mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-02-24 18:55:57 +08:00
362 lines
8.6 KiB
C
362 lines
8.6 KiB
C
/* Implementation of the RANDOM intrinsics
|
|
Copyright 2002 Free Software Foundation, Inc.
|
|
Contributed by Lars Segerlund <seger@linuxmail.org>
|
|
|
|
The algorithm was taken from the paper :
|
|
|
|
Mersenne Twister: 623-dimensionally equidistributed
|
|
uniform pseudorandom generator.
|
|
|
|
by: Makoto Matsumoto
|
|
Takuji Nishimura
|
|
|
|
Which appeared in the: ACM Transactions on Modelling and Computer
|
|
Simulations: Special Issue on Uniform Random Number
|
|
Generation. ( Early in 1998 ).
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
Ligbfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with libgfor; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <assert.h>
|
|
#include "libgfortran.h"
|
|
|
|
/*Use the 'big' generator by default ( period -> 2**19937 ). */
|
|
|
|
#define MT19937
|
|
|
|
/* Define the necessary constants for the algorithm. */
|
|
|
|
#ifdef MT19937
|
|
enum constants
|
|
{
|
|
N = 624, M = 397, R = 19, TU = 11, TS = 7, TT = 15, TL = 17
|
|
};
|
|
#define M_A 0x9908B0DF
|
|
#define T_B 0x9D2C5680
|
|
#define T_C 0xEFC60000
|
|
#else
|
|
enum constants
|
|
{
|
|
N = 351, M = 175, R = 19, TU = 11, TS = 7, TT = 15, TL = 17
|
|
};
|
|
#define M_A 0xE4BD75F5
|
|
#define T_B 0x655E5280
|
|
#define T_C 0xFFD58000
|
|
#endif
|
|
|
|
static int i = N;
|
|
static unsigned int seed[N];
|
|
|
|
/* This is the routine which handles the seeding of the generator,
|
|
and also reading and writing of the seed. */
|
|
|
|
void
|
|
random_seed (GFC_INTEGER_4 * size, const gfc_array_i4 * put,
|
|
const gfc_array_i4 * get)
|
|
{
|
|
/* Initialize the seed in system dependent manner. */
|
|
if (get == NULL && put == NULL && size == NULL)
|
|
{
|
|
int fd;
|
|
fd = open ("/dev/urandom", O_RDONLY);
|
|
if (fd == 0)
|
|
{
|
|
/* We dont have urandom. */
|
|
GFC_UINTEGER_4 s = (GFC_UINTEGER_4) seed;
|
|
for (i = 0; i < N; i++)
|
|
{
|
|
s = s * 29943829 - 1;
|
|
seed[i] = s;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Using urandom, might have a length issue. */
|
|
read (fd, &seed[0], sizeof (GFC_UINTEGER_4) * N);
|
|
close (fd);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Return the size of the seed */
|
|
if (size != NULL)
|
|
{
|
|
*size = N;
|
|
return;
|
|
}
|
|
|
|
/* if we have gotten to this pount we have a get or put
|
|
* now we check it the array fulfills the demands in the standard .
|
|
*/
|
|
|
|
/* Set the seed to PUT data */
|
|
if (put != NULL)
|
|
{
|
|
/* if the rank of the array is not 1 abort */
|
|
if (GFC_DESCRIPTOR_RANK (put) != 1)
|
|
abort ();
|
|
|
|
/* if the array is too small abort */
|
|
if (((put->dim[0].ubound + 1 - put->dim[0].lbound)) < N)
|
|
abort ();
|
|
|
|
/* If this is the case the array is a temporary */
|
|
if (put->dim[0].stride == 0)
|
|
return;
|
|
|
|
/* This code now should do correct strides. */
|
|
for (i = 0; i < N; i++)
|
|
seed[i] = put->data[i * put->dim[0].stride];
|
|
}
|
|
|
|
/* Return the seed to GET data */
|
|
if (get != NULL)
|
|
{
|
|
/* if the rank of the array is not 1 abort */
|
|
if (GFC_DESCRIPTOR_RANK (get) != 1)
|
|
abort ();
|
|
|
|
/* if the array is too small abort */
|
|
if (((get->dim[0].ubound + 1 - get->dim[0].lbound)) < N)
|
|
abort ();
|
|
|
|
/* If this is the case the array is a temporary */
|
|
if (get->dim[0].stride == 0)
|
|
return;
|
|
|
|
/* This code now should do correct strides. */
|
|
for (i = 0; i < N; i++)
|
|
get->data[i * get->dim[0].stride] = seed[i];
|
|
}
|
|
}
|
|
|
|
/* Here is the internal routine which generates the random numbers
|
|
in 'batches' based upon the need for a new batch.
|
|
It's an integer based routine known as 'Mersenne Twister'.
