gcc/libstdc++-v3/include/bits/locale_facets.tcc
Paolo Carlini a761195bfd locale_facets.tcc: More minor cosmetic changes and const-ifications of some variables.
2003-10-08  Paolo Carlini  <pcarlini@unitus.it>

	* include/bits/locale_facets.tcc: More minor cosmetic
	changes and const-ifications of some variables.

From-SVN: r72226
2003-10-08 14:20:42 +00:00

2547 lines
77 KiB
C++

// Locale support -*- C++ -*-
// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Warning: this file is not meant for user inclusion. Use <locale>.
#ifndef _LOCALE_FACETS_TCC
#define _LOCALE_FACETS_TCC 1
#pragma GCC system_header
#include <cerrno>
#include <clocale> // For localeconv
#include <cstdlib> // For strof, strtold
#include <cmath> // For ceil
#include <cctype> // For isspace
#include <limits> // For numeric_limits
#include <typeinfo> // For bad_cast.
#include <bits/streambuf_iterator.h>
namespace std
{
template<typename _Facet>
locale
locale::combine(const locale& __other) const
{
_Impl* __tmp = new _Impl(*_M_impl, 1);
try
{
__tmp->_M_replace_facet(__other._M_impl, &_Facet::id);
}
catch(...)
{
__tmp->_M_remove_reference();
__throw_exception_again;
}
return locale(__tmp);
}
template<typename _CharT, typename _Traits, typename _Alloc>
bool
locale::operator()(const basic_string<_CharT, _Traits, _Alloc>& __s1,
const basic_string<_CharT, _Traits, _Alloc>& __s2) const
{
typedef std::collate<_CharT> __collate_type;
const __collate_type& __collate = use_facet<__collate_type>(*this);
return (__collate.compare(__s1.data(), __s1.data() + __s1.length(),
__s2.data(), __s2.data() + __s2.length()) < 0);
}
template<typename _Facet>
inline bool
has_facet(const locale& __loc) throw()
{
const size_t __i = _Facet::id._M_id();
const locale::facet** __facets = __loc._M_impl->_M_facets;
return (__i < __loc._M_impl->_M_facets_size && __facets[__i]);
}
template<typename _Facet>
inline const _Facet&
use_facet(const locale& __loc)
{
const size_t __i = _Facet::id._M_id();
const locale::facet** __facets = __loc._M_impl->_M_facets;
if (!(__i < __loc._M_impl->_M_facets_size && __facets[__i]))
__throw_bad_cast();
return static_cast<const _Facet&>(*__facets[__i]);
}
// Routine to access a cache for the facet. If the cache didn't
// exist before, it gets constructed on the fly.
template<typename _Facet>
struct __use_cache
{
const _Facet*
operator() (const locale& __loc) const;
};
template<typename _CharT>
struct __use_cache<__numpunct_cache<_CharT> >
{
const __numpunct_cache<_CharT>*
operator() (const locale& __loc) const
{
const size_t __i = numpunct<_CharT>::id._M_id();
const locale::facet** __caches = __loc._M_impl->_M_caches;
if (!__caches[__i])
{
__numpunct_cache<_CharT>* __tmp = NULL;
try
{
__tmp = new __numpunct_cache<_CharT>;
__tmp->_M_cache(__loc);
}
catch(...)
{
delete __tmp;
__throw_exception_again;
}
__loc._M_impl->_M_install_cache(__tmp, __i);
}
return static_cast<const __numpunct_cache<_CharT>*>(__caches[__i]);
}
};
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
_M_extract_float(_InIter __beg, _InIter __end, ios_base& __io,
ios_base::iostate& __err, string& __xtrc) const
{
typedef char_traits<_CharT> __traits_type;
typedef typename numpunct<_CharT>::__cache_type __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __lit = __lc->_M_atoms_in;
// First check for sign.
int __pos = 0;
char_type __c = *__beg;
const bool __plus = __traits_type::eq(__c, __lit[_S_iplus]);
if ((__plus || __traits_type::eq(__c, __lit[_S_iminus]))
&& __beg != __end)
{
__xtrc += __plus ? _S_atoms_in[_S_iplus] : _S_atoms_in[_S_iminus];
++__pos;
__c = *(++__beg);
}
// Next, strip leading zeros.
bool __found_zero = false;
while (__traits_type::eq(__c, __lit[_S_izero]) && __beg != __end)
{
__c = *(++__beg);
__found_zero = true;
}
if (__found_zero)
{
__xtrc += _S_atoms_in[_S_izero];
++__pos;
}
// Only need acceptable digits for floating point numbers.
bool __found_dec = false;
bool __found_sci = false;
string __found_grouping;
const size_t __len = _S_iE - _S_izero + 1;
int __sep_pos = 0;
bool __e;
while (__beg != __end)
{
// Only look in digits.
const char_type* __p = __traits_type::find(__lit + _S_izero, 10,
__c);
// NB: strchr returns true for __c == 0x0
if (__p && !__traits_type::eq(__c, char_type()))
{
// Try first for acceptable digit; record it if found.
++__pos;
__xtrc += _S_atoms_in[__p - __lit];
++__sep_pos;
__c = *(++__beg);
}
else if (__traits_type::eq(__c, __lc->_M_thousands_sep)
&& __lc->_M_use_grouping && !__found_dec)
{
// NB: Thousands separator at the beginning of a string
// is a no-no, as is two consecutive thousands separators.
if (__sep_pos)
{
__found_grouping += static_cast<char>(__sep_pos);
__sep_pos = 0;
__c = *(++__beg);
}
else
{
__err |= ios_base::failbit;
break;
}
}
else if (__traits_type::eq(__c, __lc->_M_decimal_point)
&& !__found_dec)
{
// According to the standard, if no grouping chars are seen,
// no grouping check is applied. Therefore __found_grouping
// must be adjusted only if __dec comes after some __sep.
if (__found_grouping.size())
__found_grouping += static_cast<char>(__sep_pos);
++__pos;
__xtrc += '.';
__c = *(++__beg);
__found_dec = true;
}
else if ((__e = __traits_type::eq(__c, __lit[_S_ie])
|| __traits_type::eq(__c, __lit[_S_iE]))
&& !__found_sci && __pos)
{
// Scientific notation.
++__pos;
__xtrc += __e ? _S_atoms_in[_S_ie] : _S_atoms_in[_S_iE];
__c = *(++__beg);
// Remove optional plus or minus sign, if they exist.
const bool __plus = __traits_type::eq(__c, __lit[_S_iplus]);
if (__plus || __traits_type::eq(__c, __lit[_S_iminus]))
{
++__pos;
__xtrc += __plus ? _S_atoms_in[_S_iplus]
: _S_atoms_in[_S_iminus];
__c = *(++__beg);
}
__found_sci = true;
}
else
// Not a valid input item.
break;
}
// Digit grouping is checked. If grouping and found_grouping don't
// match, then get very very upset, and set failbit.
if (__lc->_M_use_grouping && __found_grouping.size())
{
// Add the ending grouping if a decimal wasn't found.
if (!__found_dec)
__found_grouping += static_cast<char>(__sep_pos);
const string __grouping = __lc->_M_grouping;
if (!std::__verify_grouping(__grouping, __found_grouping))
__err |= ios_base::failbit;
}
// Finish up.
