mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-25 10:44:10 +08:00
725dc051ca
2000-10-05 Benjamin Kosnik <bkoz@cygnus.com> * include: New directory. * include/backward: New directory. * include/bits: New directory. * include/ext: New directory. * include/std: New directory. * include/*/*: Populate. * src/complex.cc: Adjust include of mathconf. * mkc++config (BASE_H): Add include. * src/Makefile.am: Support for topleve sources include directory. (INCLUDES): Add LIBMATH_INCLUDE. * src/Makefile.in: Regenerate. * math/Makefile.am (INCLUDES): Append /include. * math/Makefile.in: Regenerate. * libio/Makefile.am (INCLUDES): Add glibcpp_includedir. * libio/Makefile.in: Regenerate. From-SVN: r36723
733 lines
22 KiB
C++
733 lines
22 KiB
C++
/*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1996-1998
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/* NOTE: This is an internal header file, included by other STL headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef __SGI_STL_INTERNAL_FUNCTION_H
|
|
#define __SGI_STL_INTERNAL_FUNCTION_H
|
|
|
|
__STL_BEGIN_NAMESPACE
|
|
|
|
template <class _Arg, class _Result>
|
|
struct unary_function {
|
|
typedef _Arg argument_type;
|
|
typedef _Result result_type;
|
|
};
|
|
|
|
template <class _Arg1, class _Arg2, class _Result>
|
|
struct binary_function {
|
|
typedef _Arg1 first_argument_type;
|
|
typedef _Arg2 second_argument_type;
|
|
typedef _Result result_type;
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct plus : public binary_function<_Tp,_Tp,_Tp> {
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct minus : public binary_function<_Tp,_Tp,_Tp> {
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct divides : public binary_function<_Tp,_Tp,_Tp> {
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
|
|
};
|
|
|
|
// identity_element (not part of the C++ standard).
|
|
|
|
template <class _Tp> inline _Tp identity_element(plus<_Tp>) {
|
|
return _Tp(0);
|
|
}
|
|
template <class _Tp> inline _Tp identity_element(multiplies<_Tp>) {
|
|
return _Tp(1);
|
|
}
|
|
|
|
template <class _Tp>
|
|
struct modulus : public binary_function<_Tp,_Tp,_Tp>
|
|
{
|
|
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct negate : public unary_function<_Tp,_Tp>
|
|
{
|
|
_Tp operator()(const _Tp& __x) const { return -__x; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct equal_to : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct not_equal_to : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct greater : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct less : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct greater_equal : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct less_equal : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct logical_and : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct logical_or : public binary_function<_Tp,_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
|
|
};
|
|
|
|
template <class _Tp>
|
|
struct logical_not : public unary_function<_Tp,bool>
|
|
{
|
|
bool operator()(const _Tp& __x) const { return !__x; }
|
|
};
|
|
|
|
template <class _Predicate>
|
|
class unary_negate
|
|
: public unary_function<typename _Predicate::argument_type, bool> {
|
|
protected:
|
|
_Predicate _M_pred;
|
|
public:
|
|
explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
|
|
bool operator()(const typename _Predicate::argument_type& __x) const {
|
|
return !_M_pred(__x);
|
|
}
|
|
};
|
|
|
|
template <class _Predicate>
|
|
inline unary_negate<_Predicate>
|
|
not1(const _Predicate& __pred)
|
|
{
|
|
return unary_negate<_Predicate>(__pred);
|
|
}
|
|
|
|
template <class _Predicate>
|
|
class binary_negate
|
|
: public binary_function<typename _Predicate::first_argument_type,
|
|
typename _Predicate::second_argument_type,
|
|
bool> {
|
|
protected:
|
|
_Predicate _M_pred;
|
|
public:
|
|
explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
|
|
bool operator()(const typename _Predicate::first_argument_type& __x,
|
|
const typename _Predicate::second_argument_type& __y) const
|
|
{
|
|
return !_M_pred(__x, __y);
|
|
}
|
|
};
|
|
|
|
template <class _Predicate>
|
|
inline binary_negate<_Predicate>
|
|
not2(const _Predicate& __pred)
|
|
{
|
|
return binary_negate<_Predicate>(__pred);
|
|
}
|
|
|
|
template <class _Operation>
|
|
class binder1st
|
|
: public unary_function<typename _Operation::second_argument_type,
|
|
typename _Operation::result_type> {
|
|
protected:
|
|
_Operation op;
|
|
