STUBBORN_ALLOC
|
|
GC_read_changed();
|
|
# endif
|
|
# ifdef CHECKSUMS
|
|
{
|
|
extern void GC_check_dirty();
|
|
|
|
if (GC_dirty_maintained) GC_check_dirty();
|
|
}
|
|
# endif
|
|
# ifdef GATHERSTATS
|
|
GC_n_rescuing_pages = 0;
|
|
# endif
|
|
if (GC_mark_state == MS_NONE) {
|
|
GC_mark_state = MS_PUSH_RESCUERS;
|
|
} else if (GC_mark_state != MS_INVALID) {
|
|
ABORT("unexpected state");
|
|
} /* else this is really a full collection, and mark */
|
|
/* bits are invalid. */
|
|
scan_ptr = 0;
|
|
}
|
|
|
|
|
|
static void alloc_mark_stack();
|
|
|
|
/* Perform a small amount of marking. */
|
|
/* We try to touch roughly a page of memory. */
|
|
/* Return TRUE if we just finished a mark phase. */
|
|
/* Cold_gc_frame is an address inside a GC frame that */
|
|
/* remains valid until all marking is complete. */
|
|
/* A zero value indicates that it's OK to miss some */
|
|
/* register values. */
|
|
GC_bool GC_mark_some(cold_gc_frame)
|
|
ptr_t cold_gc_frame;
|
|
{
|
|
switch(GC_mark_state) {
|
|
case MS_NONE:
|
|
return(FALSE);
|
|
|
|
case MS_PUSH_RESCUERS:
|
|
if (GC_mark_stack_top
|
|
>= GC_mark_stack + GC_mark_stack_size
|
|
- INITIAL_MARK_STACK_SIZE/2) {
|
|
/* Go ahead and mark, even though that might cause us to */
|
|
/* see more marked dirty objects later on. Avoid this */
|
|
/* in the future. */
|
|
GC_mark_stack_too_small = TRUE;
|
|
GC_mark_from_mark_stack();
|
|
return(FALSE);
|
|
} else {
|
|
scan_ptr = GC_push_next_marked_dirty(scan_ptr);
|
|
if (scan_ptr == 0) {
|
|
# ifdef PRINTSTATS
|
|
GC_printf1("Marked from %lu dirty pages\n",
|
|
(unsigned long)GC_n_rescuing_pages);
|
|
# endif
|
|
GC_push_roots(FALSE, cold_gc_frame);
|
|
GC_objects_are_marked = TRUE;
|
|
if (GC_mark_state != MS_INVALID) {
|
|
GC_mark_state = MS_ROOTS_PUSHED;
|
|
}
|
|
}
|
|
}
|
|
return(FALSE);
|
|
|
|
case MS_PUSH_UNCOLLECTABLE:
|
|
if (GC_mark_stack_top
|
|
>= GC_mark_stack + INITIAL_MARK_STACK_SIZE/4) {
|
|
GC_mark_from_mark_stack();
|
|
return(FALSE);
|
|
} else {
|
|
scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);
|
|
if (scan_ptr == 0) {
|
|
GC_push_roots(TRUE, cold_gc_frame);
|
|
GC_objects_are_marked = TRUE;
|
|
if (GC_mark_state != MS_INVALID) {
|
|
GC_mark_state = MS_ROOTS_PUSHED;
|
|
}
|
|
}
|
|
}
|
|
return(FALSE);
|
|
|
|
case MS_ROOTS_PUSHED:
|
|
if (GC_mark_stack_top >= GC_mark_stack) {
|
|
GC_mark_from_mark_stack();
|
|
return(FALSE);
|
|
} else {
|
|
GC_mark_state = MS_NONE;
|
|
if (GC_mark_stack_too_small) {
|
|
alloc_mark_stack(2*GC_mark_stack_size);
|
|
}
|
|
return(TRUE);
|
|
}
|
|
|
|
case MS_INVALID:
|
|
case MS_PARTIALLY_INVALID:
|
|
if (!GC_objects_are_marked) {
|
|
GC_mark_state = MS_PUSH_UNCOLLECTABLE;
|
|
return(FALSE);
|
|
}
|
|
if (GC_mark_stack_top >= GC_mark_stack) {
|
|
GC_mark_from_mark_stack();
|
|
return(FALSE);
|
|
}
|
|
if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {
|
|
/* About to start a heap scan for marked objects. */
|
|
/* Mark stack is empty. OK to reallocate. */
|
|