__xtrc += char();
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
_M_extract_int(_InIter __beg, _InIter __end, ios_base& __io,
ios_base::iostate& __err, string& __xtrc, int& __base) const
{
typedef char_traits<_CharT> __traits_type;
typedef typename numpunct<_CharT>::__cache_type __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __lit = __lc->_M_atoms_in;
// NB: Iff __basefield == 0, this can change based on contents.
const ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield;
if (__basefield == ios_base::oct)
__base = 8;
else if (__basefield == ios_base::hex)
__base = 16;
else
__base = 10;
// First check for sign.
int __pos = 0;
char_type __c = *__beg;
const bool __plus = __traits_type::eq(__c, __lit[_S_iplus]);
if ((__plus || __traits_type::eq(__c, __lit[_S_iminus]))
&& __beg != __end)
{
__xtrc += __plus ? _S_atoms_in[_S_iplus] : _S_atoms_in[_S_iminus];
++__pos;
__c = *(++__beg);
}
// Next, strip leading zeros and check required digits for base formats.
if (__base == 10)
{
bool __found_zero = false;
while (__traits_type::eq(__c, __lit[_S_izero]) && __beg != __end)
{
__c = *(++__beg);
__found_zero = true;
}
if (__found_zero)
{
__xtrc += _S_atoms_in[_S_izero];
++__pos;
if (__basefield == 0)
{
const bool __x = __traits_type::eq(__c, __lit[_S_ix]);
if ((__x || __traits_type::eq(__c, __lit[_S_iX]))
&& __beg != __end)
{
__xtrc += __x ? _S_atoms_in[_S_ix] : _S_atoms_in[_S_iX];
++__pos;
__c = *(++__beg);
__base = 16;
}
else
__base = 8;
}
}
}
else if (__base == 16)
{
if (__traits_type::eq(__c, __lit[_S_izero]) && __beg != __end)
{
__xtrc += _S_atoms_in[_S_izero];
++__pos;
__c = *(++__beg);
const bool __x = __traits_type::eq(__c, __lit[_S_ix]);
if ((__x || __traits_type::eq(__c, __lit[_S_iX]))
&& __beg != __end)
{
__xtrc += __x ? _S_atoms_in[_S_ix] : _S_atoms_in[_S_iX];
++__pos;
__c = *(++__beg);
}
}
}
// At this point, base is determined. If not hex, only allow
// base digits as valid input.
const size_t __len = __base == 16 ? _S_iend : __base;
// Extract.
string __found_grouping;
const char_type __sep = __lc->_M_thousands_sep;
int __sep_pos = 0;
while (__beg != __end)
{
const char_type* __p = __traits_type::find(__lit + _S_izero,
__len, __c);
// NB: strchr returns true for __c == 0x0
if (__p && !__traits_type::eq(__c, char_type()))
{
// Try first for acceptable digit; record it if found.
__xtrc += _S_atoms_in[__p - __lit];
++__pos;
++__sep_pos;
__c = *(++__beg);
}
else if (__traits_type::eq(__c, __sep) && __lc->_M_use_grouping)
{
// NB: Thousands separator at the beginning of a string
// is a no-no, as is two consecutive thousands separators.
if (__sep_pos)
{
__found_grouping += static_cast<char>(__sep_pos);
__sep_pos = 0;
__c = *(++__beg);
}
else
{
__err |= ios_base::failbit;
break;
}
}
else
// Not a valid input item.
break;
}
// Digit grouping is checked. If grouping and found_grouping don't
// match, then get very very upset, and set failbit.
if (__lc->_M_use_grouping && __found_grouping.size())
{
// Add the ending grouping.
__found_grouping += static_cast<char>(__sep_pos);
const string __grouping = __lc->_M_grouping;
if (!std::__verify_grouping(__grouping, __found_grouping))
__err |= ios_base::failbit;
}
// Finish up.
__xtrc += char();
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
#ifdef _GLIBCXX_RESOLVE_LIB_DEFECTS
//17. Bad bool parsing
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, bool& __v) const
{
if (!(__io.flags() & ios_base::boolalpha))
{
// Parse bool values as unsigned long.
// NB: We can't just call do_get(long) here, as it might
// refer to a derived class.
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
unsigned long __ul;
std::__convert_to_v(__xtrc.c_str(), __ul, __err,
_S_get_c_locale(), __base);
if (!(__err & ios_base::failbit) && __ul <= 1)
__v = __ul;
else
__err |= ios_base::failbit;
}
else
{
// Parse bool values as alphanumeric.
typedef char_traits<_CharT> __traits_type;
typedef typename numpunct<_CharT>::__cache_type __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const size_t __tn = __traits_type::length(__lc->_M_truename) - 1;
const size_t __fn = __traits_type::length(__lc->_M_falsename) - 1;
bool __testf = false;
bool __testt = false;
for (size_t __n = 0; __beg != __end; ++__n)
{
const char_type __c = *__beg;
++__beg;
if (__n <= __fn)
__testf = __traits_type::eq(__c, __lc->_M_falsename[__n]);
if (__n <= __tn)
__testt = __traits_type::eq(__c, __lc->_M_truename[__n]);
if (!(__testf || __testt))
{
__err |= ios_base::failbit;
break;
}
else if (__testf && __n == __fn)
{
__v = 0;
break;
}
else if (__testt && __n == __tn)
{
__v = 1;
break;
}
}
if (__beg == __end)
__err |= ios_base::eofbit;
}
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
std::__convert_to_v(__xtrc.c_str(), __v, __err,
_S_get_c_locale(), __base);
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned short& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
unsigned long __ul;
std::__convert_to_v(__xtrc.c_str(), __ul, __err,
_S_get_c_locale(), __base);
if (!(__err & ios_base::failbit)
&& __ul <= numeric_limits<unsigned short>::max())
__v = static_cast<unsigned short>(__ul);
else
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned int& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
unsigned long __ul;
std::__convert_to_v(__xtrc.c_str(), __ul, __err,
_S_get_c_locale(), __base);
if (!(__err & ios_base::failbit)
&& __ul <= numeric_limits<unsigned int>::max())
__v = static_cast<unsigned int>(__ul);
else
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned long& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
std::__convert_to_v(__xtrc.c_str(), __v, __err,
_S_get_c_locale(), __base);
return __beg;
}
#ifdef _GLIBCXX_USE_LONG_LONG
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long long& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
std::__convert_to_v(__xtrc.c_str(), __v, __err,
_S_get_c_locale(), __base);
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned long long& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
std::__convert_to_v(__xtrc.c_str(), __v, __err,
_S_get_c_locale(), __base);
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, float& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err,
_S_get_c_locale());
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, void*& __v) const
{
// Prepare for hex formatted input.
typedef ios_base::fmtflags fmtflags;
const fmtflags __fmt = __io.flags();
const fmtflags __fmtmask = ~(ios_base::showpos | ios_base::basefield
| ios_base::uppercase | ios_base::internal);
__io.flags(__fmt & __fmtmask | (ios_base::hex | ios_base::showbase));
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
// Reset from hex formatted input.
__io.flags(__fmt);
unsigned long __ul;
std::__convert_to_v(__xtrc.c_str(), __ul, __err,
_S_get_c_locale(), __base);
if (!(__err & ios_base::failbit))
__v = reinterpret_cast<void*>(__ul);
else
__err |= ios_base::failbit;
return __beg;
}
// For use by integer and floating-point types after they have been
// converted into a char_type string.
template<typename _CharT, typename _OutIter>
void
num_put<_CharT, _OutIter>::
_M_pad(_CharT __fill, streamsize __w, ios_base& __io,
_CharT* __new, const _CharT* __cs, int& __len) const
{
// [22.2.2.2.2] Stage 3.
// If necessary, pad.
__pad<_CharT, char_traits<_CharT> >::_S_pad(__io, __fill, __new, __cs,
__w, __len, true);
__len = static_cast<int>(__w);
}
// Forwarding functions to peel signed from unsigned integer types.
template<typename _CharT>
inline int
__int_to_char(_CharT* __out, const int __size, long __v,
const _CharT* __lit, ios_base::fmtflags __flags)
{
unsigned long __ul = static_cast<unsigned long>(__v);
bool __neg = false;
if (__v < 0)
{
__ul = -__ul;
__neg = true;
}
return __int_to_char(__out, __size, __ul, __lit, __flags, __neg);
}
template<typename _CharT>
inline int
__int_to_char(_CharT* __out, const int __size, unsigned long __v,
const _CharT* __lit, ios_base::fmtflags __flags)
{ return __int_to_char(__out, __size, __v, __lit, __flags, false); }
#ifdef _GLIBCXX_USE_LONG_LONG
template<typename _CharT>
inline int
__int_to_char(_CharT* __out, const int __size, long long __v,
const _CharT* __lit, ios_base::fmtflags __flags)
{
unsigned long long __ull = static_cast<unsigned long long>(__v);
bool __neg = false;
if (__v < 0)
{
__ull = -__ull;
__neg = true;
}
return __int_to_char(__out, __size, __ull, __lit, __flags, __neg);
}
template<typename _CharT>
inline int
__int_to_char(_CharT* __out, const int __size, unsigned long long __v,
const _CharT* __lit, ios_base::fmtflags __flags)
{ return __int_to_char(__out, __size, __v, __lit, __flags, false); }
#endif
template<typename _CharT, typename _ValueT>
int
__int_to_char(_CharT* __out, const int __size, _ValueT __v,
const _CharT* __lit, ios_base::fmtflags __flags, bool __neg)
{
// Don't write base if already 0.
