// Vector implementation -*- C++ -*- // Copyright (C) 2001, 2002 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_vector.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef __GLIBCPP_INTERNAL_VECTOR_H #define __GLIBCPP_INTERNAL_VECTOR_H #include #include #include // Since this entire file is within namespace std, there's no reason to // waste two spaces along the left column. Thus the leading indentation is // slightly violated from here on. namespace std { /// @if maint Primary default version. @endif /** * @if maint * See bits/stl_deque.h's _Deque_alloc_base for an explanation. * @endif */ template class _Vector_alloc_base { public: typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return _M_data_allocator; } _Vector_alloc_base(const allocator_type& __a) : _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0) {} protected: allocator_type _M_data_allocator; _Tp* _M_start; _Tp* _M_finish; _Tp* _M_end_of_storage; _Tp* _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); } void _M_deallocate(_Tp* __p, size_t __n) { if (__p) _M_data_allocator.deallocate(__p, __n); } }; /// @if maint Specialization for instanceless allocators. @endif template class _Vector_alloc_base<_Tp, _Allocator, true> { public: typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return allocator_type(); } _Vector_alloc_base(const allocator_type&) : _M_start(0), _M_finish(0), _M_end_of_storage(0) {} protected: _Tp* _M_start; _Tp* _M_finish; _Tp* _M_end_of_storage; typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type; _Tp* _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); } void _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);} }; /** * @if maint * See bits/stl_deque.h's _Deque_base for an explanation. * @endif */ template struct _Vector_base : public _Vector_alloc_base<_Tp, _Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> { public: typedef _Vector_alloc_base<_Tp, _Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> _Base; typedef typename _Base::allocator_type allocator_type; _Vector_base(const allocator_type& __a) : _Base(__a) {} _Vector_base(size_t __n, const allocator_type& __a) : _Base(__a) { _M_start = _M_allocate(__n); _M_finish = _M_start; _M_end_of_storage = _M_start + __n; } ~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); } }; /** * @brief A standard container which offers fixed time access to individual * elements in any order. * * @ingroup Containers * @ingroup Sequences * * Meets the requirements of a container, a * reversible container, and a * sequence, including the * optional sequence requirements with the * %exception of @c push_front and @c pop_front. * * In some terminology a %vector can be described as a dynamic C-style array, * it offers fast and efficient access to individual elements in any order * and saves the user from worrying about memory and size allocation. * Subscripting ( @c [] ) access is also provided as with C-style arrays. */ template > class vector : protected _Vector_base<_Tp, _Alloc> { // concept requirements __glibcpp_class_requires(_Tp, _SGIAssignableConcept) typedef _Vector_base<_Tp, _Alloc> _Base; typedef vector<_Tp, _Alloc> vector_type; public: typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef __gnu_cxx::__normal_iterator iterator; typedef __gnu_cxx::__normal_iterator const_iterator; typedef reverse_iterator const_reverse_iterator; typedef reverse_iterator reverse_iterator; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef typename _Base::allocator_type allocator_type; protected: /** @if maint * These two functions and three data members are all from the top-most * base class, which varies depending on the type of %allocator. They * should be pretty self-explanatory, as %vector uses a simple contiguous * allocation scheme. * @endif */ using _Base::_M_allocate; using _Base::_M_deallocate; using _Base::_M_start; using _Base::_M_finish; using _Base::_M_end_of_storage; public: // [23.2.4.1] construct/copy/destroy // (assign() and get_allocator() are also listed in this section) /** * @brief Default constructor creates no elements. */ explicit vector(const allocator_type& __a = allocator_type()) : _Base(__a) {} /** * @brief Create a %vector with copies of an exemplar element. * @param n The number of elements to initially create. * @param value An element to copy. * * This constructor fills the %vector with @a n copies of @a value. */ vector(size_type __n, const value_type& __value, const allocator_type& __a = allocator_type()) : _Base(__n, __a) { _M_finish = uninitialized_fill_n(_M_start, __n, __value); } /** * @brief Create a %vector with default elements. * @param n The number of elements to initially