if (GC_mark_stack_too_small) {
|
|
alloc_mark_stack(2*GC_mark_stack_size);
|
|
}
|
|
GC_mark_state = MS_PARTIALLY_INVALID;
|
|
}
|
|
scan_ptr = GC_push_next_marked(scan_ptr);
|
|
if (scan_ptr == 0 && GC_mark_state == MS_PARTIALLY_INVALID) {
|
|
GC_push_roots(TRUE, cold_gc_frame);
|
|
GC_objects_are_marked = TRUE;
|
|
if (GC_mark_state != MS_INVALID) {
|
|
GC_mark_state = MS_ROOTS_PUSHED;
|
|
}
|
|
}
|
|
return(FALSE);
|
|
default:
|
|
ABORT("GC_mark_some: bad state");
|
|
return(FALSE);
|
|
}
|
|
}
|
|
|
|
|
|
GC_bool GC_mark_stack_empty()
|
|
{
|
|
return(GC_mark_stack_top < GC_mark_stack);
|
|
}
|
|
|
|
#ifdef PROF_MARKER
|
|
word GC_prof_array[10];
|
|
# define PROF(n) GC_prof_array[n]++
|
|
#else
|
|
# define PROF(n)
|
|
#endif
|
|
|
|
/* Given a pointer to someplace other than a small object page or the */
|
|
/* first page of a large object, return a pointer either to the */
|
|
/* start of the large object or NIL. */
|
|
/* In the latter case black list the address current. */
|
|
/* Returns NIL without black listing if current points to a block */
|
|
/* with IGNORE_OFF_PAGE set. */
|
|
/*ARGSUSED*/
|
|
# ifdef PRINT_BLACK_LIST
|
|
word GC_find_start(current, hhdr, source)
|
|
word source;
|
|
# else
|
|
word GC_find_start(current, hhdr)
|
|
# define source 0
|
|
# endif
|
|
register word current;
|
|
register hdr * hhdr;
|
|
{
|
|
# ifdef ALL_INTERIOR_POINTERS
|
|
if (hhdr != 0) {
|
|
register word orig = current;
|
|
|
|
current = (word)HBLKPTR(current) + HDR_BYTES;
|
|
do {
|
|
current = current - HBLKSIZE*(word)hhdr;
|
|
hhdr = HDR(current);
|
|
} while(IS_FORWARDING_ADDR_OR_NIL(hhdr));
|
|
/* current points to the start of the large object */
|
|
if (hhdr -> hb_flags & IGNORE_OFF_PAGE) return(0);
|
|
if ((word *)orig - (word *)current
|
|
>= (ptrdiff_t)(hhdr->hb_sz)) {
|
|
/* Pointer past the end of the block */
|
|
GC_ADD_TO_BLACK_LIST_NORMAL(orig, source);
|
|
return(0);
|
|
}
|
|
return(current);
|
|
} else {
|
|
GC_ADD_TO_BLACK_LIST_NORMAL(current, source);
|
|
return(0);
|
|
}
|
|
# else
|
|
GC_ADD_TO_BLACK_LIST_NORMAL(current, source);
|
|
return(0);
|
|
# endif
|
|
# undef source
|
|
}
|
|
|
|
void GC_invalidate_mark_state()
|
|
{
|
|
GC_mark_state = MS_INVALID;
|
|
GC_mark_stack_top = GC_mark_stack-1;
|
|
}
|
|
|
|
mse * GC_signal_mark_stack_overflow(msp)
|
|
mse * msp;
|
|
{
|
|
GC_mark_state = MS_INVALID;
|
|
GC_mark_stack_too_small = TRUE;
|
|
# ifdef PRINTSTATS
|
|
GC_printf1("Mark stack overflow; current size = %lu entries\n",
|
|
GC_mark_stack_size);
|
|
# endif
|
|
return(msp-INITIAL_MARK_STACK_SIZE/8);
|
|
}
|
|
|
|
|
|
/*
|
|
* Mark objects pointed to by the regions described by
|
|
* mark stack entries between GC_mark_stack and GC_mark_stack_top,
|
|
* inclusive. Assumes the upper limit of a mark stack entry
|
|
* is never 0. A mark stack entry never has size 0.
|
|
* We try to traverse on the order of a hblk of memory before we return.
|
|
* Caller is responsible for calling this until the mark stack is empty.
