gcc/libjava/gnu/gcj/convert/Input_UTF8.java
Per Bothner 2012fd2db0 UnicodeToBytes.java (write(String,int,int,char[])): New overloading, allows greater efficiency.
�
	* gnu/gcj/convert/UnicodeToBytes.java (write(String,int,int,char[])):
	New overloading, allows greater efficiency.
	* gnu/gcj/convert/Output_8859_1.java (write(String,int,int,char[])):
	New overloading (for efficiency - avoids copying).
	* gnu/gcj/convert/Output_UTF8.java:  Fix typo: 0xC0 -> 0c3F.
	* gnu/gcj/convert/Input_UTF8.java:  Fix typos in bit masks.

From-SVN: r26494
1999-04-16 10:22:02 -07:00

114 lines
3.2 KiB
Java

/* Copyright (C) 1999 Cygnus Solutions
This file is part of libgcj.
This software is copyrighted work licensed under the terms of the
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
details. */
package gnu.gcj.convert;
/**
* Convert UTF8 to Unicode.
* @author Per Bothner <bothner@cygnus.com>
* @date Match 1999.
*/
public class Input_UTF8 extends BytesToUnicode
{
public String getName() { return "UTF8"; }
int partial = 0;
int partial_bytes_expected = 0;
//int suggogate_second = -1;
public int read (char[] outbuffer, int outpos, int outlength)
{
int origpos = outpos;
for (;;)
{
if (outpos >= outlength)
break;
if (inpos >= inlength)
break;
int b = inbuffer[inpos++];
if (b >= 0)
outbuffer[outpos++] = (char) b;
else
{
if ((b & 0xC0) == 0x80) // Continuation byte
{
partial = (partial << 6) | (b & 0x3F);
--partial_bytes_expected;
if (partial_bytes_expected == 1)
{
if (partial > (0xFFFF>>6))
{
// The next continuation byte will cause the result
// to exceed 0xFFFF, so we must use a surrogate pair.
// The "Unicode scalar value" (see D28 in section 3.7
// of the Unicode Standard 2.0) is defined as:
// value == (hi-0xD800)*0x400+(lo-0xDC00)+0x10000,
// where (hi, lo) is the Unicode surrogate pair.
// After reading the first three bytes, we have:
// partial == (value >> 6).
// Substituting and simplifying, we get:
// partial == (hi-0xD800)*0x10+((lo-0xDC00)>>6)+0x400.
// The definition lo>=0xDC00 && lo<=0xDFFF implies
// that (lo-0xDC00)>>6 is in the range 0..15.
// Hence we can infer (partial-0x400)>>4 == (hi-0xDB00)
// and we can emit the high-surrogate without waiting
// for the final byte:
outbuffer[outpos++] = (char) (0xDA00+(partial>>4));
// Now we want to set it up so that when we read
// the final byte on the next iteration, we will
// get the low-surrogate without special handling.
// I.e. we want:
// lo == (next_partial << 6) | (next & 0x3F)
// where next is the next input byte and next_partial
// is the value of partial at the end of this
// iteration. This implies: next_partial == lo >> 6.
// We can simplify the previous:
// partial == (hi-0xD800)*0x10+((lo-0xDC00)>>6)+0x400,
// to: partial == (hi-0xD800)*0x10+(lo>>6)+0x90.
// Inserting the values of hi and next_partial,
// and simplifying, we get: partial ==
// ( (partial-0x400)&~0xF) + next_partial + 0x90.
// Solving for next_partial, we get:
// next_partial = partial+0x400-0x90-(partial&~0xF):
// or: next_partial = (partial&0xF) + 0x370. Hence:
partial = (partial & 0xF) + 0x370;
}
}
else if (partial_bytes_expected == 0)
{
outbuffer[outpos++] = (char) partial;
partial = 0;
partial_bytes_expected = 0;
}
}
else // prefix byte
{
if ((b & 0xE0) == 0xC0)
{
partial = b & 0x1F;
partial_bytes_expected = 1;
}
else if ((b & 0xF0) == 0xE0)
{
partial = b & 0xF;
partial_bytes_expected = 2;
}
else
{
partial = b & 7;
partial_bytes_expected = 3;
}
}
}
}
return outpos - origpos;
}
}