|
|
This implementation still lacks 'tempering' and a good verification,
|
|
but gives very good metrics. */
|
|
|
|
static void
|
|
random_generate (void)
|
|
{
|
|
/* 32 bits. */
|
|
GFC_UINTEGER_4 y;
|
|
|
|
/* Generate batch of N. */
|
|
int k, m;
|
|
for (k = 0, m = M; k < N - 1; k++)
|
|
{
|
|
y = (seed[k] & (-1 << R)) | (seed[k + 1] & ((1u << R) - 1));
|
|
seed[k] = seed[m] ^ (y >> 1) ^ (-(GFC_INTEGER_4) (y & 1) & M_A);
|
|
if (++m >= N)
|
|
m = 0;
|
|
}
|
|
|
|
y = (seed[N - 1] & (-1 << R)) | (seed[0] & ((1u << R) - 1));
|
|
seed[N - 1] = seed[M - 1] ^ (y >> 1) ^ (-(GFC_INTEGER_4) (y & 1) & M_A);
|
|
i = 0;
|
|
}
|
|
|
|
/* A routine to return a REAL(KIND=4). */
|
|
|
|
#define random_r4 prefix(random_r4)
|
|
void
|
|
random_r4 (GFC_REAL_4 * harv)
|
|
{
|
|
/* Regenerate if we need to. */
|
|
if (i >= N)
|
|
random_generate ();
|
|
|
|
/* Convert uint32 to REAL(KIND=4). */
|
|
*harv = (GFC_REAL_4) ((GFC_REAL_4) (GFC_UINTEGER_4) seed[i++] /
|
|
(GFC_REAL_4) (~(GFC_UINTEGER_4) 0));
|
|
}
|
|
|
|
/* A routine to return a REAL(KIND=8). */
|
|
|
|
#define random_r8 prefix(random_r8)
|
|
void
|
|
random_r8 (GFC_REAL_8 * harv)
|
|
{
|
|
/* Regenerate if we need to, may waste one 32-bit value. */
|
|
if ((i + 1) >= N)
|
|
random_generate ();
|
|
|
|
/* Convert two uint32 to a REAL(KIND=8). */
|
|
*harv = ((GFC_REAL_8) ((((GFC_UINTEGER_8) seed[i+1]) << 32) + seed[i])) /
|
|
(GFC_REAL_8) (~(GFC_UINTEGER_8) 0);
|
|
i += 2;
|
|
}
|
|
|
|
/* Code to handle arrays will follow here. */
|
|
|
|
/* REAL(KIND=4) REAL array. */
|
|
|
|
#define arandom_r4 prefix(arandom_r4)
|
|
void
|
|
arandom_r4 (gfc_array_r4 * harv)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS - 1];
|
|
index_type extent[GFC_MAX_DIMENSIONS - 1];
|
|
index_type stride[GFC_MAX_DIMENSIONS - 1];
|
|
index_type stride0;
|
|
index_type dim;
|
|
GFC_REAL_4 *dest;
|
|
int n;
|
|
|
|
dest = harv->data;
|
|
|
|
if (harv->dim[0].stride == 0)
|
|
harv->dim[0].stride = 1;
|
|
|
|
dim = GFC_DESCRIPTOR_RANK (harv);
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
stride[n] = harv->dim[n].stride;
|
|
extent[n] = harv->dim[n].ubound + 1 - harv->dim[n].lbound;
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
stride0 = stride[0];
|
|
|
|
while (dest)
|
|
{
|
|
/* Set the elements. */
|
|
|
|
/* regenerate if we need to */
|
|
if (i >= N)
|
|
random_generate ();
|
|
|
|
/* Convert uint32 to float in a hopefully g95 compiant manner */
|
|
*dest = (GFC_REAL_4) ((GFC_REAL_4) (GFC_UINTEGER_4) seed[i++] /
|
|
(GFC_REAL_4) (~(GFC_UINTEGER_4) 0));
|
|
|
|
/* Advance to the next element. */
|
|
dest += stride0;
|
|
count[0]++;
|
|
/* Advance to the next source element. */
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension,
|
|
reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products,
|
|
but this is a less
|
|
frequently used path so proabably not worth it. */
|
|
dest -= stride[n] * extent[n];
|
|
n++;
|
|
if (n == dim)
|
|
{
|
|
dest = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
dest += stride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* REAL(KIND=8) array. */
|
|
|
|
#define arandom_r8 prefix(arandom_r8)
|
|
void
|
|
arandom_r8 (gfc_array_r8 * harv)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS - 1];
|
|
index_type extent[GFC_MAX_DIMENSIONS - 1];
|
|
index_type stride[GFC_MAX_DIMENSIONS - 1];
|
|
index_type stride0;
|
|
index_type dim;
|
|
GFC_REAL_8 *dest;
|
|
int n;
|
|
|
|
dest = harv->data;
|
|
|
|
if (harv->dim[0].stride == 0)
|
|
harv->dim[0].stride = 1;
|
|
|
|
dim = GFC_DESCRIPTOR_RANK (harv);
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
stride[n] = harv->dim[n].stride;
|
|
extent[n] = harv->dim[n].ubound + 1 - harv->dim[n].lbound;
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
stride0 = stride[0];
|
|
|
|
while (dest)
|
|
{
|
|
/* Set the elements. */
|
|
|
|
/* regenerate if we need to, may waste one 32-bit value */
|
|
if ((i + 1) >= N)
|
|
random_generate ();
|
|
|
|
/* Convert two uint32 to a REAL(KIND=8). */
|
|
*dest = ((GFC_REAL_8) ((((GFC_UINTEGER_8) seed[i+1]) << 32) + seed[i])) /
|
|
(GFC_REAL_8) (~(GFC_UINTEGER_8) 0);
|
|
i += 2;
|
|
|
|
/* Advance to the next element. */
|
|
dest += stride0;
|
|
count[0]++;
|
|
/* Advance to the next source element. */
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension,
|
|
reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products,
|
|
but this is a less
|
|
frequently used path so proabably not worth it. */
|
|
dest -= stride[n] * extent[n];
|
|
n++;
|
|
if (n == dim)
|
|
{
|
|
dest = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
dest += stride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|