const bool __showbase = (__flags & ios_base::showbase) && __v;
const ios_base::fmtflags __basefield = __flags & ios_base::basefield;
_CharT* const __bufend = __out + __size;
_CharT* __buf = __bufend - 1;
if (__builtin_expect(__basefield != ios_base::oct &&
__basefield != ios_base::hex, true))
{
// Decimal.
do
{
*__buf-- = __lit[(__v % 10) + __num_base::_S_odigits];
__v /= 10;
}
while (__v != 0);
if (__neg)
*__buf-- = __lit[__num_base::_S_ominus];
else if (__flags & ios_base::showpos)
*__buf-- = __lit[__num_base::_S_oplus];
}
else if (__basefield == ios_base::oct)
{
// Octal.
do
{
*__buf-- = __lit[(__v & 0x7) + __num_base::_S_odigits];
__v >>= 3;
}
while (__v != 0);
if (__showbase)
*__buf-- = __lit[__num_base::_S_odigits];
}
else
{
// Hex.
const bool __uppercase = __flags & ios_base::uppercase;
const int __case_offset = __uppercase ? __num_base::_S_oudigits
: __num_base::_S_odigits;
do
{
*__buf-- = __lit[(__v & 0xf) + __case_offset];
__v >>= 4;
}
while (__v != 0);
if (__showbase)
{
// 'x' or 'X'
*__buf-- = __lit[__num_base::_S_ox + __uppercase];
// '0'
*__buf-- = __lit[__num_base::_S_odigits];
}
}
return __bufend - __buf - 1;
}
template<typename _CharT, typename _OutIter>
void
num_put<_CharT, _OutIter>::
_M_group_int(const string& __grouping, _CharT __sep, ios_base& __io,
_CharT* __new, _CharT* __cs, int& __len) const
{
// By itself __add_grouping cannot deal correctly with __ws when
// ios::showbase is set and ios_base::oct || ios_base::hex.
// Therefore we take care "by hand" of the initial 0, 0x or 0X.
// However, remember that the latter do not occur if the number
// printed is '0' (__len == 1).
streamsize __off = 0;
const ios_base::fmtflags __basefield = __io.flags()
& ios_base::basefield;
if ((__io.flags() & ios_base::showbase) && __len > 1)
if (__basefield == ios_base::oct)
{
__off = 1;
__new[0] = __cs[0];
}
else if (__basefield == ios_base::hex)
{
__off = 2;
__new[0] = __cs[0];
__new[1] = __cs[1];
}
_CharT* __p;
__p = std::__add_grouping(__new + __off, __sep, __grouping.c_str(),
__grouping.c_str() + __grouping.size(),
__cs + __off, __cs + __len);
__len = __p - __new;
}
template<typename _CharT, typename _OutIter>
template<typename _ValueT>
_OutIter
num_put<_CharT, _OutIter>::
_M_insert_int(_OutIter __s, ios_base& __io, _CharT __fill,
_ValueT __v) const
{
typedef typename numpunct<_CharT>::__cache_type __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __lit = __lc->_M_atoms_out;
// Long enough to hold hex, dec, and octal representations.
const int __ilen = 4 * sizeof(_ValueT);
_CharT* __cs = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __ilen));
// [22.2.2.2.2] Stage 1, numeric conversion to character.
// Result is returned right-justified in the buffer.
int __len;
__len = __int_to_char(&__cs[0], __ilen, __v, __lit, __io.flags());
__cs += __ilen - __len;
// Add grouping, if necessary.
_CharT* __cs2;
if (__lc->_M_use_grouping)
{
// Grouping can add (almost) as many separators as the
// number of digits, but no more.
__cs2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len * 2));
_M_group_int(__lc->_M_grouping, __lc->_M_thousands_sep, __io,
__cs2, __cs, __len);
__cs = __cs2;
}
// Pad.
_CharT* __cs3;
const streamsize __w = __io.width();
if (__w > static_cast<streamsize>(__len))
{
__cs3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __w));
_M_pad(__fill, __w, __io, __cs3, __cs, __len);
__cs = __cs3;
}
__io.width(0);
// [22.2.2.2.2] Stage 4.
// Write resulting, fully-formatted string to output iterator.
return std::__write(__s, __cs, __len);
}
template<typename _CharT, typename _OutIter>
void
num_put<_CharT, _OutIter>::
_M_group_float(const string& __grouping, _CharT __sep, const _CharT* __p,
_CharT* __new, _CharT* __cs, int& __len) const
{
#ifdef _GLIBCXX_RESOLVE_LIB_DEFECTS
//282. What types does numpunct grouping refer to?
// Add grouping, if necessary.
_CharT* __p2;
const int __declen = __p ? __p - __cs : __len;
__p2 = std::__add_grouping(__new, __sep, __grouping.c_str(),
__grouping.c_str() + __grouping.size(),
__cs, __cs + __declen);
// Tack on decimal part.
int __newlen = __p2 - __new;
if (__p)
{
char_traits<_CharT>::copy(__p2, __p, __len - __declen);
__newlen += __len - __declen;
}
__len = __newlen;
#endif
}
// The following code uses snprintf (or sprintf(), when
// _GLIBCXX_USE_C99 is not defined) to convert floating point values
// for insertion into a stream. An optimization would be to replace
// them with code that works directly on a wide buffer and then use
// __pad to do the padding. It would be good to replace them anyway
// to gain back the efficiency that C++ provides by knowing up front
// the type of the values to insert. Also, sprintf is dangerous
// since may lead to accidental buffer overruns. This
// implementation follows the C++ standard fairly directly as
// outlined in 22.2.2.2 [lib.locale.num.put]
template<typename _CharT, typename _OutIter>
template<typename _ValueT>
_OutIter
num_put<_CharT, _OutIter>::
_M_insert_float(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
_ValueT __v) const
{
typedef typename numpunct<_CharT>::__cache_type __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
// Note: digits10 is rounded down: add 1 to ensure the maximum
// available precision. Then, in general, one more 1 needs to
// be added since, when the %{g,G} conversion specifiers are
// chosen inside _S_format_float, the precision field is "the
// maximum number of significant digits", *not* the "number of
// digits to appear after the decimal point", as happens for
// %{e,E,f,F} (C99, 7.19.6.1,4).
const int __max_digits = numeric_limits<_ValueT>::digits10 + 2;
// Use default precision if out of range.
streamsize __prec = __io.precision();
if (__prec > static_cast<streamsize>(__max_digits))
__prec = static_cast<streamsize>(__max_digits);
else if (__prec < static_cast<streamsize>(0))
__prec = static_cast<streamsize>(6);
// [22.2.2.2.2] Stage 1, numeric conversion to character.
int __len;
// Long enough for the max format spec.
char __fbuf[16];
#ifdef _GLIBCXX_USE_C99
// First try a buffer perhaps big enough (for sure sufficient
// for non-ios_base::fixed outputs)
int __cs_size = __max_digits * 3;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
_S_format_float(__io, __fbuf, __mod);
__len = std::__convert_from_v(__cs, __cs_size, __fbuf, __v,
_S_get_c_locale(), __prec);
// If the buffer was not large enough, try again with the correct size.
if (__len >= __cs_size)
{
__cs_size = __len + 1;
__cs = static_cast<char*>(__builtin_alloca(__cs_size));
__len = std::__convert_from_v(__cs, __cs_size, __fbuf, __v,
_S_get_c_locale(), __prec);
}
#else
// Consider the possibility of long ios_base::fixed outputs
const bool __fixed = __io.flags() & ios_base::fixed;
const int __max_exp = numeric_limits<_ValueT>::max_exponent10;
// The size of the output string is computed as follows.
// ios_base::fixed outputs may need up to __max_exp+1 chars
// for the integer part + up to __max_digits chars for the
// fractional part + 3 chars for sign, decimal point, '\0'. On
// the other hand, for non-fixed outputs __max_digits*3 chars
// are largely sufficient.
const int __cs_size = __fixed ? __max_exp + __max_digits + 4
: __max_digits * 3;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
_S_format_float(__io, __fbuf, __mod);
__len = std::__convert_from_v(__cs, 0, __fbuf, __v,
_S_get_c_locale(), __prec);
#endif
// [22.2.2.2.2] Stage 2, convert to char_type, using correct
// numpunct.decimal_point() values for '.' and adding grouping.
