gcc/libstdc++-v3/include/bits/stl_algo.h
Paolo Carlini 1638f5c9d0 re PR libstdc++/11480 (std::unique calls predicate too many times)
2003-10-14  Paolo Carlini  <pcarlini@unitus.it>

	PR libstdc++/11480
	* include/bits/stl_algo.h (unique): Fix.
	* testsuite/25_algorithms/unique.cc: Move to unique/1.cc.
	* testsuite/25_algorithms/unique/11480.cc: New, from the PR.
	* testsuite/25_algorithms/unique/2.cc: New.

From-SVN: r72478
2003-10-14 17:15:27 +00:00

4708 lines
165 KiB
C++

// Algorithm implementation -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_algo.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _ALGO_H
#define _ALGO_H 1
#include <bits/stl_heap.h>
#include <bits/stl_tempbuf.h> // for _Temporary_buffer
// See concept_check.h for the __glibcxx_*_requires macros.
namespace std
{
/**
* @brief Find the median of three values.
* @param a A value.
* @param b A value.
* @param c A value.
* @return One of @p a, @p b or @p c.
*
* If @c {l,m,n} is some convolution of @p {a,b,c} such that @c l<=m<=n
* then the value returned will be @c m.
* This is an SGI extension.
* @ingroup SGIextensions
*/
template<typename _Tp>
inline const _Tp&
__median(const _Tp& __a, const _Tp& __b, const _Tp& __c)
{
// concept requirements
__glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
if (__a < __b)
if (__b < __c)
return __b;
else if (__a < __c)
return __c;
else
return __a;
else if (__a < __c)
return __a;
else if (__b < __c)
return __c;
else
return __b;
}
/**
* @brief Find the median of three values using a predicate for comparison.
* @param a A value.
* @param b A value.
* @param c A value.
* @param comp A binary predicate.
* @return One of @p a, @p b or @p c.
*
* If @c {l,m,n} is some convolution of @p {a,b,c} such that @p comp(l,m)
* and @p comp(m,n) are both true then the value returned will be @c m.
* This is an SGI extension.
* @ingroup SGIextensions
*/
template<typename _Tp, typename _Compare>
inline const _Tp&
__median(const _Tp& __a, const _Tp& __b, const _Tp& __c, _Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_BinaryFunctionConcept<_Compare,bool,_Tp,_Tp>)
if (__comp(__a, __b))
if (__comp(__b, __c))
return __b;
else if (__comp(__a, __c))
return __c;
else
return __a;
else if (__comp(__a, __c))
return __a;
else if (__comp(__b, __c))
return __c;
else
return __b;
}
/**
* @brief Apply a function to every element of a sequence.
* @param first An input iterator.
* @param last An input iterator.
* @param f A unary function object.
* @return @p f.
*
* Applies the function object @p f to each element in the range
* @p [first,last). @p f must not modify the order of the sequence.
* If @p f has a return value it is ignored.
*/
template<typename _InputIterator, typename _Function>
_Function
for_each(_InputIterator __first, _InputIterator __last, _Function __f)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
for ( ; __first != __last; ++__first)
__f(*__first);
return __f;
}
/**
* @if maint
* This is an overload used by find() for the Input Iterator case.
* @endif
*/
template<typename _InputIterator, typename _Tp>
inline _InputIterator
find(_InputIterator __first, _InputIterator __last,
const _Tp& __val,
input_iterator_tag)
{
while (__first != __last && !(*__first == __val))
++__first;
return __first;
}
/**
* @if maint
* This is an overload used by find_if() for the Input Iterator case.
* @endif
*/
template<typename _InputIterator, typename _Predicate>
inline _InputIterator
find_if(_InputIterator __first, _InputIterator __last,
_Predicate __pred,
input_iterator_tag)
{
while (__first != __last && !__pred(*__first))
++__first;
return __first;
}
/**
* @if maint
* This is an overload used by find() for the RAI case.
* @endif
*/
template<typename _RandomAccessIterator, typename _Tp>
_RandomAccessIterator
find(_RandomAccessIterator __first, _RandomAccessIterator __last,
const _Tp& __val,
random_access_iterator_tag)
{
typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count
= (__last - __first) >> 2;
for ( ; __trip_count > 0 ; --__trip_count) {
if (*__first == __val) return __first;
++__first;
if (*__first == __val) return __first;
++__first;
if (*__first == __val) return __first;
++__first;
if (*__first == __val) return __first;
++__first;
}
switch(__last - __first) {
case 3:
if (*__first == __val) return __first;
++__first;
case 2:
if (*__first == __val) return __first;
++__first;
case 1:
if (*__first == __val) return __first;
++__first;
case 0:
default:
return __last;
}
}
/**
* @if maint
* This is an overload used by find_if() for the RAI case.
* @endif
*/
template<typename _RandomAccessIterator, typename _Predicate>
_RandomAccessIterator
find_if(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Predicate __pred,
random_access_iterator_tag)
{
typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count
= (__last - __first) >> 2;
for ( ; __trip_count > 0 ; --__trip_count) {
if (__pred(*__first)) return __first;
++__first;
if (__pred(*__first)) return __first;
++__first;
if (__pred(*__first)) return __first;
++__first;
if (__pred(*__first)) return __first;
++__first;
}
switch(__last - __first) {
case 3:
if (__pred(*__first)) return __first;
++__first;
case 2:
if (__pred(*__first)) return __first;
++__first;
case 1:
if (__pred(*__first)) return __first;
++__first;
case 0:
default:
return __last;
}
}
/**
* @brief Find the first occurrence of a value in a sequence.
* @param first An input iterator.
* @param last An input iterator.
* @param val The value to find.
* @return The first iterator @c i in the range @p [first,last)
* such that @c *i == @p val, or @p last if no such iterator exists.
*/
template<typename _InputIterator, typename _Tp>
inline _InputIterator
find(_InputIterator __first, _InputIterator __last,
const _Tp& __val)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_InputIterator>::value_type, _Tp>)
return std::find(__first, __last, __val, std::__iterator_category(__first));
}
/**
* @brief Find the first element in a sequence for which a predicate is true.
* @param first An input iterator.
* @param last An input iterator.
* @param pred A predicate.
* @return The first iterator @c i in the range @p [first,last)
* such that @p pred(*i) is true, or @p last if no such iterator exists.
*/
template<typename _InputIterator, typename _Predicate>
inline _InputIterator
find_if(_InputIterator __first, _InputIterator __last,
_Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_InputIterator>::value_type>)
return std::find_if(__first, __last, __pred, std::__iterator_category(__first));
}
/**
* @brief Find two adjacent values in a sequence that are equal.
* @param first A forward iterator.
* @param last A forward iterator.
* @return The first iterator @c i such that @c i and @c i+1 are both
* valid iterators in @p [first,last) and such that @c *i == @c *(i+1),
* or @p last if no such iterator exists.
*/
template<typename _ForwardIterator>
_ForwardIterator
adjacent_find(_ForwardIterator __first, _ForwardIterator __last)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_EqualityComparableConcept<
typename iterator_traits<_ForwardIterator>::value_type>)
if (__first == __last)
return __last;
_ForwardIterator __next = __first;
while(++__next != __last) {
if (*__first == *__next)
return __first;
__first = __next;
}
return __last;
}
/**
* @brief Find two adjacent values in a sequence using a predicate.
* @param first A forward iterator.
* @param last A forward iterator.
* @param binary_pred A binary predicate.
* @return The first iterator @c i such that @c i and @c i+1 are both
* valid iterators in @p [first,last) and such that
* @p binary_pred(*i,*(i+1)) is true, or @p last if no such iterator
* exists.
*/
template<typename _ForwardIterator, typename _BinaryPredicate>
_ForwardIterator
adjacent_find(_ForwardIterator __first, _ForwardIterator __last,
_BinaryPredicate __binary_pred)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator>::value_type,
typename iterator_traits<_ForwardIterator>::value_type>)
if (__first == __last)
return __last;
_ForwardIterator __next = __first;
while(++__next != __last) {
if (__binary_pred(*__first, *__next))
return __first;
__first = __next;
}
return __last;
}
/**
* @brief Count the number of copies of a value in a sequence.
* @param first An input iterator.
* @param last An input iterator.
* @param value The value to be counted.
* @return The number of iterators @c i in the range @p [first,last)
* for which @c *i == @p value
*/
template<typename _InputIterator, typename _Tp>
typename iterator_traits<_InputIterator>::difference_type
count(_InputIterator __first, _InputIterator __last, const _Tp& __value)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_EqualityComparableConcept<
typename iterator_traits<_InputIterator>::value_type >)
__glibcxx_function_requires(_EqualityComparableConcept<_Tp>)
typename iterator_traits<_InputIterator>::difference_type __n = 0;
for ( ; __first != __last; ++__first)
if (*__first == __value)
++__n;
return __n;
}
/**
* @brief Count the elements of a sequence for which a predicate is true.
* @param first An input iterator.
* @param last An input iterator.
* @param pred A predicate.
* @return The number of iterators @c i in the range @p [first,last)
* for which @p pred(*i) is true.
*/
template<typename _InputIterator, typename _Predicate>
typename iterator_traits<_InputIterator>::difference_type
count_if(_InputIterator __first, _InputIterator __last, _Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_InputIterator>::value_type>)
typename iterator_traits<_InputIterator>::difference_type __n = 0;
for ( ; __first != __last; ++__first)
if (__pred(*__first))
++__n;
return __n;
}
/**
* @brief Search a sequence for a matching sub-sequence.
* @param first1 A forward iterator.
* @param last1 A forward iterator.
* @param first2 A forward iterator.
* @param last2 A forward iterator.
* @return The first iterator @c i in the range
* @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N)
* for each @c N in the range @p [0,last2-first2), or @p last1 if no
* such iterator exists.
*
* Searches the range @p [first1,last1) for a sub-sequence that compares
* equal value-by-value with the sequence given by @p [first2,last2) and
* returns an iterator to the first element of the sub-sequence, or
* @p last1 if the sub-sequence is not found.
*
* Because the sub-sequence must lie completely within the range
* @p [first1,last1) it must start at a position less than
* @p last1-(last2-first2) where @p last2-first2 is the length of the
* sub-sequence.
* This means that the returned iterator @c i will be in the range
* @p [first1,last1-(last2-first2))
*/
template<typename _ForwardIterator1, typename _ForwardIterator2>
_ForwardIterator1
search(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_ForwardIterator1>::value_type,
typename iterator_traits<_ForwardIterator2>::value_type>)
// Test for empty ranges
if (__first1 == __last1 || __first2 == __last2)
return __first1;
// Test for a pattern of length 1.
_ForwardIterator2 __tmp(__first2);
++__tmp;
if (__tmp == __last2)
return std::find(__first1, __last1, *__first2);
// General case.
_ForwardIterator2 __p1, __p;
__p1 = __first2; ++__p1;
_ForwardIterator1 __current = __first1;
while (__first1 != __last1) {
__first1 = std::find(__first1, __last1, *__first2);
if (__first1 == __last1)
return __last1;
__p = __p1;
__current = __first1;
if (++__current == __last1)
return __last1;
while (*__current == *__p) {
if (++__p == __last2)
return __first1;
if (++__current == __last1)
return __last1;
}
++__first1;
}
return __first1;
}
/**
* @brief Search a sequence for a matching sub-sequence using a predicate.
* @param first1 A forward iterator.
* @param last1 A forward iterator.
* @param first2 A forward iterator.
* @param last2 A forward iterator.
* @param predicate A binary predicate.
* @return The first iterator @c i in the range
* @p [first1,last1-(last2-first2)) such that
* @p predicate(*(i+N),*(first2+N)) is true for each @c N in the range
* @p [0,last2-first2), or @p last1 if no such iterator exists.
*
* Searches the range @p [first1,last1) for a sub-sequence that compares
* equal value-by-value with the sequence given by @p [first2,last2),
* using @p predicate to determine equality, and returns an iterator
* to the first element of the sub-sequence, or @p last1 if no such
* iterator exists.
*
* @see search(_ForwardIter1, _ForwardIter1, _ForwardIter2, _ForwardIter2)
*/
template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate>
_ForwardIterator1
search(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2,
_BinaryPredicate __predicate)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator1>::value_type,
typename iterator_traits<_ForwardIterator2>::value_type>)
// Test for empty ranges
if (__first1 == __last1 || __first2 == __last2)
return __first1;
// Test for a pattern of length 1.
_ForwardIterator2 __tmp(__first2);
++__tmp;
if (__tmp == __last2) {
while (__first1 != __last1 && !__predicate(*__first1, *__first2))
++__first1;
return __first1;
}
// General case.
_ForwardIterator2 __p1, __p;
__p1 = __first2; ++__p1;
_ForwardIterator1 __current = __first1;
while (__first1 != __last1) {
while (__first1 != __last1) {
if (__predicate(*__first1, *__first2))
break;
++__first1;
}
while (__first1 != __last1 && !__predicate(*__first1, *__first2))
++__first1;
if (__first1 == __last1)
return __last1;
__p = __p1;
__current = __first1;
if (++__current == __last1) return __last1;
while (__predicate(*__current, *__p)) {
if (++__p == __last2)
return __first1;
if (++__current == __last1)
return __last1;
}
++__first1;
}
return __first1;
}
/**
* @brief Search a sequence for a number of consecutive values.
* @param first A forward iterator.
* @param last A forward iterator.
* @param count The number of consecutive values.
* @param val The value to find.
* @return The first iterator @c i in the range @p [first,last-count)
* such that @c *(i+N) == @p val for each @c N in the range @p [0,count),
* or @p last if no such iterator exists.
*
* Searches the range @p [first,last) for @p count consecutive elements
* equal to @p val.