create. * * This constructor fills the %vector with @a n copies of a * default-constructed element. */ explicit vector(size_type __n) : _Base(__n, allocator_type()) { _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); } /** * @brief %Vector copy constructor. * @param x A %vector of identical element and allocator types. * * The newly-created %vector uses a copy of the allocation object used * by @a x. All the elements of @a x are copied, but any extra memory in * @a x (for fast expansion) will not be copied. */ vector(const vector& __x) : _Base(__x.size(), __x.get_allocator()) { _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); } /** * @brief Builds a %vector from a range. * @param first An input iterator. * @param last An input iterator. * * Creats a %vector consisting of copies of the elements from [first,last). * * If the iterators are forward, bidirectional, or random-access, then * this will call the elements' copy constructor N times (where N is * distance(first,last)) and do no memory reallocation. But if only * input iterators are used, then this will do at most 2N calls to the * copy constructor, and logN memory reallocations. */ template vector(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } /** * The dtor only erases the elements, and note that if the elements * themselves are pointers, the pointed-to memory is not touched in any * way. Managing the pointer is the user's responsibilty. */ ~vector() { _Destroy(_M_start, _M_finish); } /** * @brief %Vector assignment operator. * @param x A %vector of identical element and allocator types. * * All the elements of @a x are copied, but any extra memory in @a x (for * fast expansion) will not be copied. Unlike the copy constructor, the * allocator object is not copied. */ vector& operator=(const vector& __x); /** * @brief Assigns a given value to a %vector. * @param n Number of elements to be assigned. * @param val Value to be assigned. * * This function fills a %vector with @a n copies of the given value. * Note that the assignment completely changes the %vector and that the * resulting %vector's size is the same as the number of elements assigned. * Old data may be lost. */ void assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } /** * @brief Assigns a range to a %vector. * @param first An input iterator. * @param last An input iterator. * * This function fills a %vector with copies of the elements in the * range [first,last). * * Note that the assignment completely changes the %vector and that the * resulting %vector's size is the same as the number of elements assigned. * Old data may be lost. */ template void assign(_InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_assign_dispatch(__first, __last, _Integral()); } /// Get a copy of the memory allocation object. allocator_type get_allocator() const { return _Base::get_allocator(); } // iterators /** * Returns a read/write iterator that points to the first element in the * %vector. Iteration is done in ordinary element order. */ iterator begin() { return iterator (_M_start); } /** * Returns a read-only (constant) iterator that points to the first element * in the %vector. Iteration is done in ordinary element order. */ const_iterator begin() const { return const_iterator (_M_start); } /** * Returns a read/write iterator that points one past the last element in * the %vector. Iteration is done in ordinary element order. */ iterator end() { return iterator (_M_finish); } /** * Returns a read-only (constant) iterator that points one past the last * element in the %vector. Iteration is done in ordinary element order. */ const_iterator end() const { return const_iterator (_M_finish); } /** * Returns a read/write reverse iterator that points to the last element in * the %vector. Iteration is done in reverse element order. */ reverse_iterator rbegin() { return reverse_iterator(end()); } /** * Returns a read-only (constant) reverse iterator that points to the last * element in the %vector. Iteration is done in reverse element order. */ const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } /** * Returns a read/write reverse iterator that points to one before the * first element in the %vector. Iteration is done in reverse element * order. */ reverse_iterator rend() { return reverse_iterator(begin()); } /** * Returns a read-only (constant) reverse iterator that points to one * before the first element in the %vector. Iteration is done in reverse * element order. */ const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // [23.2.4.2] capacity /** Returns the number of elements in the %vector. */ size_type size() const { return size_type(end() - begin()); } /** Returns