mirror of
git://gcc.gnu.org/git/gcc.git
synced 2024-11-24 11:54:01 +08:00
8dc2499aa6
gotools/ * Makefile.am (go_cmd_cgo_files): Add ast_go118.go (check-go-tool): Copy golang.org/x/tools directories. * Makefile.in: Regenerate. Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/384695
417 lines
13 KiB
Go
417 lines
13 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector: finalizers and block profiling.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"internal/goarch"
|
|
"runtime/internal/atomic"
|
|
"unsafe"
|
|
)
|
|
|
|
// finblock is an array of finalizers to be executed. finblocks are
|
|
// arranged in a linked list for the finalizer queue.
|
|
//
|
|
// finblock is allocated from non-GC'd memory, so any heap pointers
|
|
// must be specially handled. GC currently assumes that the finalizer
|
|
// queue does not grow during marking (but it can shrink).
|
|
//
|
|
//go:notinheap
|
|
type finblock struct {
|
|
alllink *finblock
|
|
next *finblock
|
|
cnt uint32
|
|
_ int32
|
|
fin [(_FinBlockSize - 2*goarch.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer
|
|
}
|
|
|
|
var finlock mutex // protects the following variables
|
|
var fing *g // goroutine that runs finalizers
|
|
var finq *finblock // list of finalizers that are to be executed
|
|
var finc *finblock // cache of free blocks
|
|
var finptrmask [_FinBlockSize / goarch.PtrSize / 8]byte
|
|
var fingwait bool
|
|
var fingwake bool
|
|
var allfin *finblock // list of all blocks
|
|
|
|
// NOTE: Layout known to queuefinalizer.
|
|
type finalizer struct {
|
|
fn *funcval // function to call (may be a heap pointer)
|
|
arg unsafe.Pointer // ptr to object (may be a heap pointer)
|
|
ft *functype // type of fn (unlikely, but may be a heap pointer)
|
|
ot *ptrtype // type of ptr to object (may be a heap pointer)
|
|
}
|
|
|
|
func queuefinalizer(p unsafe.Pointer, fn *funcval, ft *functype, ot *ptrtype) {
|
|
if gcphase != _GCoff {
|
|
// Currently we assume that the finalizer queue won't
|
|
// grow during marking so we don't have to rescan it
|
|
// during mark termination. If we ever need to lift
|
|
// this assumption, we can do it by adding the
|
|
// necessary barriers to queuefinalizer (which it may
|
|
// have automatically).
|
|
throw("queuefinalizer during GC")
|
|
}
|
|
|
|
lock(&finlock)
|
|
if finq == nil || finq.cnt == uint32(len(finq.fin)) {
|
|
if finc == nil {
|
|
finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gcMiscSys))
|
|
finc.alllink = allfin
|
|
allfin = finc
|
|
if finptrmask[0] == 0 {
|
|
// Build pointer mask for Finalizer array in block.
|
|
// We allocate values of type finalizer in
|
|
// finblock values. Since these values are
|
|
// allocated by persistentalloc, they require
|
|
// special scanning during GC. finptrmask is a
|
|
// pointer mask to use while scanning.
|
|
// Since all the values in finalizer are
|
|
// pointers, just turn all bits on.