*/
template<typename _ForwardIterator, typename _Integer, typename _Tp>
_ForwardIterator
search_n(_ForwardIterator __first, _ForwardIterator __last,
_Integer __count, const _Tp& __val)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_EqualityComparableConcept<
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_function_requires(_EqualityComparableConcept<_Tp>)
if (__count <= 0)
return __first;
else {
__first = std::find(__first, __last, __val);
while (__first != __last) {
typename iterator_traits<_ForwardIterator>::difference_type __n = __count;
_ForwardIterator __i = __first;
++__i;
while (__i != __last && __n != 1 && *__i == __val) {
++__i;
--__n;
}
if (__n == 1)
return __first;
else
__first = std::find(__i, __last, __val);
}
return __last;
}
}
/**
* @brief Search a sequence for a number of consecutive values using a
* predicate.
* @param first A forward iterator.
* @param last A forward iterator.
* @param count The number of consecutive values.
* @param val The value to find.
* @param binary_pred A binary predicate.
* @return The first iterator @c i in the range @p [first,last-count)
* such that @p binary_pred(*(i+N),val) is true for each @c N in the
* range @p [0,count), or @p last if no such iterator exists.
*
* Searches the range @p [first,last) for @p count consecutive elements
* for which the predicate returns true.
*/
template<typename _ForwardIterator, typename _Integer, typename _Tp,
typename _BinaryPredicate>
_ForwardIterator
search_n(_ForwardIterator __first, _ForwardIterator __last,
_Integer __count, const _Tp& __val,
_BinaryPredicate __binary_pred)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
if (__count <= 0)
return __first;
else {
while (__first != __last) {
if (__binary_pred(*__first, __val))
break;
++__first;
}
while (__first != __last) {
typename iterator_traits<_ForwardIterator>::difference_type __n = __count;
_ForwardIterator __i = __first;
++__i;
while (__i != __last && __n != 1 && __binary_pred(*__i, __val)) {
++__i;
--__n;
}
if (__n == 1)
return __first;
else {
while (__i != __last) {
if (__binary_pred(*__i, __val))
break;
++__i;
}
__first = __i;
}
}
return __last;
}
}
/**
* @brief Swap the elements of two sequences.
* @param first1 A forward iterator.
* @param last1 A forward iterator.
* @param first2 A forward iterator.
* @return An iterator equal to @p first2+(last1-first1).
*
* Swaps each element in the range @p [first1,last1) with the
* corresponding element in the range @p [first2,(last1-first1)).
* The ranges must not overlap.
*/
template<typename _ForwardIterator1, typename _ForwardIterator2>
_ForwardIterator2
swap_ranges(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator1>)
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator2>)
__glibcxx_function_requires(_ConvertibleConcept<
typename iterator_traits<_ForwardIterator1>::value_type,
typename iterator_traits<_ForwardIterator2>::value_type>)
__glibcxx_function_requires(_ConvertibleConcept<
typename iterator_traits<_ForwardIterator2>::value_type,
typename iterator_traits<_ForwardIterator1>::value_type>)
for ( ; __first1 != __last1; ++__first1, ++__first2)
std::iter_swap(__first1, __first2);
return __first2;
}
/**
* @brief Perform an operation on a sequence.
* @param first An input iterator.
* @param last An input iterator.
* @param result An output iterator.
* @param unary_op A unary operator.
* @return An output iterator equal to @p result+(last-first).
*
* Applies the operator to each element in the input range and assigns
* the results to successive elements of the output sequence.
* Evaluates @p *(result+N)=unary_op(*(first+N)) for each @c N in the
* range @p [0,last-first).
*
* @p unary_op must not alter its argument.
*/
template<typename _InputIterator, typename _OutputIterator, typename _UnaryOperation>
_OutputIterator
transform(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _UnaryOperation __unary_op)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
// "the type returned by a _UnaryOperation"
__typeof__(__unary_op(*__first))>)
for ( ; __first != __last; ++__first, ++__result)
*__result = __unary_op(*__first);
return __result;
}
/**
* @brief Perform an operation on corresponding elements of two sequences.
* @param first1 An input iterator.
* @param last1 An input iterator.
* @param first2 An input iterator.
* @param result An output iterator.
* @param binary_op A binary operator.
* @return An output iterator equal to @p result+(last-first).
*
* Applies the operator to the corresponding elements in the two
* input ranges and assigns the results to successive elements of the
* output sequence.
* Evaluates @p *(result+N)=binary_op(*(first1+N),*(first2+N)) for each
* @c N in the range @p [0,last1-first1).
*
* @p binary_op must not alter either of its arguments.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator,
typename _BinaryOperation>
_OutputIterator
transform(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _OutputIterator __result,
_BinaryOperation __binary_op)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
// "the type returned by a _BinaryOperation"
__typeof__(__binary_op(*__first1,*__first2))>)
for ( ; __first1 != __last1; ++__first1, ++__first2, ++__result)
*__result = __binary_op(*__first1, *__first2);
return __result;
}
/**
* @brief Replace each occurrence of one value in a sequence with another
* value.
* @param first A forward iterator.
* @param last A forward iterator.
* @param old_value The value to be replaced.
* @param new_value The replacement value.
* @return replace() returns no value.
*
* For each iterator @c i in the range @p [first,last) if @c *i ==
* @p old_value then the assignment @c *i = @p new_value is performed.
*/
template<typename _ForwardIterator, typename _Tp>
void
replace(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __old_value, const _Tp& __new_value)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
__glibcxx_function_requires(_ConvertibleConcept<_Tp,
typename iterator_traits<_ForwardIterator>::value_type>)
for ( ; __first != __last; ++__first)
if (*__first == __old_value)
*__first = __new_value;
}
/**
* @brief Replace each value in a sequence for which a predicate returns
* true with another value.
* @param first A forward iterator.
* @param last A forward iterator.
* @param pred A predicate.
* @param new_value The replacement value.
* @return replace_if() returns no value.
*
* For each iterator @c i in the range @p [first,last) if @p pred(*i)
* is true then the assignment @c *i = @p new_value is performed.
*/
template<typename _ForwardIterator, typename _Predicate, typename _Tp>
void
replace_if(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred, const _Tp& __new_value)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_ConvertibleConcept<_Tp,
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_ForwardIterator>::value_type>)
for ( ; __first != __last; ++__first)
if (__pred(*__first))
*__first = __new_value;
}
/**
* @brief Copy a sequence, replacing each element of one value with another
* value.
* @param first An input iterator.
* @param last An input iterator.
* @param result An output iterator.
* @param old_value The value to be replaced.
* @param new_value The replacement value.
* @return The end of the output sequence, @p result+(last-first).
*
* Copies each element in the input range @p [first,last) to the
* output range @p [result,result+(last-first)) replacing elements
* equal to @p old_value with @p new_value.
*/
template<typename _InputIterator, typename _OutputIterator, typename _Tp>
_OutputIterator
replace_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result,
const _Tp& __old_value, const _Tp& __new_value)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_InputIterator>::value_type, _Tp>)
for ( ; __first != __last; ++__first, ++__result)
*__result = *__first == __old_value ? __new_value : *__first;
return __result;
}
/**
* @brief Copy a sequence, replacing each value for which a predicate
* returns true with another value.
* @param first An input iterator.
* @param last An input iterator.
* @param result An output iterator.
* @param pred A predicate.
* @param new_value The replacement value.
* @return The end of the output sequence, @p result+(last-first).
*
* Copies each element in the range @p [first,last) to the range
* @p [result,result+(last-first)) replacing elements for which
* @p pred returns true with @p new_value.
*/
template<typename _InputIterator, typename _OutputIterator, typename _Predicate,
typename _Tp>
_OutputIterator
replace_copy_if(_InputIterator __first, _InputIterator __last,
_OutputIterator __result,
_Predicate __pred, const _Tp& __new_value)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_InputIterator>::value_type>)
for ( ; __first != __last; ++__first, ++__result)
*__result = __pred(*__first) ? __new_value : *__first;
return __result;
}
/**
* @brief Assign the result of a function object to each value in a
* sequence.
* @param first A forward iterator.
* @param last A forward iterator.
* @param gen A function object taking no arguments.
* @return generate() returns no value.
*
* Performs the assignment @c *i = @p gen() for each @c i in the range
* @p [first,last).
*/
template<typename _ForwardIterator, typename _Generator>
void
generate(_ForwardIterator __first, _ForwardIterator __last, _Generator __gen)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_GeneratorConcept<_Generator,
typename iterator_traits<_ForwardIterator>::value_type>)
for ( ; __first != __last; ++__first)
*__first = __gen();
}
/**
* @brief Assign the result of a function object to each value in a
* sequence.
* @param first A forward iterator.
* @param n The length of the sequence.
* @param gen A function object taking no arguments.
* @return The end of the sequence, @p first+n
*
* Performs the assignment @c *i = @p gen() for each @c i in the range
* @p [first,first+n).
*/
template<typename _OutputIterator, typename _Size, typename _Generator>
_OutputIterator
generate_n(_OutputIterator __first, _Size __n, _Generator __gen)
{
// concept requirements
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
// "the type returned by a _Generator"
__typeof__(__gen())>)
for ( ; __n > 0; --__n, ++__first)
*__first = __gen();
return __first;
}
/**
* @brief Copy a sequence, removing elements of a given value.
* @param first An input iterator.
* @param last An input iterator.
* @param result An output iterator.
* @param value The value to be removed.
* @return An iterator designating the end of the resulting sequence.
*
* Copies each element in the range @p [first,last) not equal to @p value
* to the range beginning at @p result.
* remove_copy() is stable, so the relative order of elements that are
* copied is unchanged.
*/
template<typename _InputIterator, typename _OutputIterator, typename _Tp>
_OutputIterator
remove_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, const _Tp& __value)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_InputIterator>::value_type, _Tp>)
for ( ; __first != __last; ++__first)
if (!(*__first == __value)) {
*__result = *__first;
++__result;
}
return __result;
}
/**
* @brief Copy a sequence, removing elements for which a predicate is true.
* @param first An input iterator.
* @param last An input iterator.
* @param result An output iterator.
* @param pred A predicate.
* @return An iterator designating the end of the resulting sequence.
*
* Copies each element in the range @p [first,last) for which
* @p pred returns true to the range beginning at @p result.
*
* remove_copy_if() is stable, so the relative order of elements that are
* copied is unchanged.
*/
template<typename _InputIterator, typename _OutputIterator, typename _Predicate>
_OutputIterator
remove_copy_if(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_InputIterator>::value_type>)
for ( ; __first != __last; ++__first)
if (!__pred(*__first)) {
*__result = *__first;
++__result;
}
return __result;
}
/**
* @brief Remove elements from a sequence.
* @param first An input iterator.
* @param last An input iterator.
* @param value The value to be removed.
* @return An iterator designating the end of the resulting sequence.
*
* All elements equal to @p value are removed from the range
* @p [first,last).
*
* remove() is stable, so the relative order of elements that are
* not removed is unchanged.
*
* Elements between the end of the resulting sequence and @p last
* are still present, but their value is unspecified.
*/
template<typename _ForwardIterator, typename _Tp>
_ForwardIterator
remove(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __value)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_ConvertibleConcept<_Tp,
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
__first = std::find(__first, __last, __value);
_ForwardIterator __i = __first;
return __first == __last ? __first
: std::remove_copy(++__i, __last, __first, __value);
}
/**
* @brief Remove elements from a sequence using a predicate.
* @param first A forward iterator.
* @param last A forward iterator.
* @param pred A predicate.
* @return An iterator designating the end of the resulting sequence.
*
* All elements for which @p pred returns true are removed from the range
* @p [first,last).
*
* remove_if() is stable, so the relative order of elements that are
* not removed is unchanged.
*
* Elements between the end of the resulting sequence and @p last
* are still present, but their value is unspecified.
*/
template<typename _ForwardIterator, typename _Predicate>
_ForwardIterator
remove_if(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_ForwardIterator>::value_type>)
__first = std::find_if(__first, __last, __pred);
_ForwardIterator __i = __first;
return __first == __last ? __first
: std::remove_copy_if(++__i, __last, __first, __pred);
}
/**
* @if maint
* This is an uglified unique_copy(_InputIterator, _InputIterator, _OutputIterator)
* overloaded for output iterators.
* @endif
*/
template<typename _InputIterator, typename _OutputIterator>
_OutputIterator
__unique_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result,
output_iterator_tag)
{
// concept requirements -- taken care of in dispatching function
typename iterator_traits<_InputIterator>::value_type __value = *__first;
*__result = __value;
while (++__first != __last)
if (!(__value == *__first)) {
__value = *__first;
*++__result = __value;
}
return ++__result;
}
/**
* @if maint
* This is an uglified unique_copy(_InputIterator, _InputIterator, _OutputIterator)
* overloaded for forward iterators.
* @endif
*/
template<typename _InputIterator, typename _ForwardIterator>
_ForwardIterator
__unique_copy(_InputIterator __first, _InputIterator __last,
_ForwardIterator __result,
forward_iterator_tag)
{
// concept requirements -- taken care of in dispatching function
*__result = *__first;
while (++__first != __last)
if (!(*__result == *__first))
*++__result = *__first;
return ++__result;
}
/**
* @if maint
* This is an uglified
* unique_copy(_InputIterator, _InputIterator, _OutputIterator, _BinaryPredicate)
* overloaded for output iterators.
* @endif
*/
template<typename _InputIterator, typename _OutputIterator, typename _BinaryPredicate>
_OutputIterator
__unique_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result,
_BinaryPredicate __binary_pred,
output_iterator_tag)
{
// concept requirements -- iterators already checked
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_InputIterator>::value_type,
typename iterator_traits<_InputIterator>::value_type>)
typename iterator_traits<_InputIterator>::value_type __value = *__first;
*__result = __value;
while (++__first != __last)
if (!__binary_pred(__value, *__first)) {
__value = *__first;
*++__result = __value;
}
return ++__result;
}
/**
* @if maint
* This is an uglified
* unique_copy(_InputIterator, _InputIterator, _OutputIterator, _BinaryPredicate)
* overloaded for forward iterators.