|
|
*/
|
|
void GC_mark_from_mark_stack()
|
|
{
|
|
mse * GC_mark_stack_reg = GC_mark_stack;
|
|
mse * GC_mark_stack_top_reg = GC_mark_stack_top;
|
|
mse * mark_stack_limit = &(GC_mark_stack[GC_mark_stack_size]);
|
|
int credit = HBLKSIZE; /* Remaining credit for marking work */
|
|
register word * current_p; /* Pointer to current candidate ptr. */
|
|
register word current; /* Candidate pointer. */
|
|
register word * limit; /* (Incl) limit of current candidate */
|
|
/* range */
|
|
register word descr;
|
|
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
|
|
register ptr_t least_ha = GC_least_plausible_heap_addr;
|
|
# define SPLIT_RANGE_WORDS 128 /* Must be power of 2. */
|
|
|
|
GC_objects_are_marked = TRUE;
|
|
# ifdef OS2 /* Use untweaked version to circumvent compiler problem */
|
|
while (GC_mark_stack_top_reg >= GC_mark_stack_reg && credit >= 0) {
|
|
# else
|
|
while ((((ptr_t)GC_mark_stack_top_reg - (ptr_t)GC_mark_stack_reg) | credit)
|
|
>= 0) {
|
|
# endif
|
|
current_p = GC_mark_stack_top_reg -> mse_start;
|
|
retry:
|
|
descr = GC_mark_stack_top_reg -> mse_descr;
|
|
if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | DS_TAGS)) {
|
|
word tag = descr & DS_TAGS;
|
|
|
|
switch(tag) {
|
|
case DS_LENGTH:
|
|
/* Large length. */
|
|
/* Process part of the range to avoid pushing too much on the */
|
|
/* stack. */
|
|
GC_mark_stack_top_reg -> mse_start =
|
|
limit = current_p + SPLIT_RANGE_WORDS-1;
|
|
GC_mark_stack_top_reg -> mse_descr -=
|
|
WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
|
|
/* Make sure that pointers overlapping the two ranges are */
|
|
/* considered. */
|
|
limit = (word *)((char *)limit + sizeof(word) - ALIGNMENT);
|
|
break;
|
|
case DS_BITMAP:
|
|
GC_mark_stack_top_reg--;
|
|
descr &= ~DS_TAGS;
|
|
credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */
|
|
while (descr != 0) {
|
|
if ((signed_word)descr < 0) {
|
|
current = *current_p;
|
|
if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
|
|
PUSH_CONTENTS(current, GC_mark_stack_top_reg, mark_stack_limit,
|
|
current_p, exit1);
|
|
}
|
|
}
|
|
descr <<= 1;
|
|
++ current_p;
|
|
}
|
|
continue;
|
|
case DS_PROC:
|
|
GC_mark_stack_top_reg--;
|
|
credit -= PROC_BYTES;
|
|
#ifdef GC_DEBUG
|
|
current_p = GC_debug_object_start(current_p);
|
|
#endif
|
|
GC_mark_stack_top_reg =
|
|
(*PROC(descr))
|
|
(current_p, GC_mark_stack_top_reg,
|
|
mark_stack_limit, ENV(descr));
|
|
continue;
|
|
case DS_PER_OBJECT:
|
|
GC_mark_stack_top_reg -> mse_descr =
|
|
*(word *)((ptr_t)current_p + descr - tag);
|
|
goto retry;
|
|
}
|
|
} else {
|
|
GC_mark_stack_top_reg--;
|
|
limit = (word *)(((ptr_t)current_p) + (word)descr);
|
|
}
|
|
/* The simple case in which we're scanning a range. */
|
|
credit -= (ptr_t)limit - (ptr_t)current_p;
|
|
limit -= 1;
|
|
while (current_p <= limit) {
|
|
current = *current_p;
|
|
if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
|
|
PUSH_CONTENTS(current, GC_mark_stack_top_reg,
|
|
mark_stack_limit, current_p, exit2);
|
|
}
|
|
current_p = (word *)((char *)current_p + ALIGNMENT);
|
|
}
|
|
}
|
|
GC_mark_stack_top = GC_mark_stack_top_reg;
|
|
}
|
|
|
|
/* Allocate or reallocate space for mark stack of size s words */
|
|
/* May silently fail. */
|
|
static void alloc_mark_stack(n)
|
|
word n;
|
|
{
|
|
mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct ms_entry));
|
|
|
|
GC_mark_stack_too_small = FALSE;
|
|
if (GC_mark_stack_size != 0) {
|
|
if (new_stack != 0) {
|
|
word displ = (word)GC_mark_stack & (GC_page_size - 1);
|
|
signed_word size = GC_mark_stack_size * sizeof(struct ms_entry);
|
|
|
|
/* Recycle old space */
|
|
if (0 != displ) displ = GC_page_size - displ;
|
|
size = (size - displ) & ~(GC_page_size - 1);
|
|
if (size > 0) {
|
|
GC_add_to_heap((struct hblk *)
|
|
((word)GC_mark_stack + displ), (word)size);
|
|
}
|
|
GC_mark_stack = new_stack;
|
|
GC_mark_stack_size = n;
|
|
# ifdef PRINTSTATS
|
|
GC_printf1("Grew mark stack to %lu frames\n",
|
|
(unsigned long) GC_mark_stack_size);
|
|
# endif
|
|
} else {
|
|
# ifdef PRINTSTATS
|
|
GC_printf1("Failed to grow mark stack to %lu frames\n",
|
|
(unsigned long) n);
|
|
# endif
|
|
}
|
|
} else {
|
|
if (new_stack == 0) {
|
|
GC_err_printf0("No space for mark stack\n");
|
|
EXIT();
|
|
}
|
|
GC_mark_stack = new_stack;
|
|
GC_mark_stack_size = n;
|
|
}
|
|
GC_mark_stack_top = GC_mark_stack-1;
|
|
}
|
|
|
|
void GC_mark_init()
|
|
{
|
|
alloc_mark_stack(INITIAL_MARK_STACK_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Push all locations between b and t onto the mark stack.