typename _Operation::first_argument_type value;
|
|
public:
|
|
binder1st(const _Operation& __x,
|
|
const typename _Operation::first_argument_type& __y)
|
|
: op(__x), value(__y) {}
|
|
typename _Operation::result_type
|
|
operator()(const typename _Operation::second_argument_type& __x) const {
|
|
return op(value, __x);
|
|
}
|
|
};
|
|
|
|
template <class _Operation, class _Tp>
|
|
inline binder1st<_Operation>
|
|
bind1st(const _Operation& __fn, const _Tp& __x)
|
|
{
|
|
typedef typename _Operation::first_argument_type _Arg1_type;
|
|
return binder1st<_Operation>(__fn, _Arg1_type(__x));
|
|
}
|
|
|
|
template <class _Operation>
|
|
class binder2nd
|
|
: public unary_function<typename _Operation::first_argument_type,
|
|
typename _Operation::result_type> {
|
|
protected:
|
|
_Operation op;
|
|
typename _Operation::second_argument_type value;
|
|
public:
|
|
binder2nd(const _Operation& __x,
|
|
const typename _Operation::second_argument_type& __y)
|
|
: op(__x), value(__y) {}
|
|
typename _Operation::result_type
|
|
operator()(const typename _Operation::first_argument_type& __x) const {
|
|
return op(__x, value);
|
|
}
|
|
};
|
|
|
|
template <class _Operation, class _Tp>
|
|
inline binder2nd<_Operation>
|
|
bind2nd(const _Operation& __fn, const _Tp& __x)
|
|
{
|
|
typedef typename _Operation::second_argument_type _Arg2_type;
|
|
return binder2nd<_Operation>(__fn, _Arg2_type(__x));
|
|
}
|
|
|
|
// unary_compose and binary_compose (extensions, not part of the standard).
|
|
|
|
template <class _Operation1, class _Operation2>
|
|
class unary_compose
|
|
: public unary_function<typename _Operation2::argument_type,
|
|
typename _Operation1::result_type>
|
|
{
|
|
protected:
|
|
_Operation1 _M_fn1;
|
|
_Operation2 _M_fn2;
|
|
public:
|
|
unary_compose(const _Operation1& __x, const _Operation2& __y)
|
|
: _M_fn1(__x), _M_fn2(__y) {}
|
|
typename _Operation1::result_type
|
|
operator()(const typename _Operation2::argument_type& __x) const {
|
|
return _M_fn1(_M_fn2(__x));
|
|
}
|
|
};
|
|
|
|
template <class _Operation1, class _Operation2>
|
|
inline unary_compose<_Operation1,_Operation2>
|
|
compose1(const _Operation1& __fn1, const _Operation2& __fn2)
|
|
{
|
|
return unary_compose<_Operation1,_Operation2>(__fn1, __fn2);
|
|
}
|
|
|
|
template <class _Operation1, class _Operation2, class _Operation3>
|
|
class binary_compose
|
|
: public unary_function<typename _Operation2::argument_type,
|
|
typename _Operation1::result_type> {
|
|
protected:
|
|
_Operation1 _M_fn1;
|
|
_Operation2 _M_fn2;
|
|
_Operation3 _M_fn3;
|
|
public:
|
|
binary_compose(const _Operation1& __x, const _Operation2& __y,
|
|
const _Operation3& __z)
|
|
: _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { }
|
|
typename _Operation1::result_type
|
|
operator()(const typename _Operation2::argument_type& __x) const {
|
|
return _M_fn1(_M_fn2(__x), _M_fn3(__x));
|
|
}
|
|
};
|
|
|
|
template <class _Operation1, class _Operation2, class _Operation3>
|
|
inline binary_compose<_Operation1, _Operation2, _Operation3>
|
|
compose2(const _Operation1& __fn1, const _Operation2& __fn2,
|
|
const _Operation3& __fn3)
|
|
{
|
|
return binary_compose<_Operation1,_Operation2,_Operation3>
|
|
(__fn1, __fn2, __fn3);
|
|
}
|
|
|
|
template <class _Arg, class _Result>
|
|
class pointer_to_unary_function : public unary_function<_Arg, _Result> {
|
|
protected:
|
|
_Result (*_M_ptr)(_Arg);
|
|
public:
|
|
pointer_to_unary_function() {}
|
|
explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
|
|
_Result operator()(_Arg __x) const { return _M_ptr(__x); }
|
|
};
|
|
|
|
template <class _Arg, class _Result>
|
|
inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
|
|
{
|
|
return pointer_to_unary_function<_Arg, _Result>(__x);
|
|
}
|
|
|
|
template <class _Arg1, class _Arg2, class _Result>
|
|
class pointer_to_binary_function :
|
|
public binary_function<_Arg1,_Arg2,_Result> {
|
|
protected:
|
|
_Result (*_M_ptr)(_Arg1, _Arg2);
|
|
public:
|
|
pointer_to_binary_function() {}
|
|
explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
|
|
: _M_ptr(__x) {}
|
|
_Result operator()(_Arg1 __x, _Arg2 __y) const {
|
|
return _M_ptr(__x, __y);
|
|
}
|
|
};
|
|
|
|
template <class _Arg1, class _Arg2, class _Result>
|
|
inline pointer_to_binary_function<_Arg1,_Arg2,_Result>
|
|
ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
|
|
return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
|
|
}
|
|
|
|
// identity is an extensions: it is not part of the standard.
