gcc/libjava/include/posix-threads.h
Tom Tromey 16f39e241a quick-threads.h (_Jv_ThreadCancel): Removed.
* include/quick-threads.h (_Jv_ThreadCancel): Removed.
	(_Jv_ThreadDestroy): Likewise.
	* include/no-threads.h (_Jv_ThreadCancel): Removed.
	(_Jv_ThreadDestroy): Likewise.
	* include/posix-threads.h (struct _Jv_Thread_t): Removed
	`exception' field.
	(_Jv_ThreadCancel): Removed decl.
	(_Jv_ThreadDestroy): Removed.
	* posix-threads.cc (_Jv_ThreadCancel): Removed.
	(throw_cleanup): Removed.
	(really_start): Don't push or pop cleanup.
	(_Jv_ThreadInitData): Don't initialize `exception' field.
	* java/lang/Thread.java (stop): Officially unimplemented.
	* java/lang/natThread.cc (stop): Officially unimplemented.

From-SVN: r30392
1999-11-04 16:45:11 +00:00

276 lines
6.2 KiB
C++

// -*- c++ -*-
// posix-threads.h - Defines for using POSIX threads.
/* Copyright (C) 1998, 1999 Cygnus Solutions
This file is part of libgcj.
This software is copyrighted work licensed under the terms of the
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
details. */
#ifndef __JV_POSIX_THREADS__
#define __JV_POSIX_THREADS__
// NOTE: This file may only reference those pthread functions which
// are known not to be overridden by the Boehm GC. If in doubt, scan
// boehm-gc/gc.h. This is yucky but lets us avoid including gc.h
// everywhere (which would be truly yucky).
#include <pthread.h>
#include <sched.h>
#if defined (HAVE_PTHREAD_MUTEXATTR_SETTYPE) || defined (HAVE_PTHREAD_MUTEXATTR_SETKIND_NP)
# define HAVE_RECURSIVE_MUTEX 1
#endif
//
// Typedefs.
//
typedef pthread_cond_t _Jv_ConditionVariable_t;
#if defined (PTHREAD_MUTEX_HAVE_M_COUNT) || defined (PTHREAD_MUTEX_HAVE___M_COUNT)
// On Linux we use implementation details of mutexes in order to get
// faster results.
typedef pthread_mutex_t _Jv_Mutex_t;
#else /* LINUX_THREADS */
#define PTHREAD_MUTEX_IS_STRUCT
typedef struct
{
// Mutex used when locking this structure transiently.
pthread_mutex_t mutex;
#ifndef HAVE_RECURSIVE_MUTEX
// Some systems do not have recursive mutexes, so we must simulate
// them. Solaris is one such system.
// Mutex the thread holds the entire time this mutex is held. This
// is used to make condition variables work properly.
pthread_mutex_t mutex2;
// Condition variable used when waiting for this lock.
pthread_cond_t cond;
// Thread holding this mutex. If COUNT is 0, no thread is holding.
pthread_t thread;
#endif /* HAVE_RECURSIVE_MUTEX */
// Number of times mutex is held. If 0, the lock is not held. We
// do this even if we have a native recursive mutex so that we can
// keep track of whether the lock is held; this lets us do error
// checking. FIXME it would be nice to optimize this; on some
// systems we could do so by relying on implementation details of
// recursive mutexes.
int count;
} _Jv_Mutex_t;
#endif
typedef struct
{
// Flag values are defined in implementation.
int flags;
// Actual thread id.
pthread_t thread;
} _Jv_Thread_t;
typedef void _Jv_ThreadStartFunc (java::lang::Thread *);
// This convenience function is used to return the POSIX mutex
// corresponding to our mutex.
inline pthread_mutex_t *
_Jv_PthreadGetMutex (_Jv_Mutex_t *mu)
{
#if ! defined (PTHREAD_MUTEX_IS_STRUCT)
return mu;
#elif defined (HAVE_RECURSIVE_MUTEX)
return &mu->mutex;
#else
return &mu->mutex2;
#endif
}
#include <stdio.h>
// This is a convenience function used only by the pthreads thread
// implementation. This is slow, but that's too bad -- we need to do