|
|
* b is the first location to be checked. t is one past the last
|
|
* location to be checked.
|
|
* Should only be used if there is no possibility of mark stack
|
|
* overflow.
|
|
*/
|
|
void GC_push_all(bottom, top)
|
|
ptr_t bottom;
|
|
ptr_t top;
|
|
{
|
|
register word length;
|
|
|
|
bottom = (ptr_t)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
|
|
top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));
|
|
if (top == 0 || bottom == top) return;
|
|
GC_mark_stack_top++;
|
|
if (GC_mark_stack_top >= GC_mark_stack + GC_mark_stack_size) {
|
|
ABORT("unexpected mark stack overflow");
|
|
}
|
|
length = top - bottom;
|
|
# if DS_TAGS > ALIGNMENT - 1
|
|
length += DS_TAGS;
|
|
length &= ~DS_TAGS;
|
|
# endif
|
|
GC_mark_stack_top -> mse_start = (word *)bottom;
|
|
GC_mark_stack_top -> mse_descr = length;
|
|
}
|
|
|
|
/*
|
|
* Analogous to the above, but push only those pages that may have been
|
|
* dirtied. A block h is assumed dirty if dirty_fn(h) != 0.
|
|
* We use push_fn to actually push the block.
|
|
* Will not overflow mark stack if push_fn pushes a small fixed number
|
|
* of entries. (This is invoked only if push_fn pushes a single entry,
|
|
* or if it marks each object before pushing it, thus ensuring progress
|
|
* in the event of a stack overflow.)
|
|
*/
|
|
void GC_push_dirty(bottom, top, dirty_fn, push_fn)
|
|
ptr_t bottom;
|
|
ptr_t top;
|
|
int (*dirty_fn)(/* struct hblk * h */);
|
|
void (*push_fn)(/* ptr_t bottom, ptr_t top */);
|
|
{
|
|
register struct hblk * h;
|
|
|
|
bottom = (ptr_t)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
|
|
top = (ptr_t)(((long) top) & ~(ALIGNMENT-1));
|
|
|
|
if (top == 0 || bottom == top) return;
|
|
h = HBLKPTR(bottom + HBLKSIZE);
|
|
if (top <= (ptr_t) h) {
|
|
if ((*dirty_fn)(h-1)) {
|
|
(*push_fn)(bottom, top);
|
|
}
|
|
return;
|
|
}
|
|
if ((*dirty_fn)(h-1)) {
|
|
(*push_fn)(bottom, (ptr_t)h);
|
|
}
|
|
while ((ptr_t)(h+1) <= top) {
|
|
if ((*dirty_fn)(h)) {
|
|
if ((word)(GC_mark_stack_top - GC_mark_stack)
|
|
> 3 * GC_mark_stack_size / 4) {
|
|
/* Danger of mark stack overflow */
|
|
(*push_fn)((ptr_t)h, top);
|
|
return;
|
|
} else {
|
|
(*push_fn)((ptr_t)h, (ptr_t)(h+1));
|
|
}
|
|
}
|
|
h++;
|
|
}
|
|
if ((ptr_t)h != top) {
|
|
if ((*dirty_fn)(h)) {
|
|
(*push_fn)((ptr_t)h, top);
|
|
}
|
|
}
|
|
if (GC_mark_stack_top >= GC_mark_stack + GC_mark_stack_size) {
|
|
ABORT("unexpected mark stack overflow");
|
|
}
|
|
}
|
|
|
|
# ifndef SMALL_CONFIG
|
|
void GC_push_conditional(bottom, top, all)
|
|
ptr_t bottom;
|
|
ptr_t top;
|
|
int all;
|
|
{
|
|
if (all) {
|
|
if (GC_dirty_maintained) {
|
|
# ifdef PROC_VDB
|
|
/* Pages that were never dirtied cannot contain pointers */
|
|
GC_push_dirty(bottom, top, GC_page_was_ever_dirty, GC_push_all);
|
|
# else
|
|
GC_push_all(bottom, top);
|
|
# endif
|
|
} else {
|
|
GC_push_all(bottom, top);
|
|
}
|
|
} else {
|
|
GC_push_dirty(bottom, top, GC_page_was_dirty, GC_push_all);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
# ifdef MSWIN32
|
|
void __cdecl GC_push_one(p)
|
|
# else
|
|
void GC_push_one(p)
|
|
# endif
|
|
word p;
|
|
{
|
|
# ifdef NURSERY
|
|
if (0 != GC_push_proc) {
|
|
GC_push_proc(p);
|
|
return;
|
|
}
|
|
# endif
|
|
GC_PUSH_ONE_STACK(p, 0);
|
|
}
|
|
|
|
# ifdef __STDC__
|
|
# define BASE(p) (word)GC_base((void *)(p))
|
|
# else
|
|