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
_CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len));
__ctype.widen(__cs, __cs + __len, __ws);
// Replace decimal point.
const _CharT __cdec = __ctype.widen('.');
const _CharT __dec = __lc->_M_decimal_point;
const _CharT* __p;
if (__p = char_traits<_CharT>::find(__ws, __len, __cdec))
__ws[__p - __ws] = __dec;
// Add grouping, if necessary.
_CharT* __ws2;
if (__lc->_M_use_grouping)
{
// Grouping can add (almost) as many separators as the
// number of digits, but no more.
__ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len * 2));
_M_group_float(__lc->_M_grouping, __lc->_M_thousands_sep, __p,
__ws2, __ws, __len);
__ws = __ws2;
}
// Pad.
_CharT* __ws3;
const streamsize __w = __io.width();
if (__w > static_cast<streamsize>(__len))
{
__ws3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __w));
_M_pad(__fill, __w, __io, __ws3, __ws, __len);
__ws = __ws3;
}
__io.width(0);
// [22.2.2.2.2] Stage 4.
// Write resulting, fully-formatted string to output iterator.
return std::__write(__s, __ws, __len);
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const
{
const ios_base::fmtflags __flags = __io.flags();
if ((__flags & ios_base::boolalpha) == 0)
{
unsigned long __uv = __v;
__s = _M_insert_int(__s, __io, __fill, __uv);
}
else
{
typedef typename numpunct<_CharT>::__cache_type __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __name;
__name = __v ? __lc->_M_truename : __lc->_M_falsename;
int __len = char_traits<_CharT>::length(__name);
_CharT* __cs;
const streamsize __w = __io.width();
if (__w > static_cast<streamsize>(__len))
{
__cs = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __w));
_M_pad(__fill, __w, __io, __cs, __name, __len);
__name = __cs;
}
__io.width(0);
__s = std::__write(__s, __name, __len);
}
return __s;
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const
{ return _M_insert_int(__s, __io, __fill, __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
unsigned long __v) const
{ return _M_insert_int(__s, __io, __fill, __v); }
#ifdef _GLIBCXX_USE_LONG_LONG
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __b, char_type __fill, long long __v) const
{ return _M_insert_int(__s, __b, __fill, __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
unsigned long long __v) const
{ return _M_insert_int(__s, __io, __fill, __v); }
#endif
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
{ return _M_insert_float(__s, __io, __fill, char(), __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
long double __v) const
{ return _M_insert_float(__s, __io, __fill, 'L', __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
const void* __v) const
{
const ios_base::fmtflags __flags = __io.flags();
const ios_base::fmtflags __fmt = ~(ios_base::showpos | ios_base::basefield
| ios_base::uppercase | ios_base::internal);
__io.flags(__flags & __fmt | (ios_base::hex | ios_base::showbase));
try
{
__s = _M_insert_int(__s, __io, __fill,
reinterpret_cast<unsigned long>(__v));
__io.flags(__flags);
}
catch (...)
{
__io.flags(__flags);
__throw_exception_again;
}
return __s;
}
template<typename _CharT, typename _InIter>
_InIter
money_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
ios_base::iostate& __err, long double& __units) const
{
string_type __str;
__beg = this->do_get(__beg, __end, __intl, __io, __err, __str);
const int __n = numeric_limits<long double>::digits10;
char* __cs = static_cast<char*>(__builtin_alloca(__n));
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const _CharT* __wcs = __str.c_str();
__ctype.narrow(__wcs, __wcs + __str.size() + 1, char(), __cs);
std::__convert_to_v(__cs, __units, __err, _S_get_c_locale());
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
money_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
ios_base::iostate& __err, string_type& __units) const
{
// These contortions are quite unfortunate.
typedef moneypunct<_CharT, true> __money_true;
typedef moneypunct<_CharT, false> __money_false;
typedef money_base::part part;
typedef typename string_type::size_type size_type;
const locale __loc = __io.getloc();
const __money_true& __mpt = use_facet<__money_true>(__loc);
const __money_false& __mpf = use_facet<__money_false>(__loc);
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const money_base::pattern __p = __intl ? __mpt.neg_format()
: __mpf.neg_format();
const string_type __pos_sign =__intl ? __mpt.positive_sign()
: __mpf.positive_sign();
const string_type __neg_sign =__intl ? __mpt.negative_sign()
: __mpf.negative_sign();
const char_type __d = __intl ? __mpt.decimal_point()
: __mpf.decimal_point();
const char_type __sep = __intl ? __mpt.thousands_sep()
: __mpf.thousands_sep();
const string __grouping = __intl ? __mpt.grouping() : __mpf.grouping();
// Set to deduced positive or negative sign, depending.
string_type __sign;
// String of grouping info from thousands_sep plucked from __units.
string __grouping_tmp;
// Marker for thousands_sep position.
int __sep_pos = 0;
// If input iterator is in a valid state.
bool __testvalid = true;
// Flag marking when a decimal point is found.
bool __testdecfound = false;
// The tentative returned string is stored here.
string_type __tmp_units;
char_type __c = *__beg;
for (int __i = 0; __beg != __end && __i < 4 && __testvalid; ++__i)
{
const part __which = static_cast<part>(__p.field[__i]);
switch (__which)
{
case money_base::symbol:
if (__io.flags() & ios_base::showbase
|| __i < 2 || __sign.size() > 1
|| ((static_cast<part>(__p.field[3]) != money_base::none)
&& __i == 2))
{
// According to 22.2.6.1.2.2, symbol is required
// if (__io.flags() & ios_base::showbase),
// otherwise is optional and consumed only if
// other characters are needed to complete the
// format.
const string_type __symbol = __intl ? __mpt.curr_symbol()
: __mpf.curr_symbol();
const size_type __len = __symbol.size();
size_type __j = 0;
while (__beg != __end
&& __j < __len && __symbol[__j] == __c)
{
__c = *(++__beg);
++__j;
}
// When (__io.flags() & ios_base::showbase)
// symbol is required.
if (__j != __len && (__io.flags() & ios_base::showbase))
__testvalid = false;
}
break;
case money_base::sign:
// Sign might not exist, or be more than one character long.
if (__pos_sign.size() && __c == __pos_sign[0])
{
__sign = __pos_sign;
__c = *(++__beg);
}
else if (__neg_sign.size() && __c == __neg_sign[0])
{
__sign = __neg_sign;
__c = *(++__beg);
}
else if (__pos_sign.size() && __neg_sign.size())
{
// Sign is mandatory.
__testvalid = false;
}
break;
case money_base::value:
// Extract digits, remove and stash away the
// grouping of found thousands separators.
while (__beg != __end
&& (__ctype.is(ctype_base::digit, __c)
|| (__c == __d && !__testdecfound)
|| __c == __sep))
{
if (__c == __d)
{
__grouping_tmp += static_cast<char>(__sep_pos);
__sep_pos = 0;
__testdecfound = true;
}
else if (__c == __sep)
{
if (__grouping.size())
{
// Mark position for later analysis.
__grouping_tmp += static_cast<char>(__sep_pos);
__sep_pos = 0;
}
else
{
__testvalid = false;
break;
}
}
else
{
__tmp_units += __c;
++__sep_pos;
}
__c = *(++__beg);
}
break;
case money_base::space:
case money_base::none:
// Only if not at the end of the pattern.
if (__i != 3)
while (__beg != __end
&& __ctype.is(ctype_base::space, __c))
__c = *(++__beg);
break;
}
}
// Need to get the rest of the sign characters, if they exist.
const char_type __eof = static_cast<char_type>(char_traits<char_type>::eof());
if (__sign.size() > 1)
{
const size_type __len = __sign.size();
size_type __i = 1;
for (; __c != __eof && __i < __len; ++__i)
while (__beg != __end && __c != __sign[__i])
__c = *(++__beg);
if (__i != __len)
__testvalid = false;
}
// Strip leading zeros.
while (__tmp_units.size() > 1 && __tmp_units[0] == __ctype.widen('0'))
__tmp_units.erase(__tmp_units.begin());
if (__sign.size() && __sign == __neg_sign)
__tmp_units.insert(__tmp_units.begin(), __ctype.widen('-'));
// Test for grouping fidelity.
if (__grouping.size() && __grouping_tmp.size())
{
if (!std::__verify_grouping(__grouping, __grouping_tmp))
__testvalid = false;
}
// Iff no more characters are available.
if (__c == __eof)
__err |= ios_base::eofbit;
// Iff not enough digits were supplied after the decimal-point.
if (__testdecfound)
{
const int __frac = __intl ? __mpt.frac_digits()
: __mpf.frac_digits();
if (__frac > 0)
{
if (__sep_pos != __frac)
__testvalid = false;
}
}
// Iff valid sequence is not recognized.
if (!__testvalid || !__tmp_units.size())
__err |= ios_base::failbit;
else
// Use the "swap trick" to copy __tmp_units into __units.