the size() of the largest possible %vector. */ size_type max_size() const { return size_type(-1) / sizeof(value_type); } /** * @brief Resizes the %vector to the specified number of elements. * @param new_size Number of elements the %vector should contain. * @param x Data with which new elements should be populated. * * This function will %resize the %vector to the specified number of * elements. If the number is smaller than the %vector's current size the * %vector is truncated, otherwise the %vector is extended and new elements * are populated with given data. */ void resize(size_type __new_size, const value_type& __x) { if (__new_size < size()) erase(begin() + __new_size, end()); else insert(end(), __new_size - size(), __x); } /** * @brief Resizes the %vector to the specified number of elements. * @param new_size Number of elements the %vector should contain. * * This function will resize the %vector to the specified number of * elements. If the number is smaller than the %vector's current size the * %vector is truncated, otherwise the %vector is extended and new elements * are default-constructed. */ void resize(size_type __new_size) { resize(__new_size, value_type()); } /** * Returns the total number of elements that the %vector can hold before * needing to allocate more memory. */ size_type capacity() const { return size_type(const_iterator(_M_end_of_storage) - begin()); } /** * Returns true if the %vector is empty. (Thus begin() would equal end().) */ bool empty() const { return begin() == end(); } /** * @brief Attempt to preallocate enough memory for specified number of * elements. * @param n Number of elements required. * @throw std::length_error If @a n exceeds @c max_size(). * * This function attempts to reserve enough memory for the %vector to hold * the specified number of elements. If the number requested is more than * max_size(), length_error is thrown. * * The advantage of this function is that if optimal code is a necessity * and the user can determine the number of elements that will be required, * the user can reserve the memory in %advance, and thus prevent a possible * reallocation of memory and copying of %vector data. */ void reserve(size_type __n) // FIXME should be out of class { if (capacity() < __n) { const size_type __old_size = size(); pointer __tmp = _M_allocate_and_copy(__n, _M_start, _M_finish); _Destroy(_M_start, _M_finish); _M_deallocate(_M_start, _M_end_of_storage - _M_start); _M_start = __tmp; _M_finish = __tmp + __old_size; _M_end_of_storage = _M_start + __n; } } // element access /** * @brief Subscript access to the data contained in the %vector. * @param n The index of the element for which data should be accessed. * @return Read/write reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and out_of_range * lookups are not defined. (For checked lookups see at().) */ reference operator[](size_type __n) { return *(begin() + __n); } // XXX do we need to convert to normal_iterator first? /** * @brief Subscript access to the data contained in the %vector. * @param n The index of the element for which data should be accessed. * @return Read-only (constant) reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and out_of_range * lookups are not defined. (For checked lookups see at().) */ const_reference operator[](size_type __n) const { return *(begin() + __n); } protected: /// @if maint Safety check used only from at(). @endif void _M_range_check(size_type __n) const { if (__n >= this->size()) __throw_out_of_range("vector [] access out of range"); } public: /** * @brief Provides access to the data contained in the %vector. * @param n The index of the element for which data should be accessed. * @return Read/write reference to data. * @throw std::out_of_range If @a n is an invalid index. * * This function provides for safer data access. The parameter is first * checked that it is in the range of the vector. The function throws * out_of_range if the check fails. */ reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } /** * @brief Provides access to the data contained in the %vector. * @param n The index of the element for which data should be accessed. * @return Read-only (constant) reference to data. * @throw std::out_of_range If @a n is an invalid index. * * This function provides for safer data access. The parameter is first * checked that it is in the range of the vector. The function throws * out_of_range if the check fails. */ const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } /** * Returns a read/write reference to the data at the first element of the * %vector. */ reference front() { return *begin(); } // XXX do we need to convert