|
|
for i := range finptrmask {
|
|
finptrmask[i] = 0xff
|
|
}
|
|
}
|
|
}
|
|
block := finc
|
|
finc = block.next
|
|
block.next = finq
|
|
finq = block
|
|
}
|
|
f := &finq.fin[finq.cnt]
|
|
atomic.Xadd(&finq.cnt, +1) // Sync with markroots
|
|
f.fn = fn
|
|
f.ft = ft
|
|
f.ot = ot
|
|
f.arg = p
|
|
fingwake = true
|
|
unlock(&finlock)
|
|
}
|
|
|
|
//go:nowritebarrier
|
|
func iterate_finq(callback func(*funcval, unsafe.Pointer, *functype, *ptrtype)) {
|
|
for fb := allfin; fb != nil; fb = fb.alllink {
|
|
for i := uint32(0); i < fb.cnt; i++ {
|
|
f := &fb.fin[i]
|
|
callback(f.fn, f.arg, f.ft, f.ot)
|
|
}
|
|
}
|
|
}
|
|
|
|
func wakefing() *g {
|
|
var res *g
|
|
lock(&finlock)
|
|
if fingwait && fingwake {
|
|
fingwait = false
|
|
fingwake = false
|
|
res = fing
|
|
}
|
|
unlock(&finlock)
|
|
return res
|
|
}
|
|
|
|
var (
|
|
fingCreate uint32
|
|
)
|
|
|
|
func createfing() {
|
|
// start the finalizer goroutine exactly once
|
|
if fingCreate == 0 && atomic.Cas(&fingCreate, 0, 1) {
|
|
expectSystemGoroutine()
|
|
go runfinq()
|
|
}
|
|
}
|
|
|
|
// This is the goroutine that runs all of the finalizers
|
|
func runfinq() {
|
|
setSystemGoroutine()
|
|
|
|
var (
|
|
ef eface
|
|
ifac iface
|
|
)
|
|
|
|
gp := getg()
|
|
gp.isFinalizerGoroutine = true
|
|
for {
|
|
lock(&finlock)
|
|
fb := finq
|
|
finq = nil
|
|
if fb == nil {
|
|
fing = gp
|
|
fingwait = true
|
|
goparkunlock(&finlock, waitReasonFinalizerWait, traceEvGoBlock, 1)
|
|
continue
|
|
}
|
|
unlock(&finlock)
|
|
for fb != nil {
|
|
for i := fb.cnt; i > 0; i-- {
|
|
f := &fb.fin[i-1]
|
|
|
|
if f.ft == nil {
|
|
throw("missing type in runfinq")
|
|
}
|
|
fint := f.ft.in[0]
|
|
var param unsafe.Pointer
|
|
switch fint.kind & kindMask {
|
|
case kindPtr:
|
|
// direct use of pointer
|
|
param = unsafe.Pointer(&f.arg)
|
|
case kindInterface:
|
|
ityp := (*interfacetype)(unsafe.Pointer(fint))
|
|
if len(ityp.methods) == 0 {
|
|
// set up with empty interface
|
|
ef._type = &f.ot.typ
|
|
ef.data = f.arg
|
|
param = unsafe.Pointer(&ef)
|
|
} else {
|
|
// convert to interface with methods
|
|
// this conversion is guaranteed to succeed - we checked in SetFinalizer
|
|
ifac.tab = getitab(fint, &f.ot.typ, true)
|
|
ifac.data = f.arg
|
|
param = unsafe.Pointer(&ifac)
|
|
}
|
|
default:
|
|
throw("bad kind in runfinq")
|
|
}
|
|
// This is not a system goroutine while
|
|
// running the actual finalizer.
|
|
// This matters because we want this
|
|
// goroutine to appear in a stack dump
|
|
// if the finalizer crashes.
|
|
// The gc toolchain handles this using
|
|
// a global variable fingRunning,
|
|
// but we don't need that.
|
|
gp.isSystemGoroutine = false
|
|
reflectcall(f.ft, f.fn, false, false, ¶m, nil)
|
|
gp.isSystemGoroutine = true
|
|
|
|
// Drop finalizer queue heap references
|
|
// before hiding them from markroot.
|
|
// This also ensures these will be
|
|
// clear if we reuse the finalizer.
|
|
f.fn = nil
|
|
f.arg = nil
|
|
f.ot = nil
|
|
atomic.Store(&fb.cnt, i-1)
|
|
}
|
|
next := fb.next
|
|
lock(&finlock)
|
|
fb.next = finc
|
|
finc = fb
|
|
unlock(&finlock)
|
|
fb = next
|
|
}
|
|
}
|
|
}
|
|
|
|
// SetFinalizer sets the finalizer associated with obj to the provided
|
|
// finalizer function. When the garbage collector finds an unreachable block
|
|
// with an associated finalizer, it clears the association and runs
|
|
// finalizer(obj) in a separate goroutine. This makes obj reachable again,
|
|
// but now without an associated finalizer. Assuming that SetFinalizer
|
|
// is not called again, the next time the garbage collector sees
|
|
// that obj is unreachable, it will free obj.
|
|
//
|
|
// SetFinalizer(obj, nil) clears any finalizer associated with obj.
|
|
//
|
|
// The argument obj must be a pointer to an object allocated by calling
|
|
// new, by taking the address of a composite literal, or by taking the
|
|
// address of a local variable.
|
|
// The argument finalizer must be a function that takes a single argument
|
|
// to which obj's type can be assigned, and can have arbitrary ignored return
|
|
// values. If either of these is not true, SetFinalizer may abort the
|
|
// program.