__tmp_units.swap(__units);
return __beg;
}
template<typename _CharT, typename _OutIter>
_OutIter
money_put<_CharT, _OutIter>::
do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
long double __units) const
{
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
#ifdef _GLIBCXX_USE_C99
// First try a buffer perhaps big enough.
int __cs_size = 64;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
int __len = std::__convert_from_v(__cs, __cs_size, "%.01Lf", __units,
_S_get_c_locale());
// If the buffer was not large enough, try again with the correct size.
if (__len >= __cs_size)
{
__cs_size = __len + 1;
__cs = static_cast<char*>(__builtin_alloca(__cs_size));
__len = std::__convert_from_v(__cs, __cs_size, "%.01Lf", __units,
_S_get_c_locale());
}
#else
// max_exponent10 + 1 for the integer part, + 4 for sign, decimal point,
// decimal digit, '\0'.
const int __cs_size = numeric_limits<long double>::max_exponent10 + 5;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
int __len = std::__convert_from_v(__cs, 0, "%.01Lf", __units,
_S_get_c_locale());
#endif
_CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __cs_size));
__ctype.widen(__cs, __cs + __len, __ws);
string_type __digits(__ws);
return this->do_put(__s, __intl, __io, __fill, __digits);
}
template<typename _CharT, typename _OutIter>
_OutIter
money_put<_CharT, _OutIter>::
do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
const string_type& __digits) const
{
typedef typename string_type::size_type size_type;
typedef money_base::part part;
const locale __loc = __io.getloc();
const size_type __width = static_cast<size_type>(__io.width());
// These contortions are quite unfortunate.
typedef moneypunct<_CharT, true> __money_true;
typedef moneypunct<_CharT, false> __money_false;
const __money_true& __mpt = use_facet<__money_true>(__loc);
const __money_false& __mpf = use_facet<__money_false>(__loc);
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
// Determine if negative or positive formats are to be used, and
// discard leading negative_sign if it is present.
const char_type* __beg = __digits.data();
const char_type* __end = __beg + __digits.size();
money_base::pattern __p;
string_type __sign;
if (*__beg != __ctype.widen('-'))
{
__p = __intl ? __mpt.pos_format() : __mpf.pos_format();
__sign = __intl ? __mpt.positive_sign() : __mpf.positive_sign();
}
else
{
__p = __intl ? __mpt.neg_format() : __mpf.neg_format();
__sign = __intl ? __mpt.negative_sign() : __mpf.negative_sign();
++__beg;
}
// Look for valid numbers in the current ctype facet within input digits.
__end = __ctype.scan_not(ctype_base::digit, __beg, __end);
if (__beg != __end)
{
// Assume valid input, and attempt to format.
// Break down input numbers into base components, as follows:
// final_value = grouped units + (decimal point) + (digits)
string_type __res;
string_type __value;
const string_type __symbol = __intl ? __mpt.curr_symbol()
: __mpf.curr_symbol();
// Deal with decimal point, decimal digits.
const int __frac = __intl ? __mpt.frac_digits()
: __mpf.frac_digits();
if (__frac > 0)
{
const char_type __d = __intl ? __mpt.decimal_point()
: __mpf.decimal_point();
if (__end - __beg >= __frac)
{
__value = string_type(__end - __frac, __end);
__value.insert(__value.begin(), __d);
__end -= __frac;
}
else
{
// Have to pad zeros in the decimal position.
__value = string_type(__beg, __end);
const int __paddec = __frac - (__end - __beg);
const char_type __zero = __ctype.widen('0');
__value.insert(__value.begin(), __paddec, __zero);
__value.insert(__value.begin(), __d);
__beg = __end;
}
}
// Add thousands separators to non-decimal digits, per
// grouping rules.
if (__beg != __end)
{
const string __grouping = __intl ? __mpt.grouping()
: __mpf.grouping();
if (__grouping.size())
{
const char_type __sep = __intl ? __mpt.thousands_sep()
: __mpf.thousands_sep();
const char* __gbeg = __grouping.c_str();
const char* __gend = __gbeg + __grouping.size();
const int __n = (__end - __beg) * 2;
_CharT* __ws2 =
static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __n));
_CharT* __ws_end = std::__add_grouping(__ws2, __sep, __gbeg,
__gend, __beg, __end);
__value.insert(0, __ws2, __ws_end - __ws2);
}
else
__value.insert(0, string_type(__beg, __end));
}
// Calculate length of resulting string.
const ios_base::fmtflags __f = __io.flags() & ios_base::adjustfield;
size_type __len = __value.size() + __sign.size();
__len += (__io.flags() & ios_base::showbase) ? __symbol.size() : 0;
const bool __testipad = __f == ios_base::internal && __len < __width;
// Fit formatted digits into the required pattern.
for (int __i = 0; __i < 4; ++__i)
{
const part __which = static_cast<part>(__p.field[__i]);
switch (__which)
{
case money_base::symbol:
if (__io.flags() & ios_base::showbase)
__res += __symbol;
break;
case money_base::sign:
// Sign might not exist, or be more than one
// charater long. In that case, add in the rest
// below.
if (__sign.size())
__res += __sign[0];
break;
case money_base::value:
__res += __value;
break;
case money_base::space:
// At least one space is required, but if internal
// formatting is required, an arbitrary number of
// fill spaces will be necessary.
if (__testipad)
__res += string_type(__width - __len, __fill);
else
__res += __ctype.widen(__fill);
break;
case money_base::none:
if (__testipad)
__res += string_type(__width - __len, __fill);
break;
}
}
// Special case of multi-part sign parts.
if (__sign.size() > 1)
__res += string_type(__sign.begin() + 1, __sign.end());
// Pad, if still necessary.
__len = __res.size();
if (__width > __len)
{
if (__f == ios_base::left)
// After.
__res.append(__width - __len, __fill);
else
// Before.
__res.insert(0, string_type(__width - __len, __fill));
__len = __width;
}
// Write resulting, fully-formatted string to output iterator.
__s = std::__write(__s, __res.c_str(), __len);
}
__io.width(0);
return __s;
}
// NB: Not especially useful. Without an ios_base object or some
// kind of locale reference, we are left clawing at the air where
// the side of the mountain used to be...
template<typename _CharT, typename _InIter>
time_base::dateorder
time_get<_CharT, _InIter>::do_date_order() const
{ return time_base::no_order; }
template<typename _CharT, typename _InIter>
void
time_get<_CharT, _InIter>::
_M_extract_via_format(iter_type& __beg, iter_type& __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm,
const _CharT* __format) const
{
const locale __loc = __io.getloc();
__timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const size_t __len = char_traits<_CharT>::length(__format);
for (size_t __i = 0; __beg != __end && __i < __len && !__err; ++__i)
{
char __c = __format[__i];
if (__c == '%')
{
// Verify valid formatting code, attempt to extract.