* @endif
*/
template<typename _InputIterator, typename _ForwardIterator, typename _BinaryPredicate>
_ForwardIterator
__unique_copy(_InputIterator __first, _InputIterator __last,
_ForwardIterator __result,
_BinaryPredicate __binary_pred,
forward_iterator_tag)
{
// concept requirements -- iterators already checked
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator>::value_type,
typename iterator_traits<_InputIterator>::value_type>)
*__result = *__first;
while (++__first != __last)
if (!__binary_pred(*__result, *__first)) *++__result = *__first;
return ++__result;
}
/**
* @brief Copy a sequence, removing consecutive duplicate values.
* @param first An input iterator.
* @param last An input iterator.
* @param result An output iterator.
* @return An iterator designating the end of the resulting sequence.
*
* Copies each element in the range @p [first,last) to the range
* beginning at @p result, except that only the first element is copied
* from groups of consecutive elements that compare equal.
* unique_copy() is stable, so the relative order of elements that are
* copied is unchanged.
*/
template<typename _InputIterator, typename _OutputIterator>
inline _OutputIterator
unique_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_EqualityComparableConcept<
typename iterator_traits<_InputIterator>::value_type>)
typedef typename iterator_traits<_OutputIterator>::iterator_category _IterType;
if (__first == __last) return __result;
return std::__unique_copy(__first, __last, __result, _IterType());
}
/**
* @brief Copy a sequence, removing consecutive values using a predicate.
* @param first An input iterator.
* @param last An input iterator.
* @param result An output iterator.
* @param binary_pred A binary predicate.
* @return An iterator designating the end of the resulting sequence.
*
* Copies each element in the range @p [first,last) to the range
* beginning at @p result, except that only the first element is copied
* from groups of consecutive elements for which @p binary_pred returns
* true.
* unique_copy() is stable, so the relative order of elements that are
* copied is unchanged.
*/
template<typename _InputIterator, typename _OutputIterator, typename _BinaryPredicate>
inline _OutputIterator
unique_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result,
_BinaryPredicate __binary_pred)
{
// concept requirements -- predicates checked later
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
typedef typename iterator_traits<_OutputIterator>::iterator_category _IterType;
if (__first == __last) return __result;
return std::__unique_copy(__first, __last, __result, __binary_pred, _IterType());
}
/**
* @brief Remove consecutive duplicate values from a sequence.
* @param first A forward iterator.
* @param last A forward iterator.
* @return An iterator designating the end of the resulting sequence.
*
* Removes all but the first element from each group of consecutive
* values that compare equal.
* unique() is stable, so the relative order of elements that are
* not removed is unchanged.
* Elements between the end of the resulting sequence and @p last
* are still present, but their value is unspecified.
*/
template<typename _ForwardIterator>
_ForwardIterator
unique(_ForwardIterator __first, _ForwardIterator __last)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_EqualityComparableConcept<
typename iterator_traits<_ForwardIterator>::value_type>)
// Skip the beginning, if already unique.
__first = std::adjacent_find(__first, __last);
if (__first == __last)
return __last;
// Do the real copy work.
_ForwardIterator __dest = __first;
++__first;
while (++__first != __last)
if (!(*__dest == *__first))
*++__dest = *__first;
return ++__dest;
}
/**
* @brief Remove consecutive values from a sequence using a predicate.
* @param first A forward iterator.
* @param last A forward iterator.
* @param binary_pred A binary predicate.
* @return An iterator designating the end of the resulting sequence.
*
* Removes all but the first element from each group of consecutive
* values for which @p binary_pred returns true.
* unique() is stable, so the relative order of elements that are
* not removed is unchanged.
* Elements between the end of the resulting sequence and @p last
* are still present, but their value is unspecified.
*/
template<typename _ForwardIterator, typename _BinaryPredicate>
_ForwardIterator
unique(_ForwardIterator __first, _ForwardIterator __last,
_BinaryPredicate __binary_pred)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator>::value_type,
typename iterator_traits<_ForwardIterator>::value_type>)
// Skip the beginning, if already unique.
__first = std::adjacent_find(__first, __last, __binary_pred);
if (__first == __last)
return __last;
// Do the real copy work.
_ForwardIterator __dest = __first;
++__first;
while (++__first != __last)
if (!__binary_pred(*__dest, *__first))
*++__dest = *__first;
return ++__dest;
}
/**
* @if maint
* This is an uglified reverse(_BidirectionalIterator, _BidirectionalIterator)
* overloaded for bidirectional iterators.
* @endif
*/
template<typename _BidirectionalIterator>
void
__reverse(_BidirectionalIterator __first, _BidirectionalIterator __last,
bidirectional_iterator_tag)
{
while (true)
if (__first == __last || __first == --__last)
return;
else
std::iter_swap(__first++, __last);
}
/**
* @if maint
* This is an uglified reverse(_BidirectionalIterator, _BidirectionalIterator)
* overloaded for bidirectional iterators.
* @endif
*/
template<typename _RandomAccessIterator>
void
__reverse(_RandomAccessIterator __first, _RandomAccessIterator __last,
random_access_iterator_tag)
{
while (__first < __last)
std::iter_swap(__first++, --__last);
}
/**
* @brief Reverse a sequence.
* @param first A bidirectional iterator.
* @param last A bidirectional iterator.
* @return reverse() returns no value.
*
* Reverses the order of the elements in the range @p [first,last),
* so that the first element becomes the last etc.
* For every @c i such that @p 0<=i<=(last-first)/2), @p reverse()
* swaps @p *(first+i) and @p *(last-(i+1))
*/
template<typename _BidirectionalIterator>
inline void
reverse(_BidirectionalIterator __first, _BidirectionalIterator __last)
{
// concept requirements
__glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
_BidirectionalIterator>)
std::__reverse(__first, __last, std::__iterator_category(__first));
}
/**
* @brief Copy a sequence, reversing its elements.
* @param first A bidirectional iterator.
* @param last A bidirectional iterator.
* @param result An output iterator.
* @return An iterator designating the end of the resulting sequence.
*
* Copies the elements in the range @p [first,last) to the range
* @p [result,result+(last-first)) such that the order of the
* elements is reversed.
* For every @c i such that @p 0<=i<=(last-first), @p reverse_copy()
* performs the assignment @p *(result+(last-first)-i) = *(first+i).
* The ranges @p [first,last) and @p [result,result+(last-first))
* must not overlap.
*/
template<typename _BidirectionalIterator, typename _OutputIterator>
_OutputIterator
reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last,
_OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_BidirectionalIterator>::value_type>)
while (__first != __last) {
--__last;
*__result = *__last;
++__result;
}
return __result;
}
/**
* @if maint
* This is a helper function for the rotate algorithm specialized on RAIs.
* It returns the greatest common divisor of two integer values.
* @endif
*/
template<typename _EuclideanRingElement>
_EuclideanRingElement
__gcd(_EuclideanRingElement __m, _EuclideanRingElement __n)
{
while (__n != 0) {
_EuclideanRingElement __t = __m % __n;
__m = __n;
__n = __t;
}
return __m;
}
/**
* @if maint
* This is a helper function for the rotate algorithm.
* @endif
*/
template<typename _ForwardIterator>
void
__rotate(_ForwardIterator __first,
_ForwardIterator __middle,
_ForwardIterator __last,
forward_iterator_tag)
{
if ((__first == __middle) || (__last == __middle))
return;
_ForwardIterator __first2 = __middle;
do {
swap(*__first++, *__first2++);
if (__first == __middle)
__middle = __first2;
} while (__first2 != __last);
__first2 = __middle;
while (__first2 != __last) {
swap(*__first++, *__first2++);
if (__first == __middle)
__middle = __first2;
else if (__first2 == __last)
__first2 = __middle;
}
}
/**
* @if maint
* This is a helper function for the rotate algorithm.
* @endif
*/
template<typename _BidirectionalIterator>
void
__rotate(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
bidirectional_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
_BidirectionalIterator>)
if ((__first == __middle) || (__last == __middle))
return;
std::__reverse(__first, __middle, bidirectional_iterator_tag());
std::__reverse(__middle, __last, bidirectional_iterator_tag());
while (__first != __middle && __middle != __last)
swap(*__first++, *--__last);
if (__first == __middle) {
std::__reverse(__middle, __last, bidirectional_iterator_tag());
}
else {
std::__reverse(__first, __middle, bidirectional_iterator_tag());
}
}
/**
* @if maint
* This is a helper function for the rotate algorithm.
* @endif
*/
template<typename _RandomAccessIterator>
void
__rotate(_RandomAccessIterator __first,
_RandomAccessIterator __middle,
_RandomAccessIterator __last,
random_access_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
if ((__first == __middle) || (__last == __middle))
return;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance;
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
_Distance __n = __last - __first;
_Distance __k = __middle - __first;
_Distance __l = __n - __k;
if (__k == __l) {
std::swap_ranges(__first, __middle, __middle);
return;
}
_Distance __d = __gcd(__n, __k);
for (_Distance __i = 0; __i < __d; __i++) {
_ValueType __tmp = *__first;
_RandomAccessIterator __p = __first;
if (__k < __l) {
for (_Distance __j = 0; __j < __l/__d; __j++) {
if (__p > __first + __l) {
*__p = *(__p - __l);
__p -= __l;
}
*__p = *(__p + __k);
__p += __k;
}
}
else {
for (_Distance __j = 0; __j < __k/__d - 1; __j ++) {
if (__p < __last - __k) {
*__p = *(__p + __k);
__p += __k;
}
*__p = * (__p - __l);
__p -= __l;
}
}
*__p = __tmp;
++__first;
}
}
/**
* @brief Rotate the elements of a sequence.
* @param first A forward iterator.
* @param middle A forward iterator.
* @param last A forward iterator.
* @return Nothing.
*
* Rotates the elements of the range @p [first,last) by @p (middle-first)
* positions so that the element at @p middle is moved to @p first, the
* element at @p middle+1 is moved to @first+1 and so on for each element
* in the range @p [first,last).
*
* This effectively swaps the ranges @p [first,middle) and
* @p [middle,last).
*
* Performs @p *(first+(n+(last-middle))%(last-first))=*(first+n) for
* each @p n in the range @p [0,last-first).
*/
template<typename _ForwardIterator>
inline void
rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
typedef typename iterator_traits<_ForwardIterator>::iterator_category _IterType;
std::__rotate(__first, __middle, __last, _IterType());
}
/**
* @brief Copy a sequence, rotating its elements.
* @param first A forward iterator.
* @param middle A forward iterator.
* @param last A forward iterator.
* @param result An output iterator.
* @return An iterator designating the end of the resulting sequence.
*
* Copies the elements of the range @p [first,last) to the range
* beginning at @result, rotating the copied elements by @p (middle-first)
* positions so that the element at @p middle is moved to @p result, the
* element at @p middle+1 is moved to @result+1 and so on for each element
* in the range @p [first,last).
*
* Performs @p *(result+(n+(last-middle))%(last-first))=*(first+n) for
* each @p n in the range @p [0,last-first).
*/
template<typename _ForwardIterator, typename _OutputIterator>
_OutputIterator
rotate_copy(_ForwardIterator __first, _ForwardIterator __middle,
_ForwardIterator __last, _OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_ForwardIterator>::value_type>)
return std::copy(__first, __middle, copy(__middle, __last, __result));
}
/**
* @if maint
* Return a random number in the range [0, __n). This function encapsulates
* whether we're using rand (part of the standard C library) or lrand48
* (not standard, but a much better choice whenever it's available).
*
* XXX There is no corresponding encapsulation fn to seed the generator.
* @endif
*/
template<typename _Distance>
inline _Distance
__random_number(_Distance __n)
{
#ifdef _GLIBCXX_HAVE_LRAND48
return lrand48() % __n;
#else
return rand() % __n;
#endif
}
/**
* @brief Randomly shuffle the elements of a sequence.
* @param first A forward iterator.
* @param last A forward iterator.
* @return Nothing.
*
* Reorder the elements in the range @p [first,last) using a random
* distribution, so that every possible ordering of the sequence is
* equally likely.
*/
template<typename _RandomAccessIterator>
inline void
random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
if (__first == __last) return;
for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
std::iter_swap(__i, __first + std::__random_number((__i - __first) + 1));
}
/**
* @brief Shuffle the elements of a sequence using a random number
* generator.
* @param first A forward iterator.
* @param last A forward iterator.
* @param rand The RNG functor or function.
* @return Nothing.
*
* Reorders the elements in the range @p [first,last) using @p rand to
* provide a random distribution. Calling @p rand(N) for a positive
* integer @p N should return a randomly chosen integer from the
* range [0,N).
*/
template<typename _RandomAccessIterator, typename _RandomNumberGenerator>
void
random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last,
_RandomNumberGenerator& __rand)
{
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
if (__first == __last) return;
for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
std::iter_swap(__i, __first + __rand((__i - __first) + 1));
}
/**
* @if maint
* This is a helper function...
* @endif
*/
template<typename _ForwardIterator, typename _Predicate>
_ForwardIterator
__partition(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred,
forward_iterator_tag)
{
if (__first == __last) return __first;
while (__pred(*__first))
if (++__first == __last) return __first;
_ForwardIterator __next = __first;
while (++__next != __last)
if (__pred(*__next)) {
swap(*__first, *__next);
++__first;
}
return __first;
}
/**
* @if maint
* This is a helper function...
* @endif
*/
template<typename _BidirectionalIterator, typename _Predicate>
_BidirectionalIterator
__partition(_BidirectionalIterator __first, _BidirectionalIterator __last,
_Predicate __pred,
bidirectional_iterator_tag)
{
while (true) {
while (true)
if (__first == __last)
return __first;
else if (__pred(*__first))
++__first;
else
break;
--__last;
while (true)
if (__first == __last)
return __first;
else if (!__pred(*__last))
--__last;
else
break;
std::iter_swap(__first, __last);
++__first;
}
}
/**
* @brief Move elements for which a predicate is true to the beginning
* of a sequence.