|
|
//
|
|
// Finalizers are run in dependency order: if A points at B, both have
|
|
// finalizers, and they are otherwise unreachable, only the finalizer
|
|
// for A runs; once A is freed, the finalizer for B can run.
|
|
// If a cyclic structure includes a block with a finalizer, that
|
|
// cycle is not guaranteed to be garbage collected and the finalizer
|
|
// is not guaranteed to run, because there is no ordering that
|
|
// respects the dependencies.
|
|
//
|
|
// The finalizer is scheduled to run at some arbitrary time after the
|
|
// program can no longer reach the object to which obj points.
|
|
// There is no guarantee that finalizers will run before a program exits,
|
|
// so typically they are useful only for releasing non-memory resources
|
|
// associated with an object during a long-running program.
|
|
// For example, an os.File object could use a finalizer to close the
|
|
// associated operating system file descriptor when a program discards
|
|
// an os.File without calling Close, but it would be a mistake
|
|
// to depend on a finalizer to flush an in-memory I/O buffer such as a
|
|
// bufio.Writer, because the buffer would not be flushed at program exit.
|
|
//
|
|
// It is not guaranteed that a finalizer will run if the size of *obj is
|
|
// zero bytes.
|
|
//
|
|
// It is not guaranteed that a finalizer will run for objects allocated
|
|
// in initializers for package-level variables. Such objects may be
|
|
// linker-allocated, not heap-allocated.
|
|
//
|
|
// A finalizer may run as soon as an object becomes unreachable.
|
|
// In order to use finalizers correctly, the program must ensure that
|
|
// the object is reachable until it is no longer required.
|
|
// Objects stored in global variables, or that can be found by tracing
|
|
// pointers from a global variable, are reachable. For other objects,
|
|
// pass the object to a call of the KeepAlive function to mark the
|
|
// last point in the function where the object must be reachable.
|
|
//
|
|
// For example, if p points to a struct, such as os.File, that contains
|
|
// a file descriptor d, and p has a finalizer that closes that file
|
|
// descriptor, and if the last use of p in a function is a call to
|
|
// syscall.Write(p.d, buf, size), then p may be unreachable as soon as
|
|
// the program enters syscall.Write. The finalizer may run at that moment,
|
|
// closing p.d, causing syscall.Write to fail because it is writing to
|
|
// a closed file descriptor (or, worse, to an entirely different
|
|
// file descriptor opened by a different goroutine). To avoid this problem,
|
|
// call runtime.KeepAlive(p) after the call to syscall.Write.
|
|
//
|
|
// A single goroutine runs all finalizers for a program, sequentially.
|
|
// If a finalizer must run for a long time, it should do so by starting
|
|
// a new goroutine.
|
|
func SetFinalizer(obj any, finalizer any) {
|
|
if debug.sbrk != 0 {
|
|
// debug.sbrk never frees memory, so no finalizers run
|
|
// (and we don't have the data structures to record them).
|
|
return
|
|
}
|
|
e := efaceOf(&obj)
|
|
etyp := e._type
|
|
if etyp == nil {
|
|
throw("runtime.SetFinalizer: first argument is nil")
|
|
}
|
|
if etyp.kind&kindMask != kindPtr {
|
|
throw("runtime.SetFinalizer: first argument is " + etyp.string() + ", not pointer")
|
|
}
|
|
ot := (*ptrtype)(unsafe.Pointer(etyp))
|
|
if ot.elem == nil {
|
|
throw("nil elem type!")
|
|
}
|
|
|
|
// find the containing object
|
|
base, _, _ := findObject(uintptr(e.data), 0, 0, false)
|
|
|
|
if base == 0 {
|
|
// 0-length objects are okay.
|
|
if e.data == unsafe.Pointer(&zerobase) {
|
|
return
|
|
}
|
|
|
|
// Global initializers might be linker-allocated.
|
|
// var Foo = &Object{}
|
|
// func main() {
|
|
// runtime.SetFinalizer(Foo, nil)
|
|
// }
|
|
// The relevant segments are: noptrdata, data, bss, noptrbss.
|
|
// We cannot assume they are in any order or even contiguous,
|
|
// due to external linking.
|
|
//
|
|
// For gccgo we have no reliable way to detect them,
|
|
// so we just return.