__c = __format[++__i];
char __mod = 0;
int __mem = 0;
if (__c == 'E' || __c == 'O')
{
__mod = __c;
__c = __format[++__i];
}
switch (__c)
{
const char* __cs;
_CharT __wcs[10];
case 'a':
// Abbreviated weekday name [tm_wday]
const char_type* __days1[7];
__tp._M_days_abbreviated(__days1);
_M_extract_name(__beg, __end, __tm->tm_wday, __days1, 7,
__err);
break;
case 'A':
// Weekday name [tm_wday].
const char_type* __days2[7];
__tp._M_days(__days2);
_M_extract_name(__beg, __end, __tm->tm_wday, __days2, 7,
__err);
break;
case 'h':
case 'b':
// Abbreviated month name [tm_mon]
const char_type* __months1[12];
__tp._M_months_abbreviated(__months1);
_M_extract_name(__beg, __end, __tm->tm_mon, __months1, 12,
__err);
break;
case 'B':
// Month name [tm_mon].
const char_type* __months2[12];
__tp._M_months(__months2);
_M_extract_name(__beg, __end, __tm->tm_mon, __months2, 12,
__err);
break;
case 'c':
// Default time and date representation.
const char_type* __dt[2];
__tp._M_date_time_formats(__dt);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__dt[0]);
break;
case 'd':
// Day [01, 31]. [tm_mday]
_M_extract_num(__beg, __end, __tm->tm_mday, 1, 31, 2,
__ctype, __err);
break;
case 'D':
// Equivalent to %m/%d/%y.[tm_mon, tm_mday, tm_year]
__cs = "%m/%d/%y";
__ctype.widen(__cs, __cs + 9, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__wcs);
break;
case 'H':
// Hour [00, 23]. [tm_hour]
_M_extract_num(__beg, __end, __tm->tm_hour, 0, 23, 2,
__ctype, __err);
break;
case 'I':
// Hour [01, 12]. [tm_hour]
_M_extract_num(__beg, __end, __tm->tm_hour, 1, 12, 2,
__ctype, __err);
break;
case 'm':
// Month [01, 12]. [tm_mon]
_M_extract_num(__beg, __end, __mem, 1, 12, 2, __ctype,
__err);
if (!__err)
__tm->tm_mon = __mem - 1;
break;
case 'M':
// Minute [00, 59]. [tm_min]
_M_extract_num(__beg, __end, __tm->tm_min, 0, 59, 2,
__ctype, __err);
break;
case 'n':
if (__ctype.narrow(*__beg, 0) == '\n')
++__beg;
else
__err |= ios_base::failbit;
break;
case 'R':
// Equivalent to (%H:%M).
__cs = "%H:%M";
__ctype.widen(__cs, __cs + 6, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__wcs);
break;
case 'S':
// Seconds.
_M_extract_num(__beg, __end, __tm->tm_sec, 0, 59, 2,
__ctype, __err);
break;
case 't':
if (__ctype.narrow(*__beg, 0) == '\t')
++__beg;
else
__err |= ios_base::failbit;
break;
case 'T':
// Equivalent to (%H:%M:%S).
__cs = "%H:%M:%S";
__ctype.widen(__cs, __cs + 9, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__wcs);
break;
case 'x':
// Locale's date.
const char_type* __dates[2];
__tp._M_date_formats(__dates);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__dates[0]);
break;
case 'X':
// Locale's time.
const char_type* __times[2];
__tp._M_time_formats(__times);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__times[0]);
break;
case 'y':
// Two digit year. [tm_year]
_M_extract_num(__beg, __end, __tm->tm_year, 0, 99, 2,
__ctype, __err);
break;
case 'Y':
// Year [1900). [tm_year]
_M_extract_num(__beg, __end, __mem, 0,
numeric_limits<int>::max(), 4,
__ctype, __err);
if (!__err)
__tm->tm_year = __mem - 1900;
break;
case 'Z':
// Timezone info.
if (__ctype.is(ctype_base::upper, *__beg))
{
int __tmp;
_M_extract_name(__beg, __end, __tmp,
__timepunct_cache<_CharT>::_S_timezones,
14, __err);
// GMT requires special effort.
char_type __c = *__beg;
if (!__err && __tmp == 0
&& (__c == __ctype.widen('-')
|| __c == __ctype.widen('+')))
{
_M_extract_num(__beg, __end, __tmp, 0, 23, 2,
__ctype, __err);
_M_extract_num(__beg, __end, __tmp, 0, 59, 2,
__ctype, __err);
}
}
else
__err |= ios_base::failbit;
break;
default:
// Not recognized.
__err |= ios_base::failbit;
}
}
else
{
// Verify format and input match, extract and discard.
if (__c == __ctype.narrow(*__beg, 0))
++__beg;
else
__err |= ios_base::failbit;
}
}
}
template<typename _CharT, typename _InIter>
void
time_get<_CharT, _InIter>::
_M_extract_num(iter_type& __beg, iter_type& __end, int& __member,
int __min, int __max, size_t __len,
const ctype<_CharT>& __ctype,
ios_base::iostate& __err) const
{
size_t __i = 0;
string __digits;
bool __testvalid = true;
char_type __c = *__beg;
while (__beg != __end && __i < __len
&& __ctype.is(ctype_base::digit, __c))
{
__digits += __ctype.narrow(__c, 0);
__c = *(++__beg);
++__i;
}
if (__i == __len)
{
const int __value = std::atoi(__digits.c_str());
if (__min <= __value && __value <= __max)
__member = __value;
else
__testvalid = false;
}
else
__testvalid = false;
if (!__testvalid)
__err |= ios_base::failbit;
}
// Assumptions:
// All elements in __names are unique.
template<typename _CharT, typename _InIter>
void
time_get<_CharT, _InIter>::
_M_extract_name(iter_type& __beg, iter_type& __end, int& __member,
const _CharT** __names, size_t __indexlen,
ios_base::iostate& __err) const
{
typedef char_traits<_CharT> __traits_type;
int* __matches = static_cast<int*>(__builtin_alloca(sizeof(int)
* __indexlen));
size_t __nmatches = 0;
size_t __pos = 0;
bool __testvalid = true;
const char_type* __name;
char_type __c = *__beg;
// Look for initial matches.
for (size_t __i1 = 0; __i1 < __indexlen; ++__i1)
if (__c == __names[__i1][0])
__matches[__nmatches++] = __i1;
while (__nmatches > 1)
{
// Find smallest matching string.
size_t __minlen = 10;
for (size_t __i2 = 0; __i2 < __nmatches; ++__i2)
__minlen = std::min(__minlen,
__traits_type::length(__names[__matches[__i2]]));
if (__pos < __minlen && __beg != __end)
{
++__pos;
__c = *(++__beg);
for (size_t __i3 = 0; __i3 < __nmatches; ++__i3)
{
__name = __names[__matches[__i3]];
if (__name[__pos] != __c)
__matches[__i3] = __matches[--__nmatches];
}
}
else
break;
}
if (__nmatches == 1)
{
// Make sure found name is completely extracted.
__name = __names[__matches[0]];
const size_t __len = __traits_type::length(__name);
while (__pos < __len && __beg != __end && __name[__pos] == *__beg)
++__beg, ++__pos;
if (__len == __pos)
__member = __matches[0];
else
__testvalid = false;
}
else
__testvalid = false;
if (!__testvalid)
__err |= ios_base::failbit;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_time(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
_CharT __wcs[3];
const char* __cs = "%X";
const locale __loc = __io.getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
__ctype.widen(__cs, __cs + 3, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm, __wcs);
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_date(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
_CharT __wcs[3];
const char* __cs = "%x";
const locale __loc = __io.getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
__ctype.widen(__cs, __cs + 3, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm, __wcs);
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_weekday(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
typedef char_traits<_CharT> __traits_type;
const locale __loc = __io.getloc();
__timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
const char_type* __days[7];
__tp._M_days_abbreviated(__days);
int __tmpwday;
_M_extract_name(__beg, __end, __tmpwday, __days, 7, __err);
// Check to see if non-abbreviated name exists, and extract.
// NB: Assumes both _M_days and _M_days_abbreviated organized in
// exact same order, first to last, such that the resulting
// __days array with the same index points to a day, and that
// day's abbreviated form.
// NB: Also assumes that an abbreviated name is a subset of the name.
if (!__err)
{
size_t __pos = __traits_type::length(__days[__tmpwday]);
__tp._M_days(__days);
const char_type* __name = __days[__tmpwday];
if (__name[__pos] == *__beg)
{
// Extract the rest of it.
const size_t __len = __traits_type::length(__name);
while (__pos < __len && __beg != __end
&& __name[__pos] == *__beg)
++__beg, ++__pos;
if (__len != __pos)
__err |= ios_base::failbit;
}
if (!__err)
__tm->tm_wday = __tmpwday;
}
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_monthname(iter_type __beg, iter_type __end,
ios_base& __io, ios_base::iostate& __err, tm* __tm) const
{
typedef char_traits<_CharT> __traits_type;
const locale __loc = __io.getloc();
__timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
const char_type* __months[12];
__tp._M_months_abbreviated(__months);
int __tmpmon;
_M_extract_name(__beg, __end, __tmpmon, __months, 12, __err);
// Check to see if non-abbreviated name exists, and extract.