* @param first A forward iterator.
* @param last A forward iterator.
* @param pred A predicate functor.
* @return An iterator @p middle such that @p pred(i) is true for each
* iterator @p i in the range @p [first,middle) and false for each @p i
* in the range @p [middle,last).
*
* @p pred must not modify its operand. @p partition() does not preserve
* the relative ordering of elements in each group, use
* @p stable_partition() if this is needed.
*/
template<typename _ForwardIterator, typename _Predicate>
inline _ForwardIterator
partition(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_ForwardIterator>::value_type>)
return std::__partition(__first, __last, __pred, std::__iterator_category(__first));
}
/**
* @if maint
* This is a helper function...
* @endif
*/
template<typename _ForwardIterator, typename _Predicate, typename _Distance>
_ForwardIterator
__inplace_stable_partition(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred, _Distance __len)
{
if (__len == 1)
return __pred(*__first) ? __last : __first;
_ForwardIterator __middle = __first;
std::advance(__middle, __len / 2);
_ForwardIterator __begin = std::__inplace_stable_partition(__first, __middle,
__pred,
__len / 2);
_ForwardIterator __end = std::__inplace_stable_partition(__middle, __last,
__pred,
__len - __len / 2);
std::rotate(__begin, __middle, __end);
std::advance(__begin, std::distance(__middle, __end));
return __begin;
}
/**
* @if maint
* This is a helper function...
* @endif
*/
template<typename _ForwardIterator, typename _Pointer, typename _Predicate,
typename _Distance>
_ForwardIterator
__stable_partition_adaptive(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred, _Distance __len,
_Pointer __buffer,
_Distance __buffer_size)
{
if (__len <= __buffer_size) {
_ForwardIterator __result1 = __first;
_Pointer __result2 = __buffer;
for ( ; __first != __last ; ++__first)
if (__pred(*__first)) {
*__result1 = *__first;
++__result1;
}
else {
*__result2 = *__first;
++__result2;
}
std::copy(__buffer, __result2, __result1);
return __result1;
}
else {
_ForwardIterator __middle = __first;
std::advance(__middle, __len / 2);
_ForwardIterator __begin = std::__stable_partition_adaptive(__first, __middle,
__pred,
__len / 2,
__buffer, __buffer_size);
_ForwardIterator __end = std::__stable_partition_adaptive( __middle, __last,
__pred,
__len - __len / 2,
__buffer, __buffer_size);
std::rotate(__begin, __middle, __end);
std::advance(__begin, std::distance(__middle, __end));
return __begin;
}
}
/**
* @brief Move elements for which a predicate is true to the beginning
* of a sequence, preserving relative ordering.
* @param first A forward iterator.
* @param last A forward iterator.
* @param pred A predicate functor.
* @return An iterator @p middle such that @p pred(i) is true for each
* iterator @p i in the range @p [first,middle) and false for each @p i
* in the range @p [middle,last).
*
* Performs the same function as @p partition() with the additional
* guarantee that the relative ordering of elements in each group is
* preserved, so any two elements @p x and @p y in the range
* @p [first,last) such that @p pred(x)==pred(y) will have the same
* relative ordering after calling @p stable_partition().
*/
template<typename _ForwardIterator, typename _Predicate>
_ForwardIterator
stable_partition(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_ForwardIterator>::value_type>)
if (__first == __last)
return __first;
else
{
typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
_Temporary_buffer<_ForwardIterator, _ValueType> __buf(__first, __last);
if (__buf.size() > 0)
return std::__stable_partition_adaptive(__first, __last, __pred,
_DistanceType(__buf.requested_size()),
__buf.begin(), __buf.size());
else
return std::__inplace_stable_partition(__first, __last, __pred,
_DistanceType(__buf.requested_size()));
}
}
/**
* @if maint
* This is a helper function...
* @endif
*/
template<typename _RandomAccessIterator, typename _Tp>
_RandomAccessIterator
__unguarded_partition(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Tp __pivot)
{
while (true) {
while (*__first < __pivot)
++__first;
--__last;
while (__pivot < *__last)
--__last;
if (!(__first < __last))
return __first;
std::iter_swap(__first, __last);
++__first;
}
}
/**
* @if maint
* This is a helper function...
* @endif
*/
template<typename _RandomAccessIterator, typename _Tp, typename _Compare>
_RandomAccessIterator
__unguarded_partition(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Tp __pivot, _Compare __comp)
{
while (true) {
while (__comp(*__first, __pivot))
++__first;
--__last;
while (__comp(__pivot, *__last))
--__last;
if (!(__first < __last))
return __first;
std::iter_swap(__first, __last);
++__first;
}
}
/**
* @if maint
* @doctodo
* This controls some aspect of the sort routines.
* @endif
*/
enum { _S_threshold = 16 };
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator, typename _Tp>
void
__unguarded_linear_insert(_RandomAccessIterator __last, _Tp __val)
{
_RandomAccessIterator __next = __last;
--__next;
while (__val < *__next) {
*__last = *__next;
__last = __next;
--__next;
}
*__last = __val;
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator, typename _Tp, typename _Compare>
void
__unguarded_linear_insert(_RandomAccessIterator __last, _Tp __val, _Compare __comp)
{
_RandomAccessIterator __next = __last;
--__next;
while (__comp(__val, *__next)) {
*__last = *__next;
__last = __next;
--__next;
}
*__last = __val;
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator>
void
__insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
if (__first == __last) return;
for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
{
typename iterator_traits<_RandomAccessIterator>::value_type __val = *__i;
if (__val < *__first) {
std::copy_backward(__first, __i, __i + 1);
*__first = __val;
}
else
std::__unguarded_linear_insert(__i, __val);
}
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator, typename _Compare>
void
__insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp)
{
if (__first == __last) return;
for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
{
typename iterator_traits<_RandomAccessIterator>::value_type __val = *__i;
if (__comp(__val, *__first)) {
std::copy_backward(__first, __i, __i + 1);
*__first = __val;
}
else
std::__unguarded_linear_insert(__i, __val, __comp);
}
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator>
inline void
__unguarded_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
for (_RandomAccessIterator __i = __first; __i != __last; ++__i)
std::__unguarded_linear_insert(__i, _ValueType(*__i));
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator, typename _Compare>
inline void
__unguarded_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
for (_RandomAccessIterator __i = __first; __i != __last; ++__i)
std::__unguarded_linear_insert(__i, _ValueType(*__i), __comp);
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator>
void
__final_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
if (__last - __first > _S_threshold) {
std::__insertion_sort(__first, __first + _S_threshold);
std::__unguarded_insertion_sort(__first + _S_threshold, __last);
}
else
std::__insertion_sort(__first, __last);
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator, typename _Compare>
void
__final_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp)
{
if (__last - __first > _S_threshold) {
std::__insertion_sort(__first, __first + _S_threshold, __comp);
std::__unguarded_insertion_sort(__first + _S_threshold, __last, __comp);
}
else
std::__insertion_sort(__first, __last, __comp);
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _Size>
inline _Size
__lg(_Size __n)
{
_Size __k;
for (__k = 0; __n != 1; __n >>= 1) ++__k;
return __k;
}
/**
* @brief Sort the smallest elements of a sequence.
* @param first An iterator.
* @param middle Another iterator.
* @param last Another iterator.
* @return Nothing.
*
* Sorts the smallest @p (middle-first) elements in the range
* @p [first,last) and moves them to the range @p [first,middle). The
* order of the remaining elements in the range @p [middle,last) is
* undefined.
* After the sort if @p i and @j are iterators in the range
* @p [first,middle) such that @i precedes @j and @k is an iterator in
* the range @p [middle,last) then @p *j<*i and @p *k<*i are both false.
*/
template<typename _RandomAccessIterator>
void
partial_sort(_RandomAccessIterator __first,
_RandomAccessIterator __middle,
_RandomAccessIterator __last)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
std::make_heap(__first, __middle);
for (_RandomAccessIterator __i = __middle; __i < __last; ++__i)
if (*__i < *__first)
std::__pop_heap(__first, __middle, __i, _ValueType(*__i));
std::sort_heap(__first, __middle);
}
/**
* @brief Sort the smallest elements of a sequence using a predicate
* for comparison.
* @param first An iterator.
* @param middle Another iterator.
* @param last Another iterator.
* @param comp A comparison functor.
* @return Nothing.
*
* Sorts the smallest @p (middle-first) elements in the range
* @p [first,last) and moves them to the range @p [first,middle). The
* order of the remaining elements in the range @p [middle,last) is
* undefined.
* After the sort if @p i and @j are iterators in the range
* @p [first,middle) such that @i precedes @j and @k is an iterator in
* the range @p [middle,last) then @p *comp(j,*i) and @p comp(*k,*i)
* are both false.
*/
template<typename _RandomAccessIterator, typename _Compare>
void
partial_sort(_RandomAccessIterator __first,
_RandomAccessIterator __middle,
_RandomAccessIterator __last,
_Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_ValueType, _ValueType>)
std::make_heap(__first, __middle, __comp);
for (_RandomAccessIterator __i = __middle; __i < __last; ++__i)
if (__comp(*__i, *__first))
std::__pop_heap(__first, __middle, __i, _ValueType(*__i), __comp);
std::sort_heap(__first, __middle, __comp);
}
/**
* @brief Copy the smallest elements of a sequence.
* @param first An iterator.
* @param last Another iterator.
* @param result_first A random-access iterator.
* @param result_last Another random-access iterator.
* @return An iterator indicating the end of the resulting sequence.
*
* Copies and sorts the smallest N values from the range @p [first,last)
* to the range beginning at @p result_first, where the number of
* elements to be copied, @p N, is the smaller of @p (last-first) and
* @p (result_last-result_first).
* After the sort if @p i and @j are iterators in the range
* @p [result_first,result_first+N) such that @i precedes @j then
* @p *j<*i is false.
* The value returned is @p result_first+N.
*/
template<typename _InputIterator, typename _RandomAccessIterator>
_RandomAccessIterator
partial_sort_copy(_InputIterator __first, _InputIterator __last,
_RandomAccessIterator __result_first,
_RandomAccessIterator __result_last)
{
typedef typename iterator_traits<_InputIterator>::value_type _InputValueType;
typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType;
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_ConvertibleConcept<_InputValueType, _OutputValueType>)
__glibcxx_function_requires(_LessThanComparableConcept<_OutputValueType>)
__glibcxx_function_requires(_LessThanComparableConcept<_InputValueType>)
if (__result_first == __result_last) return __result_last;
_RandomAccessIterator __result_real_last = __result_first;
while(__first != __last && __result_real_last != __result_last) {
*__result_real_last = *__first;
++__result_real_last;
++__first;
}
std::make_heap(__result_first, __result_real_last);
while (__first != __last) {
if (*__first < *__result_first)
std::__adjust_heap(__result_first, _DistanceType(0),
_DistanceType(__result_real_last - __result_first),
_InputValueType(*__first));
++__first;
}
std::sort_heap(__result_first, __result_real_last);
return __result_real_last;
}
/**
* @brief Copy the smallest elements of a sequence using a predicate for
* comparison.
* @param first An input iterator.
* @param last Another input iterator.
* @param result_first A random-access iterator.
* @param result_last Another random-access iterator.
* @param comp A comparison functor.
* @return An iterator indicating the end of the resulting sequence.
*
* Copies and sorts the smallest N values from the range @p [first,last)
* to the range beginning at @p result_first, where the number of
* elements to be copied, @p N, is the smaller of @p (last-first) and
* @p (result_last-result_first).
* After the sort if @p i and @j are iterators in the range
* @p [result_first,result_first+N) such that @i precedes @j then
* @p comp(*j,*i) is false.
* The value returned is @p result_first+N.
*/
template<typename _InputIterator, typename _RandomAccessIterator, typename _Compare>
_RandomAccessIterator
partial_sort_copy(_InputIterator __first, _InputIterator __last,
_RandomAccessIterator __result_first,
_RandomAccessIterator __result_last,
_Compare __comp)
{
typedef typename iterator_traits<_InputIterator>::value_type _InputValueType;
typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType;
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<_RandomAccessIterator>)
__glibcxx_function_requires(_ConvertibleConcept<_InputValueType, _OutputValueType>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_OutputValueType, _OutputValueType>)
if (__result_first == __result_last) return __result_last;
_RandomAccessIterator __result_real_last = __result_first;
while(__first != __last && __result_real_last != __result_last) {
*__result_real_last = *__first;
++__result_real_last;
++__first;
}
std::make_heap(__result_first, __result_real_last, __comp);
while (__first != __last) {
if (__comp(*__first, *__result_first))
std::__adjust_heap(__result_first, _DistanceType(0),
_DistanceType(__result_real_last - __result_first),
_InputValueType(*__first),
__comp);
++__first;
}
std::sort_heap(__result_first, __result_real_last, __comp);
return __result_real_last;
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator, typename _Size>
void
__introsort_loop(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Size __depth_limit)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
while (__last - __first > _S_threshold) {
if (__depth_limit == 0) {
std::partial_sort(__first, __last, __last);
return;
}
--__depth_limit;
_RandomAccessIterator __cut =
std::__unguarded_partition(__first, __last,
_ValueType(std::__median(*__first,
*(__first + (__last - __first)/2),
*(__last - 1))));
std::__introsort_loop(__cut, __last, __depth_limit);
__last = __cut;
}
}
/**
* @if maint
* This is a helper function for the sort routine.
