// The template and inlines for the -*- C++ -*- numeric_limits classes. // Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. // Note: this is not a conforming implementation. // Written by Gabriel Dos Reis // // ISO 14882:1998 // 18.2.1 // /** @file limits * This is a Standard C++ Library header. You should @c #include this header * in your programs, rather than any of the "st[dl]_*.h" implementation files. */ #ifndef _CPP_NUMERIC_LIMITS #define _CPP_NUMERIC_LIMITS 1 #pragma GCC system_header #include // // The numeric_limits<> traits document implementation-defined aspects // of fundamental arithmetic data types (integers and floating points). // From Standard C++ point of view, there are 13 such types: // * integers // bool (1) // char, signed char, unsigned char (3) // short, unsigned short (2) // int, unsigned (2) // long, unsigned long (2) // // * floating points // float (1) // double (1) // long double (1) // // GNU C++ undertstands (where supported by the host C-library) // * integer // long long, unsigned long long (2) // // which brings us to 15 fundamental arithmetic data types in GNU C++. // // // Since a numeric_limits<> is a bit tricky to get right, we rely on // an interface composed of macros which should be defined in config/os // or config/cpu when they differ from the generic (read arbitrary) // definitions given here. // // These values can be overridden in the target configuration file. // The default values are appropriate for many 32-bit targets. // GCC only intrinsicly supports modulo integral types. The only remaining // integral exceptional values is division by zero. Only targets that do not // signal division by zero in some "hard to ignore" way should use false. #ifndef __glibcpp_integral_traps # define __glibcpp_integral_traps true #endif // float // // Default values. Should be overriden in configuration files if necessary. #ifndef __glibcpp_float_has_denorm_loss # define __glibcpp_float_has_denorm_loss false #endif #ifndef __glibcpp_float_traps # define __glibcpp_float_traps false #endif #ifndef __glibcpp_float_tinyness_before # define __glibcpp_float_tinyness_before false #endif // double // Default values. Should be overriden in configuration files if necessary. #ifndef __glibcpp_double_has_denorm_loss # define __glibcpp_double_has_denorm_loss false #endif #ifndef __glibcpp_double_traps # define __glibcpp_double_traps false #endif #ifndef __glibcpp_double_tinyness_before # define __glibcpp_double_tinyness_before false #endif // long double // Default values. Should be overriden in configuration files if necessary. #ifndef __glibcpp_long_double_has_denorm_loss # define __glibcpp_long_double_has_denorm_loss false #endif #ifndef __glibcpp_long_double_traps # define __glibcpp_long_double_traps false #endif #ifndef __glibcpp_long_double_tinyness_before # define __glibcpp_long_double_tinyness_before false #endif // You should not need to define any macros below this point. #define __glibcpp_signed(T) ((T)(-1) < 0) #define __glibcpp_min(T) \ (__glibcpp_signed (T) ? (T)1 << __glibcpp_digits (T) : (T)0) #define __glibcpp_max(T) \ (__glibcpp_signed (T) ? ((T)1 << __glibcpp_digits (T)) - 1 : ~(T)0) #define __glibcpp_digits(T) \ (sizeof(T) * __CHAR_BIT__ - __glibcpp_signed (T)) // The fraction 643/2136 approximates log10(2) to 7 significant digits. #define __glibcpp_digits10(T) \ (__glibcpp_digits (T) * 643 / 2136) namespace std { /** * @brief Describes the rounding style for floating-point types. * * This is used in the std::numeric_limits class. */ enum float_round_style { round_indeterminate = -1, ///< Self-explanatory. round_toward_zero = 0, ///< Self-explanatory. round_to_nearest = 1, ///< To the nearest representable value. round_toward_infinity = 2, ///< Self-explanatory. round_toward_neg_infinity = 3 ///< Self-explanatory. }; /** * @brief Describes the denormalization for floating-point types. * * These values represent the presence or absence of a variable number * of exponent bits. This type is used in the std::numeric_limits class. */ enum float_denorm_style { /// Indeterminate at compile time whether denormalized values are allowed. denorm_indeterminate = -1, /// The type does not allow denormalized values. denorm_absent = 0, /// The type allows denormalized values. denorm_present = 1 }; /** * @brief Part of std::numeric_limits. * * The @c static @c const members are usable as integral constant * expressions. * * @note This is a seperate class for purposes of efficiency; you * should only access these members as part of an instantiation * of the std::numeric_limits class. */ struct __numeric_limits_base { /** This will be true for all fundamental types (which have specializations), and false for everything else. */ static const bool is_specialized = false; /** The number of @c radix digits that be represented without change: for integer types, the number of non-sign bits in the mantissa; for floating types, the number of @c radix digits in the mantissa. */ static const int digits = 0; /** The number of base 10 digits that can be represented without change. */ static const int digits10 = 0; /** True if the type is signed. */ static const bool is_signed = false; /** True if the type is integer. * @if maint * Is this supposed to be "if the type is integral"? * @endif */ static const bool is_integer = false; /** True if the type uses an exact representation. "All integer types are exact, but not all exact types are integer. For example, rational and fixed-exponent representations are exact but not integer." [18.2.1.2]/15 */ static const bool is_exact = false; /** For integer types, specifies the base of the representation. For floating types, specifies the base of the exponent representation. */ static const int radix = 0; /** The minimum negative integer such that @c radix raised to the power of (one less than that integer) is a normalized floating point number. */ static const int min_exponent = 0; /** The minimum negative integer such that 10 raised to that power is in the range of normalized floating point numbers. */ static const int min_exponent10 = 0; /** The maximum positive integer such that @c radix raised to the power of (one less than that integer) is a representable finite floating point number. */ static const int max_exponent = 0; /** The maximum positive integer such that 10 raised to that power is in the range of representable finite floating point numbers. */ static const int max_exponent10 = 0; /** True if the type has a representation for positive infinity. */ static const bool has_infinity = false; /** True if the