// NB: Assumes both _M_months and _M_months_abbreviated organized in
// exact same order, first to last, such that the resulting
// __months array with the same index points to a month, and that
// month's abbreviated form.
// NB: Also assumes that an abbreviated name is a subset of the name.
if (!__err)
{
size_t __pos = __traits_type::length(__months[__tmpmon]);
__tp._M_months(__months);
const char_type* __name = __months[__tmpmon];
if (__name[__pos] == *__beg)
{
// Extract the rest of it.
const size_t __len = __traits_type::length(__name);
while (__pos < __len && __beg != __end
&& __name[__pos] == *__beg)
++__beg, ++__pos;
if (__len != __pos)
__err |= ios_base::failbit;
}
if (!__err)
__tm->tm_mon = __tmpmon;
}
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_year(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
char_type __c = *__beg;
size_t __i = 0;
string __digits;
while (__i < 4 && __beg != __end && __ctype.is(ctype_base::digit, __c))
{
__digits += __ctype.narrow(__c, 0);
__c = *(++__beg);
++__i;
}
if (__i == 2 || __i == 4)
{
long __l;
std::__convert_to_v(__digits.c_str(), __l, __err,
_S_get_c_locale());
if (!(__err & ios_base::failbit) && __l <= INT_MAX)
{
__l = __i == 2 ? __l : __l - 1900;
__tm->tm_year = static_cast<int>(__l);
}
}
else
__err |= ios_base::failbit;
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _OutIter>
_OutIter
time_put<_CharT, _OutIter>::
put(iter_type __s, ios_base& __io, char_type __fill, const tm* __tm,
const _CharT* __beg, const _CharT* __end) const
{
const locale __loc = __io.getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
while (__beg != __end)
{
const _CharT __tmp = *__beg;
++__beg;
if (__ctype.narrow(__tmp, 0) == '%' && __beg != __end)
{
char __format;
char __mod = 0;
const char __c = __ctype.narrow(*__beg, 0);
++__beg;
if (__c == 'E' || __c == 'O')
{
__mod = __c;
__format = __ctype.narrow(*__beg, 0);
++__beg;
}
else
__format = __c;
__s = this->do_put(__s, __io, __fill, __tm, __format, __mod);
}
else
{
*__s = __tmp;
++__s;
}
}
return __s;
}
template<typename _CharT, typename _OutIter>
_OutIter
time_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type, const tm* __tm,
char __format, char __mod) const
{
const locale __loc = __io.getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
__timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
// NB: This size is arbitrary. Should this be a data member,
// initialized at construction?
const size_t __maxlen = 64;
char_type* __res = static_cast<char_type*>(__builtin_alloca(sizeof(char_type) * __maxlen));
// NB: In IEE 1003.1-200x, and perhaps other locale models, it
// is possible that the format character will be longer than one
// character. Possibilities include 'E' or 'O' followed by a
// format character: if __mod is not the default argument, assume
// it's a valid modifier.
char_type __fmt[4];
__fmt[0] = __ctype.widen('%');
if (!__mod)
{
__fmt[1] = __format;
__fmt[2] = char_type();
}
else
{
__fmt[1] = __mod;
__fmt[2] = __format;
__fmt[3] = char_type();
}
__tp._M_put(__res, __maxlen, __fmt, __tm);
// Write resulting, fully-formatted string to output iterator.
return std::__write(__s, __res, char_traits<char_type>::length(__res));
}
// Generic version does nothing.
template<typename _CharT>
int
collate<_CharT>::_M_compare(const _CharT*, const _CharT*) const
{ return 0; }
// Generic version does nothing.
template<typename _CharT>
size_t
collate<_CharT>::_M_transform(_CharT*, const _CharT*, size_t) const
{ return 0; }
template<typename _CharT>
int
collate<_CharT>::
do_compare(const _CharT* __lo1, const _CharT* __hi1,
const _CharT* __lo2, const _CharT* __hi2) const
{
// strcoll assumes zero-terminated strings so we make a copy
// and then put a zero at the end.
const string_type __one(__lo1, __hi1);
const string_type __two(__lo2, __hi2);
const _CharT* __p = __one.c_str();
const _CharT* __pend = __one.c_str() + __one.length();
const _CharT* __q = __two.c_str();
const _CharT* __qend = __two.c_str() + __two.length();
// strcoll stops when it sees a nul character so we break
// the strings into zero-terminated substrings and pass those
// to strcoll.
for (;;)
{
const int __res = _M_compare(__p, __q);
if (__res)
return __res;
__p += char_traits<_CharT>::length(__p);
__q += char_traits<_CharT>::length(__q);
if (__p == __pend && __q == __qend)
return 0;
else if (__p == __pend)
return -1;
else if (__q == __qend)
return 1;
__p++;
__q++;
}
}
template<typename _CharT>
typename collate<_CharT>::string_type
collate<_CharT>::
do_transform(const _CharT* __lo, const _CharT* __hi) const
{
// strxfrm assumes zero-terminated strings so we make a copy
string_type __str(__lo, __hi);
const _CharT* __p = __str.c_str();
const _CharT* __pend = __str.c_str() + __str.length();
size_t __len = (__hi - __lo) * 2;
string_type __ret;
// strxfrm stops when it sees a nul character so we break
// the string into zero-terminated substrings and pass those
// to strxfrm.
for (;;)
{
// First try a buffer perhaps big enough.
_CharT* __c =
static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __len));
size_t __res = _M_transform(__c, __p, __len);
// If the buffer was not large enough, try again with the
// correct size.
if (__res >= __len)
{
__len = __res + 1;
__c = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len));
__res = _M_transform(__c, __p, __res + 1);
}
__ret.append(__c, __res);
__p += char_traits<_CharT>::length(__p);
if (__p == __pend)
return __ret;
__p++;
__ret.push_back(_CharT());
}
}
template<typename _CharT>
long
collate<_CharT>::
do_hash(const _CharT* __lo, const _CharT* __hi) const
{
unsigned long __val = 0;
for (; __lo < __hi; ++__lo)
__val = *__lo + ((__val << 7) |
(__val >> (numeric_limits<unsigned long>::digits - 7)));
return static_cast<long>(__val);
}
// Construct correctly padded string, as per 22.2.2.2.2
// Assumes
// __newlen > __oldlen
// __news is allocated for __newlen size
// Used by both num_put and ostream inserters: if __num,
// internal-adjusted objects are padded according to the rules below
// concerning 0[xX] and +-, otherwise, exactly as right-adjusted
// ones are.
// NB: Of the two parameters, _CharT can be deduced from the
// function arguments. The other (_Traits) has to be explicitly specified.
template<typename _CharT, typename _Traits>
void
__pad<_CharT, _Traits>::_S_pad(ios_base& __io, _CharT __fill,
_CharT* __news, const _CharT* __olds,
const streamsize __newlen,
const streamsize __oldlen, const bool __num)
{
const size_t __plen = static_cast<size_t>(__newlen - __oldlen);
const ios_base::fmtflags __adjust = __io.flags() & ios_base::adjustfield;
// Padding last.
if (__adjust == ios_base::left)
{
_Traits::copy(__news, const_cast<_CharT*>(__olds), __oldlen);
_Traits::assign(__news + __oldlen, __plen, __fill);
return;
}
size_t __mod = 0;
if (__adjust == ios_base::internal && __num)
{
// Pad after the sign, if there is one.
// Pad after 0[xX], if there is one.
// Who came up with these rules, anyway? Jeeze.
const locale& __loc = __io._M_getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const _CharT __minus = __ctype.widen('-');
const _CharT __plus = __ctype.widen('+');
const bool __testsign = _Traits::eq(__olds[0], __minus)
|| _Traits::eq(__olds[0], __plus);
const bool __testhex = _Traits::eq(__ctype.widen('0'), __olds[0])
&& (_Traits::eq(__ctype.widen('x'), __olds[1])
|| _Traits::eq(__ctype.widen('X'), __olds[1]));
if (__testhex)
{
__news[0] = __olds[0];
__news[1] = __olds[1];
__mod = 2;
__news += 2;
}
else if (__testsign)
{
__news[0] = __olds[0];
__mod = 1;
++__news;
}
// else Padding first.