|
|
template <class _Tp>
|
|
struct _Identity : public unary_function<_Tp,_Tp> {
|
|
_Tp& operator()(_Tp& __x) const { return __x; }
|
|
const _Tp& operator()(const _Tp& __x) const { return __x; }
|
|
};
|
|
|
|
template <class _Tp> struct identity : public _Identity<_Tp> {};
|
|
|
|
// select1st and select2nd are extensions: they are not part of the standard.
|
|
template <class _Pair>
|
|
struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
|
|
typename _Pair::first_type& operator()(_Pair& __x) const {
|
|
return __x.first;
|
|
}
|
|
const typename _Pair::first_type& operator()(const _Pair& __x) const {
|
|
return __x.first;
|
|
}
|
|
};
|
|
|
|
template <class _Pair>
|
|
struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
|
|
{
|
|
typename _Pair::second_type& operator()(_Pair& __x) const {
|
|
return __x.second;
|
|
}
|
|
const typename _Pair::second_type& operator()(const _Pair& __x) const {
|
|
return __x.second;
|
|
}
|
|
};
|
|
|
|
template <class _Pair> struct select1st : public _Select1st<_Pair> {};
|
|
template <class _Pair> struct select2nd : public _Select2nd<_Pair> {};
|
|
|
|
// project1st and project2nd are extensions: they are not part of the standard
|
|
template <class _Arg1, class _Arg2>
|
|
struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> {
|
|
_Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; }
|
|
};
|
|
|
|
template <class _Arg1, class _Arg2>
|
|
struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> {
|
|
_Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; }
|
|
};
|
|
|
|
template <class _Arg1, class _Arg2>
|
|
struct project1st : public _Project1st<_Arg1, _Arg2> {};
|
|
|
|
template <class _Arg1, class _Arg2>
|
|
struct project2nd : public _Project2nd<_Arg1, _Arg2> {};
|
|
|
|
// constant_void_fun, constant_unary_fun, and constant_binary_fun are
|
|
// extensions: they are not part of the standard. (The same, of course,
|
|
// is true of the helper functions constant0, constant1, and constant2.)
|
|
|
|
template <class _Result>
|
|
struct _Constant_void_fun {
|
|
typedef _Result result_type;
|
|
result_type _M_val;
|
|
|
|
_Constant_void_fun(const result_type& __v) : _M_val(__v) {}
|
|
const result_type& operator()() const { return _M_val; }
|
|
};
|
|
|
|
template <class _Result, class _Argument>
|
|
struct _Constant_unary_fun {
|
|
typedef _Argument argument_type;
|
|
typedef _Result result_type;
|
|
result_type _M_val;
|
|
|
|
_Constant_unary_fun(const result_type& __v) : _M_val(__v) {}
|
|
const result_type& operator()(const _Argument&) const { return _M_val; }
|
|
};
|
|
|
|
template <class _Result, class _Arg1, class _Arg2>
|
|
struct _Constant_binary_fun {
|
|
typedef _Arg1 first_argument_type;
|
|
typedef _Arg2 second_argument_type;
|
|
typedef _Result result_type;
|
|
_Result _M_val;
|
|
|
|
_Constant_binary_fun(const _Result& __v) : _M_val(__v) {}
|
|
const result_type& operator()(const _Arg1&, const _Arg2&) const {
|
|
return _M_val;
|
|
}
|
|
};
|
|
|
|
template <class _Result>
|
|
struct constant_void_fun : public _Constant_void_fun<_Result> {
|
|
constant_void_fun(const _Result& __v) : _Constant_void_fun<_Result>(__v) {}
|
|
};
|
|
|
|
|
|
template <class _Result,
|
|
class _Argument = _Result>
|
|
struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument>
|
|
{
|
|
constant_unary_fun(const _Result& __v)
|
|
: _Constant_unary_fun<_Result, _Argument>(__v) {}
|
|
};
|
|
|
|
|
|
template <class _Result,
|
|
class _Arg1 = _Result,
|
|
class _Arg2 = _Arg1>
|
|
struct constant_binary_fun
|
|
: public _Constant_binary_fun<_Result, _Arg1, _Arg2>
|
|
{
|
|
constant_binary_fun(const _Result& __v)
|
|
: _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {}
|
|
};
|
|
|
|
template <class _Result>
|
|
inline constant_void_fun<_Result> constant0(const _Result& __val)
|
|
{
|
|
return constant_void_fun<_Result>(__val);
|
|
}
|
|
|
|
template <class _Result>
|
|
inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val)
|
|
{
|
|
return constant_unary_fun<_Result,_Result>(__val);
|
|
}
|
|
|
|
template <class _Result>
|
|
inline constant_binary_fun<_Result,_Result,_Result>
|
|
constant2(const _Result& __val)
|
|
{
|
|
return constant_binary_fun<_Result,_Result,_Result>(__val);
|
|
}
|
|
|
|
// subtractive_rng is an extension: it is not part of the standard.
|
|
// Note: this code assumes that int is 32 bits.
|
|
class subtractive_rng : public unary_function<unsigned int, unsigned int> {
|
|
private:
|
|
unsigned int _M_table[55];
|
|
size_t _M_index1;
|
|
size_t _M_index2;
|
|
public:
|
|
unsigned int operator()(unsigned int __limit) {
|
|
_M_index1 = (_M_index1 + 1) % 55;
|
|
_M_index2 = (_M_index2 + 1) % 55;
|
|
_M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];
|
|
return _M_table[_M_index1] % __limit;
|
|
}
|
|
|
|
void _M_initialize(unsigned int __seed)
|
|
{
|
|
unsigned int __k = 1;
|
|
_M_table[54] = __seed;
|
|
size_t __i;
|
|
for (__i = 0; __i < 54; __i++) {
|
|
size_t __ii = (21 * (__i + 1) % 55) - 1;
|
|
_M_table[__ii] = __k;
|
|
__k = __seed - __k;
|
|
__seed = _M_table[__ii];
|
|
}
|
|
for (int __loop = 0; __loop < 4; __loop++) {
|
|
for (__i = 0; __i < 55; __i++)
|
|
_M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];
|
|
}
|
|
_M_index1 = 0;
|
|
_M_index2 = 31;
|
|
}
|
|
|
|
subtractive_rng(unsigned int __seed) { _M_initialize(__seed); }
|
|
subtractive_rng() { _M_initialize(161803398u); }
|
|
};
|
|
|
|
|
|
// Adaptor function objects: pointers to member functions.
|
|
|
|
// There are a total of 16 = 2^4 function objects in this family.
|
|
// (1) Member functions taking no arguments vs member functions taking
|
|
// one argument.
|
|
// (2) Call through pointer vs call through reference.
|
|
// (3) Member function with void return type vs member function with
|
|
// non-void return type.
|
|
// (4) Const vs non-const member function.
|
|
|
|
// Note that choice (3) is nothing more than a workaround: according
|
|
// to the draft, compilers should handle void and non-void the same way.
|
|
// This feature is not yet widely implemented, though. You can only use
|
|
// member functions returning void if your compiler supports partial
|
|
// specialization.
|
|
|
|
// All of this complexity is in the function objects themselves. You can
|
|
// ignore it by using the helper function mem_fun and mem_fun_ref,
|
|
// which create whichever type of adaptor is appropriate.
|
|
// (mem_fun1 and mem_fun1_ref are no longer part of the C++ standard,
|
|
// but they are provided for backward compatibility.)
