mirror of
git://gcc.gnu.org/git/gcc.git
synced 2024-11-28 04:19:55 +08:00
265 lines
6.3 KiB
C
265 lines
6.3 KiB
C
/* Implementation of the MAXLOC intrinsic
|
|
Copyright (C) 2017-2024 Free Software Foundation, Inc.
|
|
Contributed by Thomas Koenig
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
|
|
|
|
#if defined (HAVE_GFC_UINTEGER_4) && defined (HAVE_GFC_UINTEGER_4)
|
|
|
|
static inline int
|
|
compare_fcn (const GFC_UINTEGER_4 *a, const GFC_UINTEGER_4 *b, gfc_charlen_type n)
|
|
{
|
|
if (sizeof (GFC_UINTEGER_4) == 1)
|
|
return memcmp (a, b, n);
|
|
else
|
|
return memcmp_char4 (a, b, n);
|
|
|
|
}
|
|
|
|
#define INITVAL 0
|
|
|
|
extern void maxval0_s4 (GFC_UINTEGER_4 * restrict,
|
|
gfc_charlen_type,
|
|
gfc_array_s4 * const restrict array, gfc_charlen_type);
|
|
export_proto(maxval0_s4);
|
|
|
|
void
|
|
maxval0_s4 (GFC_UINTEGER_4 * restrict ret,
|
|
gfc_charlen_type xlen,
|
|
gfc_array_s4 * const restrict array, gfc_charlen_type len)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
const GFC_UINTEGER_4 *base;
|
|
index_type rank;
|
|
index_type n;
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
if (rank <= 0)
|
|
runtime_error ("Rank of array needs to be > 0");
|
|
|
|
assert (xlen == len);
|
|
|
|
/* Initialize return value. */
|
|
memset (ret, INITVAL, sizeof(*ret) * len);
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len;
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
count[n] = 0;
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
base = array->base_addr;
|
|
|
|
{
|
|
|
|
const GFC_UINTEGER_4 *retval;
|
|
retval = ret;
|
|
|
|
while (base)
|
|
{
|
|
do
|
|
{
|
|
/* Implementation start. */
|
|
|
|
if (compare_fcn (base, retval, len) > 0)
|
|
{
|
|
retval = base;
|
|
}
|
|
/* Implementation end. */
|
|
/* Advance to the next element. */
|
|
base += sstride[0];
|
|
}
|
|
while (++count[0] != extent[0]);
|
|
n = 0;
|
|
do
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
{
|
|
/* Break out of the loop. */
|
|
base = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
}
|
|
}
|
|
while (count[n] == extent[n]);
|
|
}
|
|
memcpy (ret, retval, len * sizeof (*ret));
|
|
}
|
|
}
|
|
|
|
|
|
extern void mmaxval0_s4 (GFC_UINTEGER_4 * restrict,
|
|
gfc_charlen_type, gfc_array_s4 * const restrict array,
|
|
gfc_array_l1 * const restrict mask, gfc_charlen_type len);
|
|
export_proto(mmaxval0_s4);
|
|
|
|
void
|
|
mmaxval0_s4 (GFC_UINTEGER_4 * const restrict ret,
|
|
gfc_charlen_type xlen, gfc_array_s4 * const restrict array,
|
|
gfc_array_l1 * const restrict mask, gfc_charlen_type len)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
const GFC_UINTEGER_4 *base;
|
|
GFC_LOGICAL_1 *mbase;
|
|
int rank;
|
|
index_type n;
|
|
int mask_kind;
|
|
|
|
if (mask == NULL)
|
|
{
|
|
maxval0_s4 (ret, xlen, array, len);
|
|
return;
|
|
}
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
if (rank <= 0)
|
|
runtime_error ("Rank of array needs to be > 0");
|
|
|
|
assert (xlen == len);
|
|
|
|
/* Initialize return value. */
|
|
memset (ret, INITVAL, sizeof(*ret) * len);
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
mbase = mask->base_addr;
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| mask_kind == 16
|
|
#endif
|
|
)
|
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
|
else
|
|
runtime_error ("Funny sized logical array");
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len;
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
count[n] = 0;
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
base = array->base_addr;
|
|
{
|
|
|
|
const GFC_UINTEGER_4 *retval;
|
|
|
|
retval = ret;
|
|
|
|
while (base)
|
|
{
|
|
do
|
|
{
|
|
/* Implementation start. */
|
|
|
|
if (*mbase && compare_fcn (base, retval, len) > 0)
|
|
{
|
|
retval = base;
|
|
}
|
|
/* Implementation end. */
|
|
/* Advance to the next element. */
|
|
base += sstride[0];
|
|
mbase += mstride[0];
|
|
}
|
|
while (++count[0] != extent[0]);
|
|
n = 0;
|
|
do
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
mbase -= mstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
{
|
|
/* Break out of the loop. */
|
|
base = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
mbase += mstride[n];
|
|
}
|
|
}
|
|
while (count[n] == extent[n]);
|
|
}
|
|
memcpy (ret, retval, len * sizeof (*ret));
|
|
}
|
|
}
|
|
|
|
|
|
extern void smaxval0_s4 (GFC_UINTEGER_4 * restrict,
|
|
gfc_charlen_type,
|
|
gfc_array_s4 * const restrict array, GFC_LOGICAL_4 *, gfc_charlen_type);
|
|
export_proto(smaxval0_s4);
|
|
|
|
void
|
|
smaxval0_s4 (GFC_UINTEGER_4 * restrict ret,
|
|
gfc_charlen_type xlen, gfc_array_s4 * const restrict array,
|
|
GFC_LOGICAL_4 *mask, gfc_charlen_type len)
|
|
|
|
{
|
|
if (mask == NULL || *mask)
|
|
{
|
|
maxval0_s4 (ret, xlen, array, len);
|
|
return;
|
|
}
|
|
memset (ret, INITVAL, sizeof (*ret) * len);
|
|
}
|
|
|
|
#endif
|