* @endif
*/
template<typename _RandomAccessIterator, typename _Size, typename _Compare>
void
__introsort_loop(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Size __depth_limit, _Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
while (__last - __first > _S_threshold) {
if (__depth_limit == 0) {
std::partial_sort(__first, __last, __last, __comp);
return;
}
--__depth_limit;
_RandomAccessIterator __cut =
std::__unguarded_partition(__first, __last,
_ValueType(std::__median(*__first,
*(__first + (__last - __first)/2),
*(__last - 1), __comp)), __comp);
std::__introsort_loop(__cut, __last, __depth_limit, __comp);
__last = __cut;
}
}
/**
* @brief Sort the elements of a sequence.
* @param first An iterator.
* @param last Another iterator.
* @return Nothing.
*
* Sorts the elements in the range @p [first,last) in ascending order,
* such that @p *(i+1)<*i is false for each iterator @p i in the range
* @p [first,last-1).
*
* The relative ordering of equivalent elements is not preserved, use
* @p stable_sort() if this is needed.
*/
template<typename _RandomAccessIterator>
inline void
sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
if (__first != __last) {
std::__introsort_loop(__first, __last, __lg(__last - __first) * 2);
std::__final_insertion_sort(__first, __last);
}
}
/**
* @brief Sort the elements of a sequence using a predicate for comparison.
* @param first An iterator.
* @param last Another iterator.
* @param comp A comparison functor.
* @return Nothing.
*
* Sorts the elements in the range @p [first,last) in ascending order,
* such that @p comp(*(i+1),*i) is false for every iterator @p i in the
* range @p [first,last-1).
*
* The relative ordering of equivalent elements is not preserved, use
* @p stable_sort() if this is needed.
*/
template<typename _RandomAccessIterator, typename _Compare>
inline void
sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>)
if (__first != __last) {
std::__introsort_loop(__first, __last, __lg(__last - __first) * 2, __comp);
std::__final_insertion_sort(__first, __last, __comp);
}
}
/**
* @brief Finds the first position in which @a val could be inserted
* without changing the ordering.
* @param first An iterator.
* @param last Another iterator.
* @param val The search term.
* @return An iterator pointing to the first element "not less than" @a val,
* or end() if every element is less than @a val.
* @ingroup binarysearch
*/
template<typename _ForwardIterator, typename _Tp>
_ForwardIterator
lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val)
{
typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements
// Note that these are slightly stricter than those of the 4-argument
// version, defined next. The difference is in the strictness of the
// comparison operations... so for looser checking, define your own
// comparison function, as was intended.
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_SameTypeConcept<_Tp, _ValueType>)
__glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
_DistanceType __len = std::distance(__first, __last);
_DistanceType __half;
_ForwardIterator __middle;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
std::advance(__middle, __half);
if (*__middle < __val) {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else
__len = __half;
}
return __first;
}
/**
* @brief Finds the first position in which @a val could be inserted
* without changing the ordering.
* @param first An iterator.
* @param last Another iterator.
* @param val The search term.
* @param comp A functor to use for comparisons.
* @return An iterator pointing to the first element "not less than" @a val,
* or end() if every element is less than @a val.
* @ingroup binarysearch
*
* The comparison function should have the same effects on ordering as
* the function used for the initial sort.
*/
template<typename _ForwardIterator, typename _Tp, typename _Compare>
_ForwardIterator
lower_bound(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val, _Compare __comp)
{
typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _Tp>)
_DistanceType __len = std::distance(__first, __last);
_DistanceType __half;
_ForwardIterator __middle;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
std::advance(__middle, __half);
if (__comp(*__middle, __val)) {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else
__len = __half;
}
return __first;
}
/**
* @brief Finds the last position in which @a val could be inserted
* without changing the ordering.
* @param first An iterator.
* @param last Another iterator.
* @param val The search term.
* @return An iterator pointing to the first element greater than @a val,
* or end() if no elements are greater than @a val.
* @ingroup binarysearch
*/
template<typename _ForwardIterator, typename _Tp>
_ForwardIterator
upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val)
{
typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements
// See comments on lower_bound.
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_SameTypeConcept<_Tp, _ValueType>)
__glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
_DistanceType __len = std::distance(__first, __last);
_DistanceType __half;
_ForwardIterator __middle;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
std::advance(__middle, __half);
if (__val < *__middle)
__len = __half;
else {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
}
return __first;
}
/**
* @brief Finds the last position in which @a val could be inserted
* without changing the ordering.
* @param first An iterator.
* @param last Another iterator.
* @param val The search term.
* @param comp A functor to use for comparisons.
* @return An iterator pointing to the first element greater than @a val,
* or end() if no elements are greater than @a val.
* @ingroup binarysearch
*
* The comparison function should have the same effects on ordering as
* the function used for the initial sort.
*/
template<typename _ForwardIterator, typename _Tp, typename _Compare>
_ForwardIterator
upper_bound(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val, _Compare __comp)
{
typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, _ValueType>)
_DistanceType __len = std::distance(__first, __last);
_DistanceType __half;
_ForwardIterator __middle;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
std::advance(__middle, __half);
if (__comp(__val, *__middle))
__len = __half;
else {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
}
return __first;
}
/**
* @if maint
* This is a helper function for the merge routines.
* @endif
*/
template<typename _BidirectionalIterator, typename _Distance>
void
__merge_without_buffer(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
_Distance __len1, _Distance __len2)
{
if (__len1 == 0 || __len2 == 0)
return;
if (__len1 + __len2 == 2) {
if (*__middle < *__first)
std::iter_swap(__first, __middle);
return;
}
_BidirectionalIterator __first_cut = __first;
_BidirectionalIterator __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2) {
__len11 = __len1 / 2;
std::advance(__first_cut, __len11);
__second_cut = std::lower_bound(__middle, __last, *__first_cut);
__len22 = std::distance(__middle, __second_cut);
}
else {
__len22 = __len2 / 2;
std::advance(__second_cut, __len22);
__first_cut = std::upper_bound(__first, __middle, *__second_cut);
__len11 = std::distance(__first, __first_cut);
}
std::rotate(__first_cut, __middle, __second_cut);
_BidirectionalIterator __new_middle = __first_cut;
std::advance(__new_middle, std::distance(__middle, __second_cut));
std::__merge_without_buffer(__first, __first_cut, __new_middle,
__len11, __len22);
std::__merge_without_buffer(__new_middle, __second_cut, __last,
__len1 - __len11, __len2 - __len22);
}
/**
* @if maint
* This is a helper function for the merge routines.
* @endif
*/
template<typename _BidirectionalIterator, typename _Distance, typename _Compare>
void
__merge_without_buffer(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
_Distance __len1, _Distance __len2,
_Compare __comp)
{
if (__len1 == 0 || __len2 == 0)
return;
if (__len1 + __len2 == 2) {
if (__comp(*__middle, *__first))
std::iter_swap(__first, __middle);
return;
}
_BidirectionalIterator __first_cut = __first;
_BidirectionalIterator __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2) {
__len11 = __len1 / 2;
std::advance(__first_cut, __len11);
__second_cut = std::lower_bound(__middle, __last, *__first_cut, __comp);
__len22 = std::distance(__middle, __second_cut);
}
else {
__len22 = __len2 / 2;
std::advance(__second_cut, __len22);
__first_cut = std::upper_bound(__first, __middle, *__second_cut, __comp);
__len11 = std::distance(__first, __first_cut);
}
std::rotate(__first_cut, __middle, __second_cut);
_BidirectionalIterator __new_middle = __first_cut;
std::advance(__new_middle, std::distance(__middle, __second_cut));
std::__merge_without_buffer(__first, __first_cut, __new_middle,
__len11, __len22, __comp);
std::__merge_without_buffer(__new_middle, __second_cut, __last,
__len1 - __len11, __len2 - __len22, __comp);
}
/**
* @if maint
* This is a helper function for the stable sorting routines.
* @endif
*/
template<typename _RandomAccessIterator>
void
__inplace_stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
if (__last - __first < 15) {
std::__insertion_sort(__first, __last);
return;
}
_RandomAccessIterator __middle = __first + (__last - __first) / 2;
std::__inplace_stable_sort(__first, __middle);
std::__inplace_stable_sort(__middle, __last);
std::__merge_without_buffer(__first, __middle, __last,
__middle - __first,
__last - __middle);
}
/**
* @if maint
* This is a helper function for the stable sorting routines.
* @endif
*/
template<typename _RandomAccessIterator, typename _Compare>
void
__inplace_stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp)
{
if (__last - __first < 15) {
std::__insertion_sort(__first, __last, __comp);
return;
}
_RandomAccessIterator __middle = __first + (__last - __first) / 2;
std::__inplace_stable_sort(__first, __middle, __comp);
std::__inplace_stable_sort(__middle, __last, __comp);
std::__merge_without_buffer(__first, __middle, __last,
__middle - __first,
__last - __middle,
__comp);
}
/**
* @brief Merges two sorted ranges.
* @param first1 An iterator.
* @param first2 Another iterator.
* @param last1 Another iterator.
* @param last2 Another iterator.
* @param result An iterator pointing to the end of the merged range.
* @return An iterator pointing to the first element "not less than" @a val.
*
* Merges the ranges [first1,last1) and [first2,last2) into the sorted range
* [result, result + (last1-first1) + (last2-first2)). Both input ranges
* must be sorted, and the output range must not overlap with either of
* the input ranges. The sort is @e stable, that is, for equivalent
* elements in the two ranges, elements from the first range will always
* come before elements from the second.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator>
_OutputIterator
merge(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_InputIterator1>::value_type>)
while (__first1 != __last1 && __first2 != __last2) {
if (*__first2 < *__first1) {
*__result = *__first2;
++__first2;
}
else {
*__result = *__first1;
++__first1;
}
++__result;
}
return std::copy(__first2, __last2, std::copy(__first1, __last1, __result));
}
/**
* @brief Merges two sorted ranges.
* @param first1 An iterator.
* @param first2 Another iterator.
* @param last1 Another iterator.
* @param last2 Another iterator.
* @param result An iterator pointing to the end of the merged range.
* @param comp A functor to use for comparisons.
* @return An iterator pointing to the first element "not less than" @a val.
*
* Merges the ranges [first1,last1) and [first2,last2) into the sorted range
* [result, result + (last1-first1) + (last2-first2)). Both input ranges
* must be sorted, and the output range must not overlap with either of
* the input ranges. The sort is @e stable, that is, for equivalent
* elements in the two ranges, elements from the first range will always
* come before elements from the second.
*
* The comparison function should have the same effects on ordering as
* the function used for the initial sort.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator,
typename _Compare>
_OutputIterator
merge(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result, _Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
while (__first1 != __last1 && __first2 != __last2) {
if (__comp(*__first2, *__first1)) {
*__result = *__first2;
++__first2;
}
else {
*__result = *__first1;
++__first1;
}
++__result;
}
return std::copy(__first2, __last2, std::copy(__first1, __last1, __result));
}
template<typename _RandomAccessIterator1, typename _RandomAccessIterator2,
typename _Distance>
void
__merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last,
_RandomAccessIterator2 __result, _Distance __step_size)
{
_Distance __two_step = 2 * __step_size;
while (__last - __first >= __two_step) {
__result = std::merge(__first, __first + __step_size,
__first + __step_size, __first + __two_step,
__result);
__first += __two_step;
}
__step_size = std::min(_Distance(__last - __first), __step_size);
std::merge(__first, __first + __step_size, __first + __step_size, __last,
__result);
}
template<typename _RandomAccessIterator1, typename _RandomAccessIterator2,
typename _Distance, typename _Compare>
void
__merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last,
_RandomAccessIterator2 __result, _Distance __step_size,
_Compare __comp)
{
_Distance __two_step = 2 * __step_size;
while (__last - __first >= __two_step) {
__result = std::merge(__first, __first + __step_size,
__first + __step_size, __first + __two_step,
__result,
__comp);
__first += __two_step;
}
__step_size = std::min(_Distance(__last - __first), __step_size);
std::merge(__first, __first + __step_size,
__first + __step_size, __last,
__result,
__comp);
}
enum { _S_chunk_size = 7 };
template<typename _RandomAccessIterator, typename _Distance>
void
__chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Distance __chunk_size)
{
while (__last - __first >= __chunk_size) {
std::__insertion_sort(__first, __first + __chunk_size);
__first += __chunk_size;
}
std::__insertion_sort(__first, __last);
}
template<typename _RandomAccessIterator, typename _Distance, typename _Compare>
void
__chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Distance __chunk_size, _Compare __comp)
{
while (__last - __first >= __chunk_size) {
std::__insertion_sort(__first, __first + __chunk_size, __comp);
__first += __chunk_size;
}
std::__insertion_sort(__first, __last, __comp);
}
template<typename _RandomAccessIterator, typename _Pointer>
void
__merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Pointer __buffer)
{
typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance;
_Distance __len = __last - __first;
_Pointer __buffer_last = __buffer + __len;
_Distance __step_size = _S_chunk_size;
std::__chunk_insertion_sort(__first, __last, __step_size);
while (__step_size < __len) {
std::__merge_sort_loop(__first, __last, __buffer, __step_size);
__step_size *= 2;
std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size);
__step_size *= 2;
}
}
template<typename _RandomAccessIterator, typename _Pointer, typename _Compare>
void
__merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Pointer __buffer, _Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance;
_Distance __len = __last - __first;
_Pointer __buffer_last = __buffer + __len;
_Distance __step_size = _S_chunk_size;
std::__chunk_insertion_sort(__first, __last, __step_size, __comp);
while (__step_size < __len) {
std::__merge_sort_loop(__first, __last, __buffer, __step_size, __comp);
__step_size *= 2;
std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size, __comp);
__step_size *= 2;
}
}
/**
* @if maint
* This is a helper function for the merge routines.