|
|
|
|
|
|
template <class _Ret, class _Tp>
|
|
class mem_fun_t : public unary_function<_Tp*,_Ret> {
|
|
public:
|
|
explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
|
|
_Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)();
|
|
};
|
|
|
|
template <class _Ret, class _Tp>
|
|
class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
|
|
public:
|
|
explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
|
|
_Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)() const;
|
|
};
|
|
|
|
|
|
template <class _Ret, class _Tp>
|
|
class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
|
|
public:
|
|
explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
|
|
_Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)();
|
|
};
|
|
|
|
template <class _Ret, class _Tp>
|
|
class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
|
|
public:
|
|
explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
|
|
_Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)() const;
|
|
};
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
|
|
public:
|
|
explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
|
|
_Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)(_Arg);
|
|
};
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
|
|
public:
|
|
explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
|
|
_Ret operator()(const _Tp* __p, _Arg __x) const
|
|
{ return (__p->*_M_f)(__x); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)(_Arg) const;
|
|
};
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
|
|
public:
|
|
explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
|
|
_Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)(_Arg);
|
|
};
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
|
|
public:
|
|
explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
|
|
_Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
|
|
private:
|
|
_Ret (_Tp::*_M_f)(_Arg) const;
|
|
};
|
|
|
|
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
|
|
|
|
template <class _Tp>
|
|
class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
|
|
public:
|
|
explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
|
|
void operator()(_Tp* __p) const { (__p->*_M_f)(); }
|
|
private:
|
|
void (_Tp::*_M_f)();
|
|
};
|
|
|
|
template <class _Tp>
|
|
class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
|
|
public:
|
|
explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
|
|
void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
|
|
private:
|
|
void (_Tp::*_M_f)() const;
|
|
};
|
|
|
|
template <class _Tp>
|
|
class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
|
|
public:
|
|
explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
|
|
void operator()(_Tp& __r) const { (__r.*_M_f)(); }
|
|
private:
|
|
void (_Tp::*_M_f)();
|
|
};
|
|
|
|
template <class _Tp>
|
|
class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
|
|
public:
|
|
explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
|
|
void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
|
|
private:
|
|
void (_Tp::*_M_f)() const;
|
|
};
|
|
|
|
template <class _Tp, class _Arg>
|
|
class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
|
|
public:
|
|
explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
|
|
void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
|
|
private:
|
|
void (_Tp::*_M_f)(_Arg);
|
|
};
|
|
|
|
template <class _Tp, class _Arg>
|
|
class const_mem_fun1_t<void, _Tp, _Arg>
|
|
: public binary_function<const _Tp*,_Arg,void> {
|
|
public:
|
|
explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
|
|
void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
|
|
private:
|
|
void (_Tp::*_M_f)(_Arg) const;
|
|
};
|
|
|
|
template <class _Tp, class _Arg>
|
|
class mem_fun1_ref_t<void, _Tp, _Arg>
|
|
: public binary_function<_Tp,_Arg,void> {
|
|
public:
|
|
explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
|
|
void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
|
|
private:
|
|
void (_Tp::*_M_f)(_Arg);
|
|
};
|
|
|
|
template <class _Tp, class _Arg>
|
|
class const_mem_fun1_ref_t<void, _Tp, _Arg>
|
|
: public binary_function<_Tp,_Arg,void> {
|
|
public:
|
|
explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
|
|
void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
|
|
private:
|
|
void (_Tp::*_M_f)(_Arg) const;
|
|
};
|
|
|
|
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
|
|
|
|
// Mem_fun adaptor helper functions. There are only two:
|
|
// mem_fun and mem_fun_ref. (mem_fun1 and mem_fun1_ref
|
|
// are provided for backward compatibility, but they are no longer
|
|
// part of the C++ standard.)
|
|
|
|
template <class _Ret, class _Tp>
|
|
inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
|
|
{ return mem_fun_t<_Ret,_Tp>(__f); }
|
|
|
|
template <class _Ret, class _Tp>
|
|
inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
|
|
{ return const_mem_fun_t<_Ret,_Tp>(__f); }
|
|
|
|
template <class _Ret, class _Tp>
|
|
inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)())
|
|
{ return mem_fun_ref_t<_Ret,_Tp>(__f); }
|
|
|
|
template <class _Ret, class _Tp>
|
|
inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
|
|
{ return const_mem_fun_ref_t<_Ret,_Tp>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
|
|
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
|
|
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
|
|
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
|
|
mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
|
|
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg))
|
|
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const)
|
|
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg))
|
|
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
template <class _Ret, class _Tp, class _Arg>
|
|
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
|
|
mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const)
|
|
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
|
|
|
|
__STL_END_NAMESPACE
|
|
|
|
#endif /* __SGI_STL_INTERNAL_FUNCTION_H */
|
|
|
|
// Local Variables:
|
|
// mode:C++
|
|
// End:
|