type has a representation for a quiet (non-signaling) "Not a Number." */ static const bool has_quiet_NaN = false; /** True if the type has a representation for a signaling "Not a Number." */ static const bool has_signaling_NaN = false; /** See std::float_denorm_style for more information. */ static const float_denorm_style has_denorm = denorm_absent; /** "True if loss of accuracy is detected as a denormalization loss, rather than as an inexact result." [18.2.1.2]/42 */ static const bool has_denorm_loss = false; /** True if-and-only-if the type adheres to the IEC 559 standard, also known as IEEE 754. (Only makes sense for floating point types.) */ static const bool is_iec559 = false; /** "True if the set of values representable by the type is finite. All built-in types are bounded, this member would be false for arbitrary precision types." [18.2.1.2]/54 */ static const bool is_bounded = false; /** True if the type is @e modulo, that is, if it is possible to add two positive numbers and have a result that wraps around to a third number that is less. Typically false for floating types, true for unsigned integers, and true for signed integers. */ static const bool is_modulo = false; /** True if trapping is implemented for this type. */ static const bool traps = false; /** True if tinyness is detected before rounding. (see IEC 559) */ static const bool tinyness_before = false; /** See std::float_round_style for more information. This is only meaningful for floating types; integer types will all be round_toward_zero. */ static const float_round_style round_style = round_toward_zero; }; /** * @brief Properties of fundamental types. * * This class allows a program to obtain information about the * representation of a fundamental type on a given platform. For * non-fundamental types, the functions will return 0 and the data * members will all be @c false. * * @if maint * _GLIBCPP_RESOLVE_LIB_DEFECTS: DRs 201 and 184 (hi Gaby!) are * noted, but not incorporated in this documented (yet). * @endif */ template struct numeric_limits : public __numeric_limits_base { /** The minimum finite value, or for floating types with denormalization, the minimum positive normalized value. */ static _Tp min() throw() { return static_cast<_Tp>(0); } /** The maximum finite value. */ static _Tp max() throw() { return static_cast<_Tp>(0); } /** The @e machine @e epsilon: the difference between 1 and the least value greater than 1 that is representable. */ static _Tp epsilon() throw() { return static_cast<_Tp>(0); } /** The maximum rounding error measurement (see LIA-1). */ static _Tp round_error() throw() { return static_cast<_Tp>(0); } /** The representation of positive infinity, if @c has_infinity. */ static _Tp infinity() throw() { return static_cast<_Tp>(0); } /** The representation of a quiet "Not a Number," if @c has_quiet_NaN. */ static _Tp quiet_NaN() throw() { return static_cast<_Tp>(0); } /** The representation of a signaling "Not a Number," if @c has_signaling_NaN. */ static _Tp signaling_NaN() throw() { return static_cast<_Tp>(0); } /** The minimum positive denormalized value. For types where @c has_denorm is false, this is the minimum positive normalized value. */ static _Tp denorm_min() throw() { return static_cast<_Tp>(0); } }; // Now there follow 15 explicit specializations. Yes, 15. Make sure // you get the count right. template<> struct numeric_limits { static const bool is_specialized = true; static bool min() throw() { return false; } static bool max() throw() { return true; } static const int digits = 1; static const int digits10 = 0; static const bool is_signed = false; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static bool epsilon() throw() { return false; } static bool round_error() throw() { return false; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static bool infinity() throw() { return false; } static bool quiet_NaN() throw() { return false; } static bool signaling_NaN() throw() { return false; } static bool denorm_min() throw() { return false; } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = false; // It is not clear what it means for a boolean type to trap. // This is a DR on the LWG issue list. Here, I use integer // promotion semantics. static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static char min() throw() { return __glibcpp_min(char); } static char max() throw() { return __glibcpp_max(char); } static const int digits = __glibcpp_digits (char); static const int digits10 = __glibcpp_digits10 (char); static const bool is_signed = __glibcpp_signed (char); static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static char epsilon() throw() { return 0; } static char round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static char infinity() throw() { return char(); } static char quiet_NaN() throw() { return char(); } static char signaling_NaN() throw() { return char(); } static char denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static signed char min() throw() { return -__SCHAR_MAX__ - 1; } static signed char max() throw() { return __SCHAR_MAX__; } static const int digits = __glibcpp_digits (signed char); static const int digits10 = __glibcpp_digits10 (signed char); static const bool is_signed = true; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static signed char epsilon() throw() { return 0; } static signed char round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static signed char infinity() throw() { return static_cast(0); } static signed char quiet_NaN() throw() { return static_cast(0); } static signed char signaling_NaN() throw() { return static_cast(0); } static signed char denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static unsigned char min() throw() { return 0; } static unsigned char max() throw() { return __SCHAR_MAX__ * 2U + 1; } static const int digits = __glibcpp_digits (unsigned char); static const int digits10 = __glibcpp_digits10 (unsigned char); static const bool is_signed = false; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static unsigned char epsilon() throw() { return 0; } static unsigned char round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static unsigned char infinity() throw() { return static_cast(0); } static unsigned char quiet_NaN() throw() { return static_cast(0); } static unsigned char signaling_NaN() throw() { return static_cast(0); } static unsigned char denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static wchar_t min() throw() { return __glibcpp_min (wchar_t); } static wchar_t max() throw() { return __glibcpp_max (wchar_t); } static const