# define BASE(p) (word)GC_base((char *)(p))
|
|
# endif
|
|
|
|
/* As above, but argument passed preliminary test. */
|
|
# if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
|
|
void GC_push_one_checked(p, interior_ptrs, source)
|
|
ptr_t source;
|
|
# else
|
|
void GC_push_one_checked(p, interior_ptrs)
|
|
# define source 0
|
|
# endif
|
|
register word p;
|
|
register GC_bool interior_ptrs;
|
|
{
|
|
register word r;
|
|
register hdr * hhdr;
|
|
register int displ;
|
|
|
|
GET_HDR(p, hhdr);
|
|
if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
|
|
if (hhdr != 0 && interior_ptrs) {
|
|
r = BASE(p);
|
|
hhdr = HDR(r);
|
|
displ = BYTES_TO_WORDS(HBLKDISPL(r));
|
|
} else {
|
|
hhdr = 0;
|
|
}
|
|
} else {
|
|
register map_entry_type map_entry;
|
|
|
|
displ = HBLKDISPL(p);
|
|
map_entry = MAP_ENTRY((hhdr -> hb_map), displ);
|
|
if (map_entry == OBJ_INVALID) {
|
|
# ifndef ALL_INTERIOR_POINTERS
|
|
if (interior_ptrs) {
|
|
r = BASE(p);
|
|
displ = BYTES_TO_WORDS(HBLKDISPL(r));
|
|
if (r == 0) hhdr = 0;
|
|
} else {
|
|
hhdr = 0;
|
|
}
|
|
# else
|
|
/* map already reflects interior pointers */
|
|
hhdr = 0;
|
|
# endif
|
|
} else {
|
|
displ = BYTES_TO_WORDS(displ);
|
|
displ -= map_entry;
|
|
r = (word)((word *)(HBLKPTR(p)) + displ);
|
|
}
|
|
}
|
|
/* If hhdr != 0 then r == GC_base(p), only we did it faster. */
|
|
/* displ is the word index within the block. */
|
|
if (hhdr == 0) {
|
|
if (interior_ptrs) {
|
|
# ifdef PRINT_BLACK_LIST
|
|
GC_add_to_black_list_stack(p, source);
|
|
# else
|
|
GC_add_to_black_list_stack(p);
|
|
# endif
|
|
} else {
|
|
GC_ADD_TO_BLACK_LIST_NORMAL(p, source);
|
|
# undef source /* In case we had to define it. */
|
|
}
|
|
} else {
|
|
if (!mark_bit_from_hdr(hhdr, displ)) {
|
|
set_mark_bit_from_hdr(hhdr, displ);
|
|
GC_STORE_BACK_PTR(source, (ptr_t)r);
|
|
PUSH_OBJ((word *)r, hhdr, GC_mark_stack_top,
|
|
&(GC_mark_stack[GC_mark_stack_size]));
|
|
}
|
|
}
|
|
}
|
|
|
|
# ifdef TRACE_BUF
|
|
|
|
# define TRACE_ENTRIES 1000
|
|
|
|
struct trace_entry {
|
|
char * kind;
|
|
word gc_no;
|
|
word words_allocd;
|
|
word arg1;
|
|
word arg2;
|
|
} GC_trace_buf[TRACE_ENTRIES];
|
|
|
|
int GC_trace_buf_ptr = 0;
|
|
|
|
void GC_add_trace_entry(char *kind, word arg1, word arg2)
|
|
{
|
|
GC_trace_buf[GC_trace_buf_ptr].kind = kind;
|
|
GC_trace_buf[GC_trace_buf_ptr].gc_no = GC_gc_no;
|
|
GC_trace_buf[GC_trace_buf_ptr].words_allocd = GC_words_allocd;
|
|
GC_trace_buf[GC_trace_buf_ptr].arg1 = arg1 ^ 0x80000000;
|
|
GC_trace_buf[GC_trace_buf_ptr].arg2 = arg2 ^ 0x80000000;
|
|
GC_trace_buf_ptr++;
|
|
if (GC_trace_buf_ptr >= TRACE_ENTRIES) GC_trace_buf_ptr = 0;
|
|
}
|
|
|
|
void GC_print_trace(word gc_no, GC_bool lock)
|
|
{
|
|
int i;
|
|
struct trace_entry *p;
|
|
|
|
if (lock) LOCK();
|
|
for (i = GC_trace_buf_ptr-1; i != GC_trace_buf_ptr; i--) {
|
|
if (i < 0) i = TRACE_ENTRIES-1;
|
|
p = GC_trace_buf + i;
|
|
if (p -> gc_no < gc_no || p -> kind == 0) return;
|
|
printf("Trace:%s (gc:%d,words:%d) 0x%X, 0x%X\n",
|
|
p -> kind, p -> gc_no, p -> words_allocd,
|
|
(p -> arg1) ^ 0x80000000, (p -> arg2) ^ 0x80000000);
|
|
}
|
|
printf("Trace incomplete\n");
|
|
if (lock) UNLOCK();
|
|
}
|
|
|
|
# endif /* TRACE_BUF */
|
|
|
|
/*
|
|
* A version of GC_push_all that treats all interior pointers as valid
|
|
* and scans the entire region immediately, in case the contents
|
|
* change.