* @endif
*/
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
typename _BidirectionalIterator3>
_BidirectionalIterator3
__merge_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1,
_BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2,
_BidirectionalIterator3 __result)
{
if (__first1 == __last1)
return std::copy_backward(__first2, __last2, __result);
if (__first2 == __last2)
return std::copy_backward(__first1, __last1, __result);
--__last1;
--__last2;
while (true) {
if (*__last2 < *__last1) {
*--__result = *__last1;
if (__first1 == __last1)
return std::copy_backward(__first2, ++__last2, __result);
--__last1;
}
else {
*--__result = *__last2;
if (__first2 == __last2)
return std::copy_backward(__first1, ++__last1, __result);
--__last2;
}
}
}
/**
* @if maint
* This is a helper function for the merge routines.
* @endif
*/
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
typename _BidirectionalIterator3, typename _Compare>
_BidirectionalIterator3
__merge_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1,
_BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2,
_BidirectionalIterator3 __result,
_Compare __comp)
{
if (__first1 == __last1)
return std::copy_backward(__first2, __last2, __result);
if (__first2 == __last2)
return std::copy_backward(__first1, __last1, __result);
--__last1;
--__last2;
while (true) {
if (__comp(*__last2, *__last1)) {
*--__result = *__last1;
if (__first1 == __last1)
return std::copy_backward(__first2, ++__last2, __result);
--__last1;
}
else {
*--__result = *__last2;
if (__first2 == __last2)
return std::copy_backward(__first1, ++__last1, __result);
--__last2;
}
}
}
/**
* @if maint
* This is a helper function for the merge routines.
* @endif
*/
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
typename _Distance>
_BidirectionalIterator1
__rotate_adaptive(_BidirectionalIterator1 __first,
_BidirectionalIterator1 __middle,
_BidirectionalIterator1 __last,
_Distance __len1, _Distance __len2,
_BidirectionalIterator2 __buffer,
_Distance __buffer_size)
{
_BidirectionalIterator2 __buffer_end;
if (__len1 > __len2 && __len2 <= __buffer_size) {
__buffer_end = std::copy(__middle, __last, __buffer);
std::copy_backward(__first, __middle, __last);
return std::copy(__buffer, __buffer_end, __first);
}
else if (__len1 <= __buffer_size) {
__buffer_end = std::copy(__first, __middle, __buffer);
std::copy(__middle, __last, __first);
return std::copy_backward(__buffer, __buffer_end, __last);
}
else {
std::rotate(__first, __middle, __last);
std::advance(__first, std::distance(__middle, __last));
return __first;
}
}
/**
* @if maint
* This is a helper function for the merge routines.
* @endif
*/
template<typename _BidirectionalIterator, typename _Distance, typename _Pointer>
void
__merge_adaptive(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
_Distance __len1, _Distance __len2,
_Pointer __buffer, _Distance __buffer_size)
{
if (__len1 <= __len2 && __len1 <= __buffer_size) {
_Pointer __buffer_end = std::copy(__first, __middle, __buffer);
std::merge(__buffer, __buffer_end, __middle, __last, __first);
}
else if (__len2 <= __buffer_size) {
_Pointer __buffer_end = std::copy(__middle, __last, __buffer);
std::__merge_backward(__first, __middle, __buffer, __buffer_end, __last);
}
else {
_BidirectionalIterator __first_cut = __first;
_BidirectionalIterator __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2) {
__len11 = __len1 / 2;
std::advance(__first_cut, __len11);
__second_cut = std::lower_bound(__middle, __last, *__first_cut);
__len22 = std::distance(__middle, __second_cut);
}
else {
__len22 = __len2 / 2;
std::advance(__second_cut, __len22);
__first_cut = std::upper_bound(__first, __middle, *__second_cut);
__len11 = std::distance(__first, __first_cut);
}
_BidirectionalIterator __new_middle =
std::__rotate_adaptive(__first_cut, __middle, __second_cut,
__len1 - __len11, __len22, __buffer,
__buffer_size);
std::__merge_adaptive(__first, __first_cut, __new_middle, __len11,
__len22, __buffer, __buffer_size);
std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11,
__len2 - __len22, __buffer, __buffer_size);
}
}
/**
* @if maint
* This is a helper function for the merge routines.
* @endif
*/
template<typename _BidirectionalIterator, typename _Distance, typename _Pointer,
typename _Compare>
void
__merge_adaptive(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
_Distance __len1, _Distance __len2,
_Pointer __buffer, _Distance __buffer_size,
_Compare __comp)
{
if (__len1 <= __len2 && __len1 <= __buffer_size) {
_Pointer __buffer_end = std::copy(__first, __middle, __buffer);
std::merge(__buffer, __buffer_end, __middle, __last, __first, __comp);
}
else if (__len2 <= __buffer_size) {
_Pointer __buffer_end = std::copy(__middle, __last, __buffer);
std::__merge_backward(__first, __middle, __buffer, __buffer_end, __last,
__comp);
}
else {
_BidirectionalIterator __first_cut = __first;
_BidirectionalIterator __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2) {
__len11 = __len1 / 2;
std::advance(__first_cut, __len11);
__second_cut = std::lower_bound(__middle, __last, *__first_cut, __comp);
__len22 = std::distance(__middle, __second_cut);
}
else {
__len22 = __len2 / 2;
std::advance(__second_cut, __len22);
__first_cut = std::upper_bound(__first, __middle, *__second_cut, __comp);
__len11 = std::distance(__first, __first_cut);
}
_BidirectionalIterator __new_middle =
std::__rotate_adaptive(__first_cut, __middle, __second_cut,
__len1 - __len11, __len22, __buffer,
__buffer_size);
std::__merge_adaptive(__first, __first_cut, __new_middle, __len11,
__len22, __buffer, __buffer_size, __comp);
std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11,
__len2 - __len22, __buffer, __buffer_size, __comp);
}
}
/**
* @brief Merges two sorted ranges in place.
* @param first An iterator.
* @param middle Another iterator.
* @param last Another iterator.
* @return Nothing.
*
* Merges two sorted and consecutive ranges, [first,middle) and
* [middle,last), and puts the result in [first,last). The output will
* be sorted. The sort is @e stable, that is, for equivalent
* elements in the two ranges, elements from the first range will always
* come before elements from the second.
*
* If enough additional memory is available, this takes (last-first)-1
* comparisons. Otherwise an NlogN algorithm is used, where N is
* distance(first,last).
*/
template<typename _BidirectionalIterator>
void
inplace_merge(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last)
{
typedef typename iterator_traits<_BidirectionalIterator>::value_type
_ValueType;
typedef typename iterator_traits<_BidirectionalIterator>::difference_type
_DistanceType;
// concept requirements
__glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
_BidirectionalIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
if (__first == __middle || __middle == __last)
return;
_DistanceType __len1 = std::distance(__first, __middle);
_DistanceType __len2 = std::distance(__middle, __last);
_Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first, __last);
if (__buf.begin() == 0)
std::__merge_without_buffer(__first, __middle, __last, __len1, __len2);
else
std::__merge_adaptive(__first, __middle, __last, __len1, __len2,
__buf.begin(), _DistanceType(__buf.size()));
}
/**
* @brief Merges two sorted ranges in place.
* @param first An iterator.
* @param middle Another iterator.
* @param last Another iterator.
* @param comp A functor to use for comparisons.
* @return Nothing.
*
* Merges two sorted and consecutive ranges, [first,middle) and
* [middle,last), and puts the result in [first,last). The output will
* be sorted. The sort is @e stable, that is, for equivalent
* elements in the two ranges, elements from the first range will always
* come before elements from the second.
*
* If enough additional memory is available, this takes (last-first)-1
* comparisons. Otherwise an NlogN algorithm is used, where N is
* distance(first,last).
*
* The comparison function should have the same effects on ordering as
* the function used for the initial sort.
*/
template<typename _BidirectionalIterator, typename _Compare>
void
inplace_merge(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
_Compare __comp)
{
typedef typename iterator_traits<_BidirectionalIterator>::value_type
_ValueType;
typedef typename iterator_traits<_BidirectionalIterator>::difference_type
_DistanceType;
// concept requirements
__glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
_BidirectionalIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_ValueType, _ValueType>)
if (__first == __middle || __middle == __last)
return;
_DistanceType __len1 = std::distance(__first, __middle);
_DistanceType __len2 = std::distance(__middle, __last);
_Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first, __last);
if (__buf.begin() == 0)
std::__merge_without_buffer(__first, __middle, __last, __len1, __len2, __comp);
else
std::__merge_adaptive(__first, __middle, __last, __len1, __len2,
__buf.begin(), _DistanceType(__buf.size()),
__comp);
}
template<typename _RandomAccessIterator, typename _Pointer, typename _Distance>
void
__stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Pointer __buffer, _Distance __buffer_size)
{
_Distance __len = (__last - __first + 1) / 2;
_RandomAccessIterator __middle = __first + __len;
if (__len > __buffer_size) {
std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size);
std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size);
}
else {
std::__merge_sort_with_buffer(__first, __middle, __buffer);
std::__merge_sort_with_buffer(__middle, __last, __buffer);
}
std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first),
_Distance(__last - __middle), __buffer, __buffer_size);
}
template<typename _RandomAccessIterator, typename _Pointer, typename _Distance,
typename _Compare>
void
__stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Pointer __buffer, _Distance __buffer_size,
_Compare __comp)
{
_Distance __len = (__last - __first + 1) / 2;
_RandomAccessIterator __middle = __first + __len;
if (__len > __buffer_size) {
std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size,
__comp);
std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size,
__comp);
}
else {
std::__merge_sort_with_buffer(__first, __middle, __buffer, __comp);
std::__merge_sort_with_buffer(__middle, __last, __buffer, __comp);
}
std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first),
_Distance(__last - __middle), __buffer, __buffer_size,
__comp);
}
/**
* @brief Sort the elements of a sequence, preserving the relative order
* of equivalent elements.
* @param first An iterator.
* @param last Another iterator.
* @return Nothing.
*
* Sorts the elements in the range @p [first,last) in ascending order,
* such that @p *(i+1)<*i is false for each iterator @p i in the range
* @p [first,last-1).
*
* The relative ordering of equivalent elements is preserved, so any two
* elements @p x and @p y in the range @p [first,last) such that
* @p x<y is false and @p y<x is false will have the same relative
* ordering after calling @p stable_sort().
*/
template<typename _RandomAccessIterator>
inline void
stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType;
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
_Temporary_buffer<_RandomAccessIterator, _ValueType> buf(__first, __last);
if (buf.begin() == 0)
std::__inplace_stable_sort(__first, __last);
else
std::__stable_sort_adaptive(__first, __last, buf.begin(), _DistanceType(buf.size()));
}
/**
* @brief Sort the elements of a sequence using a predicate for comparison,
* preserving the relative order of equivalent elements.
* @param first An iterator.
* @param last Another iterator.
* @param comp A comparison functor.
* @return Nothing.
*
* Sorts the elements in the range @p [first,last) in ascending order,
* such that @p comp(*(i+1),*i) is false for each iterator @p i in the
* range @p [first,last-1).
*
* The relative ordering of equivalent elements is preserved, so any two
* elements @p x and @p y in the range @p [first,last) such that
* @p comp(x,y) is false and @p comp(y,x) is false will have the same
* relative ordering after calling @p stable_sort().
*/
template<typename _RandomAccessIterator, typename _Compare>
inline void
stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType;
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_ValueType, _ValueType>)
_Temporary_buffer<_RandomAccessIterator, _ValueType> buf(__first, __last);
if (buf.begin() == 0)
std::__inplace_stable_sort(__first, __last, __comp);
else
std::__stable_sort_adaptive(__first, __last, buf.begin(), _DistanceType(buf.size()),
__comp);
}
/**
* @brief Sort a sequence just enough to find a particular position.
* @param first An iterator.
* @param nth Another iterator.
* @param last Another iterator.
* @return Nothing.
*
* Rearranges the elements in the range @p [first,last) so that @p *nth
* is the same element that would have been in that position had the
* whole sequence been sorted.
* whole sequence been sorted. The elements either side of @p *nth are
* not completely sorted, but for any iterator @i in the range
* @p [first,nth) and any iterator @j in the range @p [nth,last) it
* holds that @p *j<*i is false.
*/
template<typename _RandomAccessIterator>
void
nth_element(_RandomAccessIterator __first,
_RandomAccessIterator __nth,
_RandomAccessIterator __last)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<_RandomAccessIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
while (__last - __first > 3) {
_RandomAccessIterator __cut =
std::__unguarded_partition(__first, __last,
_ValueType(std::__median(*__first,
*(__first + (__last - __first)/2),
*(__last - 1))));
if (__cut <= __nth)
__first = __cut;
else
__last = __cut;
}
std::__insertion_sort(__first, __last);
}
/**
* @brief Sort a sequence just enough to find a particular position
* using a predicate for comparison.
* @param first An iterator.
* @param nth Another iterator.
* @param last Another iterator.
* @param comp A comparison functor.
* @return Nothing.
*
* Rearranges the elements in the range @p [first,last) so that @p *nth
* is the same element that would have been in that position had the
* whole sequence been sorted. The elements either side of @p *nth are
* not completely sorted, but for any iterator @i in the range
* @p [first,nth) and any iterator @j in the range @p [nth,last) it
* holds that @p comp(*j,*i) is false.
*/
template<typename _RandomAccessIterator, typename _Compare>
void
nth_element(_RandomAccessIterator __first,
_RandomAccessIterator __nth,
_RandomAccessIterator __last,
_Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<_RandomAccessIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_ValueType, _ValueType>)
while (__last - __first > 3) {
_RandomAccessIterator __cut =
std::__unguarded_partition(__first, __last,
_ValueType(std::__median(*__first,
*(__first + (__last - __first)/2),
*(__last - 1),
__comp)), __comp);
if (__cut <= __nth)
__first = __cut;
else
__last = __cut;
}
std::__insertion_sort(__first, __last, __comp);
}
/**
* @brief Finds the largest subrange in which @a val could be inserted
* at any place in it without changing the ordering.
* @param first An iterator.
* @param last Another iterator.
* @param val The search term.
* @return An pair of iterators defining the subrange.