to normal_iterator first? /** * Returns a read-only (constant) reference to the data at the first * element of the %vector. */ const_reference front() const { return *begin(); } /** * Returns a read/write reference to the data at the last element of the * %vector. */ reference back() { return *(end() - 1); } /** * Returns a read-only (constant) reference to the data at the last * element of the %vector. */ const_reference back() const { return *(end() - 1); } // [23.2.4.3] modifiers /** * @brief Add data to the end of the %vector. * @param x Data to be added. * * This is a typical stack operation. The function creates an element at * the end of the %vector and assigns the given data to it. * Due to the nature of a %vector this operation can be done in constant * time if the %vector has preallocated space available. */ void push_back(const value_type& __x) { if (_M_finish != _M_end_of_storage) { _Construct(_M_finish, __x); ++_M_finish; } else _M_insert_aux(end(), __x); } /** * @brief Removes last element. * * This is a typical stack operation. It shrinks the %vector by one. * * Note that no data is returned, and if the last element's data is * needed, it should be retrieved before pop_back() is called. */ void pop_back() { --_M_finish; _Destroy(_M_finish); } /** * @brief Inserts given value into %vector before specified iterator. * @param position An iterator into the %vector. * @param x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given value before the specified * location. * Note that this kind of operation could be expensive for a %vector and if * it is frequently used the user should consider using std::list. */ iterator insert(iterator __position, const value_type& __x) { size_type __n = __position - begin(); if (_M_finish != _M_end_of_storage && __position == end()) { _Construct(_M_finish, __x); ++_M_finish; } else _M_insert_aux(__position, __x); return begin() + __n; } #ifdef _GLIBCPP_DEPRECATED /** * @brief Inserts an element into the %vector. * @param position An iterator into the %vector. * @return An iterator that points to the inserted element. * * This function will insert a default-constructed element before the * specified location. You should consider using * insert(position,value_type()) instead. * Note that this kind of operation could be expensive for a vector and if * it is frequently used the user should consider using std::list. * * @note This was deprecated in 3.2 and will be removed in 3.3. You must * define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see * c++config.h. */ iterator insert(iterator __position) { return insert(__position, value_type()); } #endif /** * @brief Inserts a number of copies of given data into the %vector. * @param position An iterator into the %vector. * @param n Number of elements to be inserted. * @param x Data to be inserted. * * This function will insert a specified number of copies of the given data * before the location specified by @a position. * * Note that this kind of operation could be expensive for a %vector and if * it is frequently used the user should consider using std::list. */ void insert (iterator __pos, size_type __n, const value_type& __x) { _M_fill_insert(__pos, __n, __x); } /** * @brief Inserts a range into the %vector. * @param pos An iterator into the %vector. * @param first An input iterator. * @param last An input iterator. * * This function will insert copies of the data in the range [first,last) * into the %vector before the location specified by @a pos. * * Note that this kind of operation could be expensive for a %vector and if * it is frequently used the user should consider using std::list. */ template void insert(iterator __pos, _InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_insert_dispatch(__pos, __first, __last, _Integral()); } /** * @brief Remove element at given position. * @param position Iterator pointing to element to be erased. * @return An iterator pointing to the next element (or end()). * * This function will erase the element at the given position and thus * shorten the %vector by one. * * Note This operation could be expensive and if it is frequently used the * user should consider using std::list. The user is also cautioned that * this function only erases the element, and that if the element is itself * a pointer, the pointed-to memory is not touched in any way. Managing * the pointer is the user's responsibilty. */ iterator erase(iterator __position) { if (__position + 1 != end()) copy(__position + 1, end(), __position); --_M_finish; _Destroy(_M_finish); return __position; } /** * @brief Remove a range of elements. * @param first Iterator pointing to the first element