}
_Traits::assign(__news, __plen, __fill);
_Traits::copy(__news + __plen, const_cast<_CharT*>(__olds + __mod),
__oldlen - __mod);
}
template<typename _CharT>
bool
__verify_grouping(const basic_string<_CharT>& __grouping,
basic_string<_CharT>& __grouping_tmp)
{
size_t __i = 0;
size_t __j = 0;
const size_t __len = __grouping.size();
const size_t __n = __grouping_tmp.size();
bool __test = true;
// Parsed number groupings have to match the
// numpunct::grouping string exactly, starting at the
// right-most point of the parsed sequence of elements ...
while (__test && __i < __n - 1)
for (__j = 0; __test && __j < __len && __i < __n - 1; ++__j,++__i)
__test &= __grouping[__j] == __grouping_tmp[__n - __i - 1];
// ... but the last parsed grouping can be <= numpunct
// grouping.
__j == __len ? __j = 0 : __j;
__test &= __grouping[__j] >= __grouping_tmp[__n - __i - 1];
return __test;
}
template<typename _CharT>
_CharT*
__add_grouping(_CharT* __s, _CharT __sep,
const char* __gbeg, const char* __gend,
const _CharT* __first, const _CharT* __last)
{
if (__last - __first > *__gbeg)
{
const bool __bump = __gbeg + 1 != __gend;
__s = std::__add_grouping(__s, __sep, __gbeg + __bump,
__gend, __first, __last - *__gbeg);
__first = __last - *__gbeg;
*__s++ = __sep;
}
do
*__s++ = *__first++;
while (__first != __last);
return __s;
}
// Inhibit implicit instantiations for required instantiations,
// which are defined via explicit instantiations elsewhere.
// NB: This syntax is a GNU extension.
#if _GLIBCXX_EXTERN_TEMPLATE
extern template class moneypunct<char, false>;
extern template class moneypunct<char, true>;
extern template class moneypunct_byname<char, false>;
extern template class moneypunct_byname<char, true>;
extern template class money_get<char>;
extern template class money_put<char>;
extern template class numpunct<char>;
extern template class numpunct_byname<char>;
extern template class num_get<char>;
extern template class num_put<char>;
extern template class __timepunct<char>;
extern template class time_put<char>;
extern template class time_put_byname<char>;
extern template class time_get<char>;
extern template class time_get_byname<char>;
extern template class messages<char>;
extern template class messages_byname<char>;
extern template class ctype_byname<char>;
extern template class codecvt_byname<char, char, mbstate_t>;
extern template class collate<char>;
extern template class collate_byname<char>;
extern template
const codecvt<char, char, mbstate_t>&
use_facet<codecvt<char, char, mbstate_t> >(const locale&);
extern template
const collate<char>&
use_facet<collate<char> >(const locale&);
extern template
const numpunct<char>&
use_facet<numpunct<char> >(const locale&);
extern template
const num_put<char>&
use_facet<num_put<char> >(const locale&);
extern template
const num_get<char>&
use_facet<num_get<char> >(const locale&);
extern template
const moneypunct<char, true>&
use_facet<moneypunct<char, true> >(const locale&);
extern template
const moneypunct<char, false>&
use_facet<moneypunct<char, false> >(const locale&);
extern template
const money_put<char>&
use_facet<money_put<char> >(const locale&);
extern template
const money_get<char>&
use_facet<money_get<char> >(const locale&);
extern template
const __timepunct<char>&
use_facet<__timepunct<char> >(const locale&);
extern template
const time_put<char>&
use_facet<time_put<char> >(const locale&);
extern template
const time_get<char>&
use_facet<time_get<char> >(const locale&);
extern template
const messages<char>&
use_facet<messages<char> >(const locale&);
extern template
bool
has_facet<ctype<char> >(const locale&);
extern template
bool
has_facet<codecvt<char, char, mbstate_t> >(const locale&);
extern template
bool
has_facet<collate<char> >(const locale&);
extern template
bool
has_facet<numpunct<char> >(const locale&);
extern template
bool
has_facet<num_put<char> >(const locale&);
extern template
bool
has_facet<num_get<char> >(const locale&);
extern template
bool
has_facet<moneypunct<char> >(const locale&);
extern template
bool
has_facet<money_put<char> >(const locale&);
extern template
bool
has_facet<money_get<char> >(const locale&);
extern template
bool
has_facet<__timepunct<char> >(const locale&);
extern template
bool
has_facet<time_put<char> >(const locale&);
extern template
bool
has_facet<time_get<char> >(const locale&);
extern template
bool
has_facet<messages<char> >(const locale&);
#ifdef _GLIBCXX_USE_WCHAR_T
extern template class moneypunct<wchar_t, false>;
extern template class moneypunct<wchar_t, true>;
extern template class moneypunct_byname<wchar_t, false>;
extern template class moneypunct_byname<wchar_t, true>;
extern template class money_get<wchar_t>;
extern template class money_put<wchar_t>;
extern template class numpunct<wchar_t>;
extern template class numpunct_byname<wchar_t>;
extern template class num_get<wchar_t>;
extern template class num_put<wchar_t>;
extern template class __timepunct<wchar_t>;
extern template class time_put<wchar_t>;
extern template class time_put_byname<wchar_t>;
extern template class time_get<wchar_t>;
extern template class time_get_byname<wchar_t>;
extern template class messages<wchar_t>;
extern template class messages_byname<wchar_t>;
extern template class ctype_byname<wchar_t>;
extern template class codecvt_byname<wchar_t, char, mbstate_t>;
extern template class collate<wchar_t>;
extern template class collate_byname<wchar_t>;
extern template
const codecvt<wchar_t, char, mbstate_t>&
use_facet<codecvt<wchar_t, char, mbstate_t> >(locale const&);
extern template
const collate<wchar_t>&
use_facet<collate<wchar_t> >(const locale&);
extern template
const numpunct<wchar_t>&
use_facet<numpunct<wchar_t> >(const locale&);
extern template
const num_put<wchar_t>&
use_facet<num_put<wchar_t> >(const locale&);
extern template
const num_get<wchar_t>&
use_facet<num_get<wchar_t> >(const locale&);
extern template
const moneypunct<wchar_t, true>&
use_facet<moneypunct<wchar_t, true> >(const locale&);
extern template
const moneypunct<wchar_t, false>&
use_facet<moneypunct<wchar_t, false> >(const locale&);
extern template
const money_put<wchar_t>&
use_facet<money_put<wchar_t> >(const locale&);
extern template
const money_get<wchar_t>&
use_facet<money_get<wchar_t> >(const locale&);
extern template
const __timepunct<wchar_t>&
use_facet<__timepunct<wchar_t> >(const locale&);
extern template
const time_put<wchar_t>&
use_facet<time_put<wchar_t> >(const locale&);
extern template
const time_get<wchar_t>&
use_facet<time_get<wchar_t> >(const locale&);
extern template
const messages<wchar_t>&
use_facet<messages<wchar_t> >(const locale&);
extern template
bool
has_facet<ctype<wchar_t> >(const locale&);
extern template
bool
has_facet<codecvt<wchar_t, char, mbstate_t> >(const locale&);
extern template
bool
has_facet<collate<wchar_t> >(const locale&);
extern template
bool
has_facet<numpunct<wchar_t> >(const locale&);
extern template
bool
has_facet<num_put<wchar_t> >(const locale&);
extern template
bool
has_facet<num_get<wchar_t> >(const locale&);
extern template
bool
has_facet<moneypunct<wchar_t> >(const locale&);
extern template
bool
has_facet<money_put<wchar_t> >(const locale&);
extern template
bool
has_facet<money_get<wchar_t> >(const locale&);
extern template
bool
has_facet<__timepunct<wchar_t> >(const locale&);
extern template
bool
has_facet<time_put<wchar_t> >(const locale&);
extern template
bool
has_facet<time_get<wchar_t> >(const locale&);
extern template
bool
has_facet<messages<wchar_t> >(const locale&);
#endif
#endif
} // namespace std
#endif