|
|
*/
|
|
void GC_push_all_eager(bottom, top)
|
|
ptr_t bottom;
|
|
ptr_t top;
|
|
{
|
|
word * b = (word *)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
|
|
word * t = (word *)(((long) top) & ~(ALIGNMENT-1));
|
|
register word *p;
|
|
register word q;
|
|
register word *lim;
|
|
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
|
|
register ptr_t least_ha = GC_least_plausible_heap_addr;
|
|
# define GC_greatest_plausible_heap_addr greatest_ha
|
|
# define GC_least_plausible_heap_addr least_ha
|
|
|
|
if (top == 0) return;
|
|
/* check all pointers in range and put in push if they appear */
|
|
/* to be valid. */
|
|
lim = t - 1 /* longword */;
|
|
for (p = b; p <= lim; p = (word *)(((char *)p) + ALIGNMENT)) {
|
|
q = *p;
|
|
GC_PUSH_ONE_STACK(q, p);
|
|
}
|
|
# undef GC_greatest_plausible_heap_addr
|
|
# undef GC_least_plausible_heap_addr
|
|
}
|
|
|
|
#ifndef THREADS
|
|
/*
|
|
* A version of GC_push_all that treats all interior pointers as valid
|
|
* and scans part of the area immediately, to make sure that saved
|
|
* register values are not lost.
|
|
* Cold_gc_frame delimits the stack section that must be scanned
|
|
* eagerly. A zero value indicates that no eager scanning is needed.
|
|
*/
|
|
void GC_push_all_stack_partially_eager(bottom, top, cold_gc_frame)
|
|
ptr_t bottom;
|
|
ptr_t top;
|
|
ptr_t cold_gc_frame;
|
|
{
|
|
# ifdef ALL_INTERIOR_POINTERS
|
|
# define EAGER_BYTES 1024
|
|
/* Push the hot end of the stack eagerly, so that register values */
|
|
/* saved inside GC frames are marked before they disappear. */
|
|
/* The rest of the marking can be deferred until later. */
|
|
if (0 == cold_gc_frame) {
|
|
GC_push_all_stack(bottom, top);
|
|
return;
|
|
}
|
|
# ifdef STACK_GROWS_DOWN
|
|
GC_push_all_eager(bottom, cold_gc_frame);
|
|
GC_push_all(cold_gc_frame - sizeof(ptr_t), top);
|
|
# else /* STACK_GROWS_UP */
|
|
GC_push_all_eager(cold_gc_frame, top);
|
|
GC_push_all(bottom, cold_gc_frame + sizeof(ptr_t));
|
|
# endif /* STACK_GROWS_UP */
|
|
# else
|
|
GC_push_all_eager(bottom, top);
|
|
# endif
|
|
# ifdef TRACE_BUF
|
|
GC_add_trace_entry("GC_push_all_stack", bottom, top);
|
|
# endif
|
|
}
|
|
#endif /* !THREADS */
|
|
|
|
void GC_push_all_stack(bottom, top)
|
|
ptr_t bottom;
|
|
ptr_t top;
|
|
{
|
|
# ifdef ALL_INTERIOR_POINTERS
|
|
GC_push_all(bottom, top);
|
|
# else
|
|
GC_push_all_eager(bottom, top);
|
|
# endif
|
|
}
|
|
|
|
#ifndef SMALL_CONFIG
|
|
/* Push all objects reachable from marked objects in the given block */
|
|
/* of size 1 objects. */
|
|
void GC_push_marked1(h, hhdr)
|
|
struct hblk *h;
|
|
register hdr * hhdr;
|
|
{
|
|
word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);
|
|
register word *p;
|
|
word *plim;
|
|
register int i;
|
|
register word q;
|
|
register word mark_word;
|
|
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
|
|
register ptr_t least_ha = GC_least_plausible_heap_addr;
|
|
# define GC_greatest_plausible_heap_addr greatest_ha
|
|
# define GC_least_plausible_heap_addr least_ha
|
|
|
|
p = (word *)(h->hb_body);
|
|
plim = (word *)(((word)h) + HBLKSIZE);
|
|
|
|
/* go through all words in block */
|
|
while( p < plim ) {
|
|
mark_word = *mark_word_addr++;
|
|
i = 0;
|
|
while(mark_word != 0) {
|
|
if (mark_word & 1) {
|
|
q = p[i];
|
|
GC_PUSH_ONE_HEAP(q, p + i);
|
|
}
|
|
i++;
|
|
mark_word >>= 1;
|
|
}
|
|
p += WORDSZ;
|
|
}
|
|
# undef GC_greatest_plausible_heap_addr
|