|
|
return
|
|
}
|
|
|
|
if uintptr(e.data) != base {
|
|
// As an implementation detail we allow to set finalizers for an inner byte
|
|
// of an object if it could come from tiny alloc (see mallocgc for details).
|
|
if ot.elem == nil || ot.elem.ptrdata != 0 || ot.elem.size >= maxTinySize {
|
|
throw("runtime.SetFinalizer: pointer not at beginning of allocated block")
|
|
}
|
|
}
|
|
|
|
f := efaceOf(&finalizer)
|
|
ftyp := f._type
|
|
if ftyp == nil {
|
|
// switch to system stack and remove finalizer
|
|
systemstack(func() {
|
|
removefinalizer(e.data)
|
|
})
|
|
return
|
|
}
|
|
|
|
if ftyp.kind&kindMask != kindFunc {
|
|
throw("runtime.SetFinalizer: second argument is " + ftyp.string() + ", not a function")
|
|
}
|
|
ft := (*functype)(unsafe.Pointer(ftyp))
|
|
if ft.dotdotdot {
|
|
throw("runtime.SetFinalizer: cannot pass " + etyp.string() + " to finalizer " + ftyp.string() + " because dotdotdot")
|
|
}
|
|
if len(ft.in) != 1 {
|
|
throw("runtime.SetFinalizer: cannot pass " + etyp.string() + " to finalizer " + ftyp.string())
|
|
}
|
|
fint := ft.in[0]
|
|
switch {
|
|
case fint == etyp:
|
|
// ok - same type
|
|
goto okarg
|
|
case fint.kind&kindMask == kindPtr:
|
|
if (fint.uncommontype == nil || etyp.uncommontype == nil) && (*ptrtype)(unsafe.Pointer(fint)).elem == ot.elem {
|
|
// ok - not same type, but both pointers,
|
|
// one or the other is unnamed, and same element type, so assignable.
|
|
goto okarg
|
|
}
|
|
case fint.kind&kindMask == kindInterface:
|
|
ityp := (*interfacetype)(unsafe.Pointer(fint))
|
|
if len(ityp.methods) == 0 {
|
|
// ok - satisfies empty interface
|
|
goto okarg
|
|
}
|
|
if getitab(fint, etyp, true) == nil {
|
|
goto okarg
|
|
}
|
|
}
|
|
throw("runtime.SetFinalizer: cannot pass " + etyp.string() + " to finalizer " + ftyp.string())
|
|
okarg:
|
|
// make sure we have a finalizer goroutine
|
|
createfing()
|
|
|
|
systemstack(func() {
|
|
data := f.data
|
|
if !isDirectIface(ftyp) {
|
|
data = *(*unsafe.Pointer)(data)
|
|
}
|
|
if !addfinalizer(e.data, (*funcval)(data), ft, ot) {
|
|
throw("runtime.SetFinalizer: finalizer already set")
|
|
}
|
|
})
|
|
}
|
|
|
|
// Mark KeepAlive as noinline so that it is easily detectable as an intrinsic.
|
|
//go:noinline
|
|
|
|
// KeepAlive marks its argument as currently reachable.
|
|
// This ensures that the object is not freed, and its finalizer is not run,
|
|
// before the point in the program where KeepAlive is called.
|
|
//
|
|
// A very simplified example showing where KeepAlive is required:
|
|
// type File struct { d int }
|
|
// d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0)
|
|
// // ... do something if err != nil ...
|
|
// p := &File{d}
|
|
// runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) })
|
|
// var buf [10]byte
|
|
// n, err := syscall.Read(p.d, buf[:])
|
|
// // Ensure p is not finalized until Read returns.
|
|
// runtime.KeepAlive(p)
|
|
// // No more uses of p after this point.
|
|
//
|
|
// Without the KeepAlive call, the finalizer could run at the start of
|
|
// syscall.Read, closing the file descriptor before syscall.Read makes
|
|
// the actual system call.
|
|
//
|
|
// Note: KeepAlive should only be used to prevent finalizers from
|
|
// running prematurely. In particular, when used with unsafe.Pointer,
|
|
// the rules for valid uses of unsafe.Pointer still apply.
|
|
func KeepAlive(x any) {
|
|
// Introduce a use of x that the compiler can't eliminate.
|
|
// This makes sure x is alive on entry. We need x to be alive
|
|
// on entry for "defer runtime.KeepAlive(x)"; see issue 21402.
|
|
if cgoAlwaysFalse {
|
|
println(x)
|
|
}
|
|
}
|