* @ingroup binarysearch
*
* This is equivalent to
* @code
* std::make_pair(lower_bound(first, last, val),
* upper_bound(first, last, val))
* @endcode
* but does not actually call those functions.
*/
template<typename _ForwardIterator, typename _Tp>
pair<_ForwardIterator, _ForwardIterator>
equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val)
{
typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements
// See comments on lower_bound.
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_SameTypeConcept<_Tp, _ValueType>)
__glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
_DistanceType __len = std::distance(__first, __last);
_DistanceType __half;
_ForwardIterator __middle, __left, __right;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
std::advance(__middle, __half);
if (*__middle < __val) {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else if (__val < *__middle)
__len = __half;
else {
__left = std::lower_bound(__first, __middle, __val);
std::advance(__first, __len);
__right = std::upper_bound(++__middle, __first, __val);
return pair<_ForwardIterator, _ForwardIterator>(__left, __right);
}
}
return pair<_ForwardIterator, _ForwardIterator>(__first, __first);
}
/**
* @brief Finds the largest subrange in which @a val could be inserted
* at any place in it without changing the ordering.
* @param first An iterator.
* @param last Another iterator.
* @param val The search term.
* @param comp A functor to use for comparisons.
* @return An pair of iterators defining the subrange.
* @ingroup binarysearch
*
* This is equivalent to
* @code
* std::make_pair(lower_bound(first, last, val, comp),
* upper_bound(first, last, val, comp))
* @endcode
* but does not actually call those functions.
*/
template<typename _ForwardIterator, typename _Tp, typename _Compare>
pair<_ForwardIterator, _ForwardIterator>
equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val,
_Compare __comp)
{
typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _Tp>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, _ValueType>)
_DistanceType __len = std::distance(__first, __last);
_DistanceType __half;
_ForwardIterator __middle, __left, __right;
while (__len > 0) {
__half = __len >> 1;
__middle = __first;
std::advance(__middle, __half);
if (__comp(*__middle, __val)) {
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else if (__comp(__val, *__middle))
__len = __half;
else {
__left = std::lower_bound(__first, __middle, __val, __comp);
std::advance(__first, __len);
__right = std::upper_bound(++__middle, __first, __val, __comp);
return pair<_ForwardIterator, _ForwardIterator>(__left, __right);
}
}
return pair<_ForwardIterator, _ForwardIterator>(__first, __first);
}
/**
* @brief Determines whether an element exists in a range.
* @param first An iterator.
* @param last Another iterator.
* @param val The search term.
* @return True if @a val (or its equivelent) is in [@a first,@a last ].
* @ingroup binarysearch
*
* Note that this does not actually return an iterator to @a val. For
* that, use std::find or a container's specialized find member functions.
*/
template<typename _ForwardIterator, typename _Tp>
bool
binary_search(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val)
{
// concept requirements
// See comments on lower_bound.
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_SameTypeConcept<_Tp,
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
_ForwardIterator __i = std::lower_bound(__first, __last, __val);
return __i != __last && !(__val < *__i);
}
/**
* @brief Determines whether an element exists in a range.
* @param first An iterator.
* @param last Another iterator.
* @param val The search term.
* @param comp A functor to use for comparisons.
* @return True if @a val (or its equivelent) is in [@a first,@a last ].
* @ingroup binarysearch
*
* Note that this does not actually return an iterator to @a val. For
* that, use std::find or a container's specialized find member functions.
*
* The comparison function should have the same effects on ordering as
* the function used for the initial sort.
*/
template<typename _ForwardIterator, typename _Tp, typename _Compare>
bool
binary_search(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val, _Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp,
typename iterator_traits<_ForwardIterator>::value_type>)
_ForwardIterator __i = std::lower_bound(__first, __last, __val, __comp);
return __i != __last && !__comp(__val, *__i);
}
// Set algorithms: includes, set_union, set_intersection, set_difference,
// set_symmetric_difference. All of these algorithms have the precondition
// that their input ranges are sorted and the postcondition that their output
// ranges are sorted.
/**
* @brief Determines whether all elements of a sequence exists in a range.
* @param first1 Start of search range.
* @param last1 End of search range.
* @param first2 Start of sequence
* @param last2 End of sequence.
* @return True if each element in [first2,last2) is contained in order
* within [first1,last1). False otherwise.
* @ingroup setoperations
*
* This operation expects both [first1,last1) and [first2,last2) to be
* sorted. Searches for the presence of each element in [first2,last2)
* within [first1,last1). The iterators over each range only move forward,
* so this is a linear algorithm. If an element in [first2,last2) is not
* found before the search iterator reaches @a last2, false is returned.
*/
template<typename _InputIterator1, typename _InputIterator2>
bool
includes(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_InputIterator1>::value_type>)
while (__first1 != __last1 && __first2 != __last2)
if (*__first2 < *__first1)
return false;
else if(*__first1 < *__first2)
++__first1;
else
++__first1, ++__first2;
return __first2 == __last2;
}
/**
* @brief Determines whether all elements of a sequence exists in a range
* using comparison.
* @param first1 Start of search range.
* @param last1 End of search range.
* @param first2 Start of sequence
* @param last2 End of sequence.
* @param comp Comparison function to use.
* @return True if each element in [first2,last2) is contained in order
* within [first1,last1) according to comp. False otherwise.
* @ingroup setoperations
*
* This operation expects both [first1,last1) and [first2,last2) to be
* sorted. Searches for the presence of each element in [first2,last2)
* within [first1,last1), using comp to decide. The iterators over each
* range only move forward, so this is a linear algorithm. If an element
* in [first2,last2) is not found before the search iterator reaches @a
* last2, false is returned.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _Compare>
bool
includes(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first2, *__first1))
return false;
else if(__comp(*__first1, *__first2))
++__first1;
else
++__first1, ++__first2;
return __first2 == __last2;
}
/**
* @brief Return the union of two sorted ranges.
* @param first1 Start of first range.
* @param last1 End of first range.
* @param first2 Start of second range.
* @param last2 End of second range.
* @return End of the output range.
* @ingroup setoperations
*
* This operation iterates over both ranges, copying elements present in
* each range in order to the output range. Iterators increment for each
* range. When the current element of one range is less than the other,
* that element is copied and the iterator advanced. If an element is
* contained in both ranges, the element from the first range is copied and
* both ranges advance. The output range may not overlap either input
* range.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator>
_OutputIterator
set_union(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_InputIterator1>::value_type>)
while (__first1 != __last1 && __first2 != __last2) {
if (*__first1 < *__first2) {
*__result = *__first1;
++__first1;
}
else if (*__first2 < *__first1) {
*__result = *__first2;
++__first2;
}
else {
*__result = *__first1;
++__first1;
++__first2;
}
++__result;
}
return std::copy(__first2, __last2, std::copy(__first1, __last1, __result));
}
/**
* @brief Return the union of two sorted ranges using a comparison functor.
* @param first1 Start of first range.
* @param last1 End of first range.
* @param first2 Start of second range.
* @param last2 End of second range.
* @param comp The comparison functor.
* @return End of the output range.
* @ingroup setoperations
*
* This operation iterates over both ranges, copying elements present in
* each range in order to the output range. Iterators increment for each
* range. When the current element of one range is less than the other
* according to @a comp, that element is copied and the iterator advanced.
* If an equivalent element according to @a comp is contained in both
* ranges, the element from the first range is copied and both ranges
* advance. The output range may not overlap either input range.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator,
typename _Compare>
_OutputIterator
set_union(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result, _Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
while (__first1 != __last1 && __first2 != __last2) {
if (__comp(*__first1, *__first2)) {
*__result = *__first1;
++__first1;
}
else if (__comp(*__first2, *__first1)) {
*__result = *__first2;
++__first2;
}
else {
*__result = *__first1;
++__first1;
++__first2;
}
++__result;
}
return std::copy(__first2, __last2, std::copy(__first1, __last1, __result));
}
/**
* @brief Return the intersection of two sorted ranges.
* @param first1 Start of first range.
* @param last1 End of first range.
* @param first2 Start of second range.
* @param last2 End of second range.
* @return End of the output range.
* @ingroup setoperations
*
* This operation iterates over both ranges, copying elements present in
* both ranges in order to the output range. Iterators increment for each
* range. When the current element of one range is less than the other,
* that iterator advances. If an element is contained in both ranges, the
* element from the first range is copied and both ranges advance. The
* output range may not overlap either input range.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator>
_OutputIterator
set_intersection(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_InputIterator1>::value_type>)
while (__first1 != __last1 && __first2 != __last2)
if (*__first1 < *__first2)
++__first1;
else if (*__first2 < *__first1)
++__first2;
else {
*__result = *__first1;
++__first1;
++__first2;
++__result;
}
return __result;
}
/**
* @brief Return the intersection of two sorted ranges using comparison
* functor.
* @param first1 Start of first range.
* @param last1 End of first range.
* @param first2 Start of second range.
* @param last2 End of second range.
* @param comp The comparison functor.
* @return End of the output range.
* @ingroup setoperations
*
* This operation iterates over both ranges, copying elements present in
* both ranges in order to the output range. Iterators increment for each
* range. When the current element of one range is less than the other
* according to @a comp, that iterator advances. If an element is
* contained in both ranges according to @a comp, the element from the
* first range is copied and both ranges advance. The output range may not
* overlap either input range.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator,
typename _Compare>
_OutputIterator
set_intersection(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result, _Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first1, *__first2))
++__first1;
else if (__comp(*__first2, *__first1))
++__first2;
else {
*__result = *__first1;
++__first1;
++__first2;
++__result;
}
return __result;
}
/**
* @brief Return the difference of two sorted ranges.
* @param first1 Start of first range.
* @param last1 End of first range.
* @param first2 Start of second range.
* @param last2 End of second range.
* @return End of the output range.
* @ingroup setoperations
*
* This operation iterates over both ranges, copying elements present in
* the first range but not the second in order to the output range.
* Iterators increment for each range. When the current element of the
* first range is less than the second, that element is copied and the
* iterator advances. If the current element of the second range is less,
* the iterator advances, but no element is copied. If an element is
* contained in both ranges, no elements are copied and both ranges
* advance. The output range may not overlap either input range.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator>
_OutputIterator
set_difference(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_InputIterator1>::value_type>)
while (__first1 != __last1 && __first2 != __last2)
if (*__first1 < *__first2) {
*__result = *__first1;
++__first1;
++__result;
}
else if (*__first2 < *__first1)
++__first2;
else {
++__first1;
++__first2;
}
return std::copy(__first1, __last1, __result);
}
/**
* @brief Return the difference of two sorted ranges using comparison
* functor.
* @param first1 Start of first range.
* @param last1 End of first range.
* @param first2 Start of second range.
* @param last2 End of second range.
* @param comp The comparison functor.
* @return End of the output range.
* @ingroup setoperations
*
* This operation iterates over both ranges, copying elements present in
* the first range but not the second in order to the output range.
* Iterators increment for each range. When the current element of the
* first range is less than the second according to @a comp, that element
* is copied and the iterator advances. If the current element of the
* second range is less, no element is copied and the iterator advances.
* If an element is contained in both ranges according to @a comp, no
* elements are copied and both ranges advance. The output range may not
* overlap either input range.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator,
typename _Compare>
_OutputIterator
set_difference(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result, _Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first1, *__first2)) {
*__result = *__first1;
++__first1;
++__result;
}
else if (__comp(*__first2, *__first1))
++__first2;
else {
++__first1;
++__first2;
}
return std::copy(__first1, __last1, __result);
}
/**
* @brief Return the symmetric difference of two sorted ranges.
* @param first1 Start of first range.
* @param last1 End of first range.
* @param first2 Start of second range.
* @param last2 End of second range.
* @return End of the output range.
* @ingroup setoperations
*
* This operation iterates over both ranges, copying elements present in
* one range but not the other in order to the output range. Iterators
* increment for each range. When the current element of one range is less
* than the other, that element is copied and the iterator advances. If an
* element is contained in both ranges, no elements are copied and both
* ranges advance. The output range may not overlap either input range.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator>
_OutputIterator
set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_InputIterator1>::value_type>)
while (__first1 != __last1 && __first2 != __last2)
if (*__first1 < *__first2) {
*__result = *__first1;
++__first1;
++__result;
}
else if (*__first2 < *__first1) {
*__result = *__first2;
++__first2;
++__result;
}
else {
++__first1;
++__first2;
}
return std::copy(__first2, __last2, std::copy(__first1, __last1, __result));
}
/**
* @brief Return the symmetric difference of two sorted ranges using
* comparison functor.
* @param first1 Start of first range.
* @param last1 End of first range.
* @param first2 Start of second range.
* @param last2 End of second range.
* @param comp The comparison functor.
* @return End of the output range.
* @ingroup setoperations
*
* This operation iterates over both ranges, copying elements present in
* one range but not the other in order to the output range. Iterators
* increment for each range. When the current element of one range is less
* than the other according to @a comp, that element is copied and the
* iterator advances. If an element is contained in both ranges according
* to @a comp, no elements are copied and both ranges advance. The output
* range may not overlap either input range.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator,
typename _Compare>
_OutputIterator
set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result,
_Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_SameTypeConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first1, *__first2)) {
*__result = *__first1;
++__first1;
++__result;
}
else if (__comp(*__first2, *__first1)) {
*__result = *__first2;
++__first2;
++__result;
}
else {
++__first1;
++__first2;
}
return std::copy(__first2, __last2, std::copy(__first1, __last1, __result));
}
// min_element and max_element, with and without an explicitly supplied
// comparison function.
/**
* @brief Return the maximum element in a range.
* @param first Start of range.
* @param last End of range.
* @return Iterator referencing the first instance of the largest value.
*/
template<typename _ForwardIterator>
_ForwardIterator
max_element(_ForwardIterator __first, _ForwardIterator __last)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_ForwardIterator>::value_type>)
if (__first == __last) return __first;
_ForwardIterator __result = __first;
while (++__first != __last)
if (*__result < *__first)
__result = __first;
return __result;
}
/**
* @brief Return the maximum element in a range using comparison functor.