|
# undef GC_least_plausible_heap_addr
|
|
}
|
|
|
|
|
|
#ifndef UNALIGNED
|
|
|
|
/* Push all objects reachable from marked objects in the given block */
|
|
/* of size 2 objects. */
|
|
void GC_push_marked2(h, hhdr)
|
|
struct hblk *h;
|
|
register hdr * hhdr;
|
|
{
|
|
word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);
|
|
register word *p;
|
|
word *plim;
|
|
register int i;
|
|
register word q;
|
|
register word mark_word;
|
|
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
|
|
register ptr_t least_ha = GC_least_plausible_heap_addr;
|
|
# define GC_greatest_plausible_heap_addr greatest_ha
|
|
# define GC_least_plausible_heap_addr least_ha
|
|
|
|
p = (word *)(h->hb_body);
|
|
plim = (word *)(((word)h) + HBLKSIZE);
|
|
|
|
/* go through all words in block */
|
|
while( p < plim ) {
|
|
mark_word = *mark_word_addr++;
|
|
i = 0;
|
|
while(mark_word != 0) {
|
|
if (mark_word & 1) {
|
|
q = p[i];
|
|
GC_PUSH_ONE_HEAP(q, p + i);
|
|
q = p[i+1];
|
|
GC_PUSH_ONE_HEAP(q, p + i);
|
|
}
|
|
i += 2;
|
|
mark_word >>= 2;
|
|
}
|
|
p += WORDSZ;
|
|
}
|
|
# undef GC_greatest_plausible_heap_addr
|
|
# undef GC_least_plausible_heap_addr
|
|
}
|
|
|
|
/* Push all objects reachable from marked objects in the given block */
|
|
/* of size 4 objects. */
|
|
/* There is a risk of mark stack overflow here. But we handle that. */
|
|
/* And only unmarked objects get pushed, so it's not very likely. */
|
|
void GC_push_marked4(h, hhdr)
|
|
struct hblk *h;
|
|
register hdr * hhdr;
|
|
{
|
|
word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);
|
|
register word *p;
|
|
word *plim;
|
|
register int i;
|
|
register word q;
|
|
register word mark_word;
|
|
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
|
|
register ptr_t least_ha = GC_least_plausible_heap_addr;
|
|
# define GC_greatest_plausible_heap_addr greatest_ha
|
|
# define GC_least_plausible_heap_addr least_ha
|
|
|
|
p = (word *)(h->hb_body);
|
|
plim = (word *)(((word)h) + HBLKSIZE);
|
|
|
|
/* go through all words in block */
|
|
while( p < plim ) {
|
|
mark_word = *mark_word_addr++;
|
|
i = 0;
|
|
while(mark_word != 0) {
|
|
if (mark_word & 1) {
|
|
q = p[i];
|
|
GC_PUSH_ONE_HEAP(q, p + i);
|
|
q = p[i+1];
|
|
GC_PUSH_ONE_HEAP(q, p + i + 1);
|
|
q = p[i+2];
|
|
GC_PUSH_ONE_HEAP(q, p + i + 2);
|
|
q = p[i+3];
|
|
GC_PUSH_ONE_HEAP(q, p + i + 3);
|
|
}
|
|
i += 4;
|
|
mark_word >>= 4;
|
|
}
|
|
p += WORDSZ;
|
|
}
|
|
# undef GC_greatest_plausible_heap_addr
|
|
# undef GC_least_plausible_heap_addr
|
|
}
|
|
|
|
#endif /* UNALIGNED */
|
|
|
|
#endif /* SMALL_CONFIG */
|
|
|
|
/* Push all objects reachable from marked objects in the given block */
|
|
void GC_push_marked(h, hhdr)
|
|
struct hblk *h;
|
|
register hdr * hhdr;
|
|
{
|
|
register int sz = hhdr -> hb_sz;
|
|
register word * p;
|
|
register int word_no;
|
|
register word * lim;
|
|
register mse * GC_mark_stack_top_reg;
|
|
register mse * mark_stack_limit = &(GC_mark_stack[GC_mark_stack_size]);
|
|
|
|
/* Some quick shortcuts: */
|
|
{
|
|
struct obj_kind *ok = &(GC_obj_kinds[hhdr -> hb_obj_kind]);
|
|
if ((0 | DS_LENGTH) == ok -> ok_descriptor
|
|
&& FALSE == ok -> ok_relocate_descr)
|
|
return;
|
|
}
|
|
if (GC_block_empty(hhdr)/* nothing marked */) return;
|
|
# ifdef GATHERSTATS
|
|
GC_n_rescuing_pages++;
|
|
# endif
|
|
GC_objects_are_marked = TRUE;
|
|
if (sz > MAXOBJSZ) {
|
|
lim = (word *)(h + 1);
|
|
} else {
|
|