to be erased. * @param last Iterator pointing to one past the last element to be erased. * @return An iterator pointing to the element pointed to by @a last * prior to erasing (or end()). * * This function will erase the elements in the range [first,last) and * shorten the %vector accordingly. * * Note This operation could be expensive and if it is frequently used the * user should consider using std::list. The user is also cautioned that * this function only erases the elements, and that if the elements * themselves are pointers, the pointed-to memory is not touched in any * way. Managing the pointer is the user's responsibilty. */ iterator erase(iterator __first, iterator __last) { iterator __i(copy(__last, end(), __first)); _Destroy(__i, end()); _M_finish = _M_finish - (__last - __first); return __first; } /** * @brief Swaps data with another %vector. * @param x A %vector of the same element and allocator types. * * This exchanges the elements between two vectors in constant time. * (Three pointers, so it should be quite fast.) * Note that the global std::swap() function is specialized such that * std::swap(v1,v2) will feed to this function. */ void swap(vector& __x) { std::swap(_M_start, __x._M_start); std::swap(_M_finish, __x._M_finish); std::swap(_M_end_of_storage, __x._M_end_of_storage); } /** * Erases all the elements. Note that this function only erases the * elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer is * the user's responsibilty. */ void clear() { erase(begin(), end()); } protected: /** * @if maint * Memory expansion handler. Uses the member allocation function to * obtain @a n bytes of memory, and then copies [first,last) into it. * @endif */ template pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first, _ForwardIterator __last) { pointer __result = _M_allocate(__n); try { uninitialized_copy(__first, __last, __result); return __result; } catch(...) { _M_deallocate(__result, __n); __throw_exception_again; } } // Internal constructor functions follow. // called by the range constructor to implement [23.1.1]/9 template void _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type) { _M_start = _M_allocate(__n); _M_end_of_storage = _M_start + __n; _M_finish = uninitialized_fill_n(_M_start, __n, __value); } // called by the range constructor to implement [23.1.1]/9 template void _M_initialize_dispatch(_InputIter __first, _InputIter __last, __false_type) { typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory; _M_range_initialize(__first, __last, _IterCategory()); } // called by the second initialize_dispatch above template void _M_range_initialize(_InputIterator __first, _InputIterator __last, input_iterator_tag) { for ( ; __first != __last; ++__first) push_back(*__first); } // called by the second initialize_dispatch above template void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { size_type __n = distance(__first, __last); _M_start = _M_allocate(__n); _M_end_of_storage = _M_start + __n; _M_finish = uninitialized_copy(__first, __last, _M_start); } // Internal assign functions follow. The *_aux functions do the actual // assignment work for the range versions. // called by the range assign to implement [23.1.1]/9 template void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(static_cast(__n), static_cast(__val)); } // called by the range assign to implement [23.1.1]/9 template void _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type) { typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory; _M_assign_aux(__first, __last, _IterCategory()); } // called by the second assign_dispatch above template void _M_assign_aux(_InputIterator __first, _InputIterator __last, input_iterator_tag); // called by the second assign_dispatch above template void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag); // Called by assign(n,t), and the range assign when it turns out to be the // same thing. void _M_fill_assign(size_type __n, const value_type& __val); // Internal insert functions follow. // called by the range insert to implement [23.1.1]/9 template void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type) { _M_fill_insert(__pos, static_cast(__n), static_cast(__val)); } // called by the range insert to implement [23.1.1]/9 template void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, __false_type) { typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory; _M_range_insert(__pos, __first, __last, _IterCategory()); } // called by the second insert_dispatch above template void _M_range_insert(iterator __pos, _InputIterator __first, _InputIterator __last, input_iterator_tag); // called by the second insert_dispatch above template void _M_range_insert(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag); // Called by insert(p,n,x), and the range insert when it turns out to be // the same thing. void _M_fill_insert (iterator __pos, size_type __n, const value_type& __x); // called by insert(p,x) void _M_insert_aux(iterator __position, const value_type& __x); #ifdef _GLIBCPP_DEPRECATED // unused now (same situation as in deque) void _M_insert_aux(iterator __position); #endif }; /** * @brief Vector equality comparison. * @param x A %vector. * @param y A %vector of the same type as @a x. * @return True iff the size and elements of the vectors are equal. * * This is an equivalence relation. It is linear in the size of the * vectors. Vectors are considered equivalent if their sizes are equal, * and if corresponding elements compare equal. */ template inline bool operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return __x.size() == __y.size() && equal(__x.begin(), __x.end(), __y.begin()); } /** * @brief Vector ordering relation. * @param x A %vector. * @param y A %vector of the same type as @a x. * @return True iff @a x is lexographically less than @a y. * * This is a total ordering relation. It is linear in the size of the * vectors. The elements must be comparable with @c <. * * See std::lexographical_compare() for how the determination is made. */ template inline bool operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } /// Based on operator== template inline bool operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return !(__x == __y); } /// Based on operator< template inline bool operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return __y < __x; } /// Based on operator< template inline bool operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return !(__y < __x); } /// Based on operator< template inline bool operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return !(__x < __y); } /// See std::vector::swap(). template inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y) { __x.swap(__y); } template vector<_Tp,_Alloc>& vector<_Tp,_Alloc>::operator=(const vector<_Tp,_Alloc>& __x) { if (&__x != this) { const size_type __xlen = __x.size(); if (__xlen > capacity()) { pointer __tmp = _M_allocate_and_copy(__xlen, __x.begin(), __x.end()); _Destroy(_M_start, _M_finish); _M_deallocate(_M_start, _M_end_of_storage - _M_start); _M_start = __tmp; _M_end_of_storage = _M_start + __xlen; } else if (size() >= __xlen) { iterator __i(copy(__x.begin(), __x.end(), begin())); _Destroy(__i, end()); } else { copy(__x.begin(), __x.begin() + size(), _M_start); uninitialized_copy(__x.begin() + size(), __x.end(), _M_finish); } _M_finish = _M_start + __xlen; } return *this; } template void vector<_Tp, _Alloc>::_M_fill_assign(size_t __n, const value_type& __val) { if (__n > capacity()) { vector __tmp(__n, __val, get_allocator()); __tmp.swap(*this); } else if (__n > size()) { fill(begin(), end(), __val); _M_finish = uninitialized_fill_n(_M_finish, __n - size(), __val); } else erase(fill_n(begin(), __n, __val), end()); } template template void vector<_Tp, _Alloc>::_M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag) { iterator __cur(begin()); for ( ; __first != __last && __cur != end(); ++__cur, ++__first) *__cur = *__first; if (__first == __last) erase(__cur, end()); else insert(end(), __first, __last); } template template void vector<_Tp, _Alloc>::_M_assign_aux(_ForwardIter __first, _ForwardIter __last, forward_iterator_tag) { size_type __len = distance(__first, __last); if (__len > capacity()) { pointer __tmp(_M_allocate_and_copy(__len, __first, __last)); _Destroy(_M_start, _M_finish); _M_deallocate(_M_start, _M_end_of_storage - _M_start); _M_start = __tmp; _M_end_of_storage = _M_finish = _M_start + __len; } else if (size() >= __len) { iterator __new_finish(copy(__first, __last, _M_start)); _Destroy(__new_finish, end()); _M_finish = __new_finish.base(); } else { _ForwardIter __mid = __first; advance(__mid, size()); copy(__first, __mid, _M_start); _M_finish = uninitialized_copy(__mid, __last, _M_finish); } } template void vector<_Tp, _Alloc>::_M_insert_aux(iterator __position, const _Tp& __x) { if (_M_finish != _M_end_of_storage) { _Construct(_M_finish, *(_M_finish - 1)); ++_M_finish; _Tp __x_copy = __x; copy_backward(__position, iterator(_M_finish - 2), iterator(_M_finish- 1)); *__position = __x_copy; } else { const size_type __old_size = size(); const size_type __len = __old_size != 0 ? 