// the checks for correctness. It might be nice to be able to compile
// this out.
inline int
_Jv_PthreadCheckMonitor (_Jv_Mutex_t *mu)
{
pthread_mutex_t *pmu = _Jv_PthreadGetMutex (mu);
// See if the mutex is locked by this thread.
if (pthread_mutex_trylock (pmu))
return 1;
#if defined (PTHREAD_MUTEX_HAVE_M_COUNT)
// On Linux we exploit knowledge of the implementation.
int r = pmu->m_count == 1;
#elif defined (PTHREAD_MUTEX_HAVE___M_COUNT)
// In glibc 2.1, the first time the mutex is grabbed __m_count is
// set to 0 and __m_owner is set to pthread_self().
int r = ! pmu->__m_count;
#else
int r = mu->count == 0;
#endif
pthread_mutex_unlock (pmu);
return r;
}
//
// Condition variables.
//
inline void
_Jv_CondInit (_Jv_ConditionVariable_t *cv)
{
pthread_cond_init (cv, 0);
}
#ifndef LINUX_THREADS
// pthread_cond_destroy does nothing on Linux and it is a win to avoid
// defining this macro.
#define _Jv_HaveCondDestroy
inline void
_Jv_CondDestroy (_Jv_ConditionVariable_t *cv)
{
pthread_cond_destroy (cv);
}
#endif /* LINUX_THREADS */
int _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
jlong millis, jint nanos);
inline int
_Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
{
return _Jv_PthreadCheckMonitor (mu) || pthread_cond_signal (cv);
}
inline int
_Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
{
return _Jv_PthreadCheckMonitor (mu) || pthread_cond_broadcast (cv);
}
//
// Mutexes.
//
#ifdef RECURSIVE_MUTEX_IS_DEFAULT
inline void
_Jv_MutexInit (_Jv_Mutex_t *mu)
{
pthread_mutex_init (_Jv_PthreadGetMutex (mu), NULL);
#ifdef PTHREAD_MUTEX_IS_STRUCT
mu->count = 0;
#endif
}
#else
void _Jv_MutexInit (_Jv_Mutex_t *mu);
#endif
#ifndef LINUX_THREADS
// pthread_mutex_destroy does nothing on Linux and it is a win to avoid
// defining this macro.
#define _Jv_HaveMutexDestroy
#ifdef HAVE_RECURSIVE_MUTEX
inline void
_Jv_MutexDestroy (_Jv_Mutex_t *mu)
{
pthread_mutex_destroy (_Jv_PthreadGetMutex (mu));
}
#else /* HAVE_RECURSIVE_MUTEX */
extern void _Jv_MutexDestroy (_Jv_Mutex_t *mu);
#endif /* HAVE_RECURSIVE_MUTEX */
#endif /* LINUX_THREADS */
#ifdef HAVE_RECURSIVE_MUTEX
inline int
_Jv_MutexLock (_Jv_Mutex_t *mu)
{
int r = pthread_mutex_lock (_Jv_PthreadGetMutex (mu));
#ifdef PTHREAD_MUTEX_IS_STRUCT
if (! r)
++mu->count;
#endif
return r;
}
inline int
_Jv_MutexUnlock (_Jv_Mutex_t *mu)
{
int r = pthread_mutex_unlock (_Jv_PthreadGetMutex (mu));
#ifdef PTHREAD_MUTEX_IS_STRUCT
if (! r)
--mu->count;
#endif
return r;
}
#else /* HAVE_RECURSIVE_MUTEX */
extern int _Jv_MutexLock (_Jv_Mutex_t *mu);
extern int _Jv_MutexUnlock (_Jv_Mutex_t *mu);
#endif /* HAVE_RECURSIVE_MUTEX */
//
// Thread creation and manipulation.
//
void _Jv_InitThreads (void);
void _Jv_ThreadInitData (_Jv_Thread_t **data, java::lang::Thread *thread);
inline java::lang::Thread *
_Jv_ThreadCurrent (void)
{
extern pthread_key_t _Jv_ThreadKey;
return (java::lang::Thread *) pthread_getspecific (_Jv_ThreadKey);
}
inline _Jv_Thread_t *
_Jv_ThreadCurrentData (void)
{
extern pthread_key_t _Jv_ThreadDataKey;
return (_Jv_Thread_t *) pthread_getspecific (_Jv_ThreadDataKey);
}
inline void
_Jv_ThreadYield (void)
{
#ifdef HAVE_SCHED_YIELD
sched_yield ();
#endif /* HAVE_SCHED_YIELD */
}
void _Jv_ThreadSetPriority (_Jv_Thread_t *data, jint prio);
void _Jv_ThreadStart (java::lang::Thread *thread, _Jv_Thread_t *data,
_Jv_ThreadStartFunc *meth);
void _Jv_ThreadWait (void);
void _Jv_ThreadInterrupt (_Jv_Thread_t *data);
#endif /* __JV_POSIX_THREADS__ */