lim = (word *)(h + 1) - sz;
|
|
}
|
|
|
|
switch(sz) {
|
|
# if !defined(SMALL_CONFIG)
|
|
case 1:
|
|
GC_push_marked1(h, hhdr);
|
|
break;
|
|
# endif
|
|
# if !defined(SMALL_CONFIG) && !defined(UNALIGNED)
|
|
case 2:
|
|
GC_push_marked2(h, hhdr);
|
|
break;
|
|
case 4:
|
|
GC_push_marked4(h, hhdr);
|
|
break;
|
|
# endif
|
|
default:
|
|
GC_mark_stack_top_reg = GC_mark_stack_top;
|
|
for (p = (word *)h + HDR_WORDS, word_no = HDR_WORDS; p <= lim;
|
|
p += sz, word_no += sz) {
|
|
/* This ignores user specified mark procs. This currently */
|
|
/* doesn't matter, since marking from the whole object */
|
|
/* is always sufficient, and we will eventually use the user */
|
|
/* mark proc to avoid any bogus pointers. */
|
|
if (mark_bit_from_hdr(hhdr, word_no)) {
|
|
/* Mark from fields inside the object */
|
|
PUSH_OBJ((word *)p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
|
|
# ifdef GATHERSTATS
|
|
/* Subtract this object from total, since it was */
|
|
/* added in twice. */
|
|
GC_composite_in_use -= sz;
|
|
# endif
|
|
}
|
|
}
|
|
GC_mark_stack_top = GC_mark_stack_top_reg;
|
|
}
|
|
}
|
|
|
|
#ifndef SMALL_CONFIG
|
|
/* Test whether any page in the given block is dirty */
|
|
GC_bool GC_block_was_dirty(h, hhdr)
|
|
struct hblk *h;
|
|
register hdr * hhdr;
|
|
{
|
|
register int sz = hhdr -> hb_sz;
|
|
|
|
if (sz < MAXOBJSZ) {
|
|
return(GC_page_was_dirty(h));
|
|
} else {
|
|
register ptr_t p = (ptr_t)h;
|
|
sz += HDR_WORDS;
|
|
sz = WORDS_TO_BYTES(sz);
|
|
while (p < (ptr_t)h + sz) {
|
|
if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);
|
|
p += HBLKSIZE;
|
|
}
|
|
return(FALSE);
|
|
}
|
|
}
|
|
#endif /* SMALL_CONFIG */
|
|
|
|
/* Similar to GC_push_next_marked, but return address of next block */
|
|
struct hblk * GC_push_next_marked(h)
|
|
struct hblk *h;
|
|
{
|
|
register hdr * hhdr;
|
|
|
|
h = GC_next_used_block(h);
|
|
if (h == 0) return(0);
|
|
hhdr = HDR(h);
|
|
GC_push_marked(h, hhdr);
|
|
return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
|
|
}
|
|
|
|
#ifndef SMALL_CONFIG
|
|
/* Identical to above, but mark only from dirty pages */
|
|
struct hblk * GC_push_next_marked_dirty(h)
|
|
struct hblk *h;
|
|
{
|
|
register hdr * hhdr;
|
|
|
|
if (!GC_dirty_maintained) { ABORT("dirty bits not set up"); }
|
|
for (;;) {
|
|
h = GC_next_used_block(h);
|
|
if (h == 0) return(0);
|
|
hhdr = HDR(h);
|
|
# ifdef STUBBORN_ALLOC
|
|
if (hhdr -> hb_obj_kind == STUBBORN) {
|
|
if (GC_page_was_changed(h) && GC_block_was_dirty(h, hhdr)) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (GC_block_was_dirty(h, hhdr)) break;
|
|
}
|
|
# else
|
|
if (GC_block_was_dirty(h, hhdr)) break;
|
|
# endif
|
|
h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
|
|
}
|
|
GC_push_marked(h, hhdr);
|
|
return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
|
|
}
|
|
#endif
|
|
|
|
/* Similar to above, but for uncollectable pages. Needed since we */
|
|
/* do not clear marks for such pages, even for full collections. */
|
|
struct hblk * GC_push_next_marked_uncollectable(h)
|
|
struct hblk *h;
|
|
{
|
|
register hdr * hhdr = HDR(h);
|
|
|
|
for (;;) {
|
|
h = GC_next_used_block(h);
|
|
if (h == 0) return(0);
|
|
hhdr = HDR(h);
|
|
if (hhdr -> hb_obj_kind == UNCOLLECTABLE) break;
|
|
h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
|
|
}
|
|
GC_push_marked(h, hhdr);
|
|
return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
|
|
}
|
|
|
|
|