2 * __old_size : 1; iterator __new_start(_M_allocate(__len)); iterator __new_finish(__new_start); try { __new_finish = uninitialized_copy(iterator(_M_start), __position, __new_start); _Construct(__new_finish.base(), __x); ++__new_finish; __new_finish = uninitialized_copy(__position, iterator(_M_finish), __new_finish); } catch(...) { _Destroy(__new_start,__new_finish); _M_deallocate(__new_start.base(),__len); __throw_exception_again; } _Destroy(begin(), end()); _M_deallocate(_M_start, _M_end_of_storage - _M_start); _M_start = __new_start.base(); _M_finish = __new_finish.base(); _M_end_of_storage = __new_start.base() + __len; } } #ifdef _GLIBCPP_DEPRECATED template void vector<_Tp, _Alloc>::_M_insert_aux(iterator __position) { if (_M_finish != _M_end_of_storage) { _Construct(_M_finish, *(_M_finish - 1)); ++_M_finish; copy_backward(__position, iterator(_M_finish - 2), iterator(_M_finish - 1)); *__position = _Tp(); } else { const size_type __old_size = size(); const size_type __len = __old_size != 0 ? 2 * __old_size : 1; pointer __new_start = _M_allocate(__len); pointer __new_finish = __new_start; try { __new_finish = uninitialized_copy(iterator(_M_start), __position, __new_start); _Construct(__new_finish); ++__new_finish; __new_finish = uninitialized_copy(__position, iterator(_M_finish), __new_finish); } catch(...) { _Destroy(__new_start,__new_finish); _M_deallocate(__new_start,__len); __throw_exception_again; } _Destroy(begin(), end()); _M_deallocate(_M_start, _M_end_of_storage - _M_start); _M_start = __new_start; _M_finish = __new_finish; _M_end_of_storage = __new_start + __len; } } #endif template void vector<_Tp, _Alloc>::_M_fill_insert(iterator __position, size_type __n, const _Tp& __x) { if (__n != 0) { if (size_type(_M_end_of_storage - _M_finish) >= __n) { _Tp __x_copy = __x; const size_type __elems_after = end() - __position; iterator __old_finish(_M_finish); if (__elems_after > __n) { uninitialized_copy(_M_finish - __n, _M_finish, _M_finish); _M_finish += __n; copy_backward(__position, __old_finish - __n, __old_finish); fill(__position, __position + __n, __x_copy); } else { uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy); _M_finish += __n - __elems_after; uninitialized_copy(__position, __old_finish, _M_finish); _M_finish += __elems_after; fill(__position, __old_finish, __x_copy); } } else { const size_type __old_size = size(); const size_type __len = __old_size + max(__old_size, __n); iterator __new_start(_M_allocate(__len)); iterator __new_finish(__new_start); try { __new_finish = uninitialized_copy(begin(), __position, __new_start); __new_finish = uninitialized_fill_n(__new_finish, __n, __x); __new_finish = uninitialized_copy(__position, end(), __new_finish); } catch(...) { _Destroy(__new_start,__new_finish); _M_deallocate(__new_start.base(),__len); __throw_exception_again; } _Destroy(_M_start, _M_finish); _M_deallocate(_M_start, _M_end_of_storage - _M_start); _M_start = __new_start.base(); _M_finish = __new_finish.base(); _M_end_of_storage = __new_start.base() + __len; } } } template template void vector<_Tp, _Alloc>::_M_range_insert(iterator __pos, _InputIterator __first, _InputIterator __last, input_iterator_tag) { for ( ; __first != __last; ++__first) { __pos = insert(__pos, *__first); ++__pos; } } template template void vector<_Tp, _Alloc>::_M_range_insert(iterator __position, _ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { if (__first != __last) { size_type __n = distance(__first, __last); if (size_type(_M_end_of_storage - _M_finish) >= __n) { const size_type __elems_after = end() - __position; iterator __old_finish(_M_finish); if (__elems_after > __n) { uninitialized_copy(_M_finish - __n, _M_finish, _M_finish); _M_finish += __n; copy_backward(__position, __old_finish - __n, __old_finish); copy(__first, __last, __position); } else { _ForwardIterator __mid = __first; advance(__mid, __elems_after); uninitialized_copy(__mid, __last, _M_finish); _M_finish += __n - __elems_after; uninitialized_copy(__position, __old_finish, _M_finish); _M_finish += __elems_after; copy(__first, __mid, __position); } } else { const size_type __old_size = size(); const size_type __len = __old_size + max(__old_size, __n); iterator __new_start(_M_allocate(__len)); iterator __new_finish(__new_start); try { __new_finish = uninitialized_copy(iterator(_M_start), __position, __new_start); __new_finish = uninitialized_copy(__first, __last, __new_finish); __new_finish = uninitialized_copy(__position, iterator(_M_finish), __new_finish); } catch(...) { _Destroy(__new_start,__new_finish); _M_deallocate(__new_start.base(), __len); __throw_exception_again; } _Destroy(_M_start, _M_finish); _M_deallocate(_M_start, _M_end_of_storage - _M_start); _M_start = __new_start.base(); _M_finish = __new_finish.base(); _M_end_of_storage = __new_start.base() + __len; } } } } // namespace std #endif /* __GLIBCPP_INTERNAL_VECTOR_H */