* @param first Start of range.
* @param last End of range.
* @param comp Comparison functor.
* @return Iterator referencing the first instance of the largest value
* according to comp.
*/
template<typename _ForwardIterator, typename _Compare>
_ForwardIterator
max_element(_ForwardIterator __first, _ForwardIterator __last,
_Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_ForwardIterator>::value_type,
typename iterator_traits<_ForwardIterator>::value_type>)
if (__first == __last) return __first;
_ForwardIterator __result = __first;
while (++__first != __last)
if (__comp(*__result, *__first)) __result = __first;
return __result;
}
/**
* @brief Return the minimum element in a range.
* @param first Start of range.
* @param last End of range.
* @return Iterator referencing the first instance of the smallest value.
*/
template<typename _ForwardIterator>
_ForwardIterator
min_element(_ForwardIterator __first, _ForwardIterator __last)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_ForwardIterator>::value_type>)
if (__first == __last) return __first;
_ForwardIterator __result = __first;
while (++__first != __last)
if (*__first < *__result)
__result = __first;
return __result;
}
/**
* @brief Return the minimum element in a range using comparison functor.
* @param first Start of range.
* @param last End of range.
* @param comp Comparison functor.
* @return Iterator referencing the first instance of the smallest value
* according to comp.
*/
template<typename _ForwardIterator, typename _Compare>
_ForwardIterator
min_element(_ForwardIterator __first, _ForwardIterator __last,
_Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_ForwardIterator>::value_type,
typename iterator_traits<_ForwardIterator>::value_type>)
if (__first == __last) return __first;
_ForwardIterator __result = __first;
while (++__first != __last)
if (__comp(*__first, *__result))
__result = __first;
return __result;
}
// next_permutation and prev_permutation, with and without an explicitly
// supplied comparison function.
/**
* @brief Permute range into the next "dictionary" ordering.
* @param first Start of range.
* @param last End of range.
* @return False if wrapped to first permutation, true otherwise.
*
* Treats all permutations of the range as a set of "dictionary" sorted
* sequences. Permutes the current sequence into the next one of this set.
* Returns true if there are more sequences to generate. If the sequence
* is the largest of the set, the smallest is generated and false returned.
*/
template<typename _BidirectionalIterator>
bool
next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_BidirectionalIterator>::value_type>)
if (__first == __last)
return false;
_BidirectionalIterator __i = __first;
++__i;
if (__i == __last)
return false;
__i = __last;
--__i;
for(;;) {
_BidirectionalIterator __ii = __i;
--__i;
if (*__i < *__ii) {
_BidirectionalIterator __j = __last;
while (!(*__i < *--__j))
{}
std::iter_swap(__i, __j);
std::reverse(__ii, __last);
return true;
}
if (__i == __first) {
std::reverse(__first, __last);
return false;
}
}
}
/**
* @brief Permute range into the next "dictionary" ordering using
* comparison functor.
* @param first Start of range.
* @param last End of range.
* @param comp
* @return False if wrapped to first permutation, true otherwise.
*
* Treats all permutations of the range [first,last) as a set of
* "dictionary" sorted sequences ordered by @a comp. Permutes the current
* sequence into the next one of this set. Returns true if there are more
* sequences to generate. If the sequence is the largest of the set, the
* smallest is generated and false returned.
*/
template<typename _BidirectionalIterator, typename _Compare>
bool
next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last,
_Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_BidirectionalIterator>::value_type,
typename iterator_traits<_BidirectionalIterator>::value_type>)
if (__first == __last)
return false;
_BidirectionalIterator __i = __first;
++__i;
if (__i == __last)
return false;
__i = __last;
--__i;
for(;;) {
_BidirectionalIterator __ii = __i;
--__i;
if (__comp(*__i, *__ii)) {
_BidirectionalIterator __j = __last;
while (!__comp(*__i, *--__j))
{}
std::iter_swap(__i, __j);
std::reverse(__ii, __last);
return true;
}
if (__i == __first) {
std::reverse(__first, __last);
return false;
}
}
}
/**
* @brief Permute range into the previous "dictionary" ordering.
* @param first Start of range.
* @param last End of range.
* @return False if wrapped to last permutation, true otherwise.
*
* Treats all permutations of the range as a set of "dictionary" sorted
* sequences. Permutes the current sequence into the previous one of this
* set. Returns true if there are more sequences to generate. If the
* sequence is the smallest of the set, the largest is generated and false
* returned.
*/
template<typename _BidirectionalIterator>
bool
prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator>)
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_BidirectionalIterator>::value_type>)
if (__first == __last)
return false;
_BidirectionalIterator __i = __first;
++__i;
if (__i == __last)
return false;
__i = __last;
--__i;
for(;;) {
_BidirectionalIterator __ii = __i;
--__i;
if (*__ii < *__i) {
_BidirectionalIterator __j = __last;
while (!(*--__j < *__i))
{}
std::iter_swap(__i, __j);
std::reverse(__ii, __last);
return true;
}
if (__i == __first) {
std::reverse(__first, __last);
return false;
}
}
}
/**
* @brief Permute range into the previous "dictionary" ordering using
* comparison functor.
* @param first Start of range.
* @param last End of range.
* @param comp
* @return False if wrapped to last permutation, true otherwise.
*
* Treats all permutations of the range [first,last) as a set of
* "dictionary" sorted sequences ordered by @a comp. Permutes the current
* sequence into the previous one of this set. Returns true if there are
* more sequences to generate. If the sequence is the smallest of the set,
* the largest is generated and false returned.
*/
template<typename _BidirectionalIterator, typename _Compare>
bool
prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last,
_Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
typename iterator_traits<_BidirectionalIterator>::value_type,
typename iterator_traits<_BidirectionalIterator>::value_type>)
if (__first == __last)
return false;
_BidirectionalIterator __i = __first;
++__i;
if (__i == __last)
return false;
__i = __last;
--__i;
for(;;) {
_BidirectionalIterator __ii = __i;
--__i;
if (__comp(*__ii, *__i)) {
_BidirectionalIterator __j = __last;
while (!__comp(*--__j, *__i))
{}
std::iter_swap(__i, __j);
std::reverse(__ii, __last);
return true;
}
if (__i == __first) {
std::reverse(__first, __last);
return false;
}
}
}
// find_first_of, with and without an explicitly supplied comparison function.
/**
* @brief Find element from a set in a sequence.
* @param first1 Start of range to search.
* @param last1 End of range to search.
* @param first2 Start of match candidates.
* @param last2 End of match candidates.
* @return The first iterator @c i in the range
* @p [first1,last1) such that @c *i == @p *(i2) such that i2 is an
* interator in [first2,last2), or @p last1 if no such iterator exists.
*
* Searches the range @p [first1,last1) for an element that is equal to
* some element in the range [first2,last2). If found, returns an iterator
* in the range [first1,last1), otherwise returns @p last1.
*/
template<typename _InputIterator, typename _ForwardIterator>
_InputIterator
find_first_of(_InputIterator __first1, _InputIterator __last1,
_ForwardIterator __first2, _ForwardIterator __last2)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_InputIterator>::value_type,
typename iterator_traits<_ForwardIterator>::value_type>)
for ( ; __first1 != __last1; ++__first1)
for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter)
if (*__first1 == *__iter)
return __first1;
return __last1;
}
/**
* @brief Find element from a set in a sequence using a predicate.
* @param first1 Start of range to search.
* @param last1 End of range to search.
* @param first2 Start of match candidates.
* @param last2 End of match candidates.
* @param comp Predicate to use.
* @return The first iterator @c i in the range
* @p [first1,last1) such that @c comp(*i, @p *(i2)) is true and i2 is an
* interator in [first2,last2), or @p last1 if no such iterator exists.
*
* Searches the range @p [first1,last1) for an element that is equal to
* some element in the range [first2,last2). If found, returns an iterator in
* the range [first1,last1), otherwise returns @p last1.
*/
template<typename _InputIterator, typename _ForwardIterator, typename _BinaryPredicate>
_InputIterator
find_first_of(_InputIterator __first1, _InputIterator __last1,
_ForwardIterator __first2, _ForwardIterator __last2,
_BinaryPredicate __comp)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_InputIterator>::value_type,
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_InputIterator>::value_type,
typename iterator_traits<_ForwardIterator>::value_type>)
for ( ; __first1 != __last1; ++__first1)
for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter)
if (__comp(*__first1, *__iter))
return __first1;
return __last1;
}
// find_end, with and without an explicitly supplied comparison function.
// Search [first2, last2) as a subsequence in [first1, last1), and return
// the *last* possible match. Note that find_end for bidirectional iterators
// is much faster than for forward iterators.
// find_end for forward iterators.
template<typename _ForwardIterator1, typename _ForwardIterator2>
_ForwardIterator1
__find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2,
forward_iterator_tag, forward_iterator_tag)
{
if (__first2 == __last2)
return __last1;
else {
_ForwardIterator1 __result = __last1;
while (1) {
_ForwardIterator1 __new_result
= std::search(__first1, __last1, __first2, __last2);
if (__new_result == __last1)
return __result;
else {
__result = __new_result;
__first1 = __new_result;
++__first1;
}
}
}
}
template<typename _ForwardIterator1, typename _ForwardIterator2,
typename _BinaryPredicate>
_ForwardIterator1
__find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2,
forward_iterator_tag, forward_iterator_tag,
_BinaryPredicate __comp)
{
if (__first2 == __last2)
return __last1;
else {
_ForwardIterator1 __result = __last1;
while (1) {
_ForwardIterator1 __new_result
= std::search(__first1, __last1, __first2, __last2, __comp);
if (__new_result == __last1)
return __result;
else {
__result = __new_result;
__first1 = __new_result;
++__first1;
}
}
}
}
// find_end for bidirectional iterators. Requires partial specialization.
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2>
_BidirectionalIterator1
__find_end(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1,
_BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2,
bidirectional_iterator_tag, bidirectional_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator1>)
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator2>)
typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1;
typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
_RevIterator1 __rlast1(__first1);
_RevIterator2 __rlast2(__first2);
_RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1,
_RevIterator2(__last2), __rlast2);
if (__rresult == __rlast1)
return __last1;
else {
_BidirectionalIterator1 __result = __rresult.base();
std::advance(__result, -std::distance(__first2, __last2));
return __result;
}
}
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
typename _BinaryPredicate>
_BidirectionalIterator1
__find_end(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1,
_BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2,
bidirectional_iterator_tag, bidirectional_iterator_tag,
_BinaryPredicate __comp)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator1>)
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BidirectionalIterator2>)
typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1;
typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
_RevIterator1 __rlast1(__first1);
_RevIterator2 __rlast2(__first2);
_RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1,
_RevIterator2(__last2), __rlast2,
__comp);
if (__rresult == __rlast1)
return __last1;
else {
_BidirectionalIterator1 __result = __rresult.base();
std::advance(__result, -std::distance(__first2, __last2));
return __result;
}
}
// Dispatching functions for find_end.
/**
* @brief Find last matching subsequence in a sequence.
* @param first1 Start of range to search.
* @param last1 End of range to search.
* @param first2 Start of sequence to match.
* @param last2 End of sequence to match.
* @return The last iterator @c i in the range
* @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N)
* for each @c N in the range @p [0,last2-first2), or @p last1 if no
* such iterator exists.
*
* Searches the range @p [first1,last1) for a sub-sequence that compares
* equal value-by-value with the sequence given by @p [first2,last2) and
* returns an iterator to the first element of the sub-sequence, or
* @p last1 if the sub-sequence is not found. The sub-sequence will be the
* last such subsequence contained in [first,last1).
*
* Because the sub-sequence must lie completely within the range
* @p [first1,last1) it must start at a position less than
* @p last1-(last2-first2) where @p last2-first2 is the length of the
* sub-sequence.
* This means that the returned iterator @c i will be in the range
* @p [first1,last1-(last2-first2))
*/
template<typename _ForwardIterator1, typename _ForwardIterator2>
inline _ForwardIterator1
find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_ForwardIterator1>::value_type,
typename iterator_traits<_ForwardIterator2>::value_type>)
return std::__find_end(__first1, __last1, __first2, __last2,
std::__iterator_category(__first1),
std::__iterator_category(__first2));
}
/**
* @brief Find last matching subsequence in a sequence using a predicate.
* @param first1 Start of range to search.
* @param last1 End of range to search.
* @param first2 Start of sequence to match.
* @param last2 End of sequence to match.
* @param comp The predicate to use.
* @return The last iterator @c i in the range
* @p [first1,last1-(last2-first2)) such that @c predicate(*(i+N), @p
* (first2+N)) is true for each @c N in the range @p [0,last2-first2), or
* @p last1 if no such iterator exists.
*
* Searches the range @p [first1,last1) for a sub-sequence that compares
* equal value-by-value with the sequence given by @p [first2,last2) using
* comp as a predicate and returns an iterator to the first element of the
* sub-sequence, or @p last1 if the sub-sequence is not found. The
* sub-sequence will be the last such subsequence contained in
* [first,last1).
*
* Because the sub-sequence must lie completely within the range
* @p [first1,last1) it must start at a position less than
* @p last1-(last2-first2) where @p last2-first2 is the length of the
* sub-sequence.
* This means that the returned iterator @c i will be in the range
* @p [first1,last1-(last2-first2))
*/
template<typename _ForwardIterator1, typename _ForwardIterator2,
typename _BinaryPredicate>
inline _ForwardIterator1
find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2,
_BinaryPredicate __comp)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator1>::value_type,
typename iterator_traits<_ForwardIterator2>::value_type>)
return std::__find_end(__first1, __last1, __first2, __last2,
std::__iterator_category(__first1),
std::__iterator_category(__first2),
__comp);
}
} // namespace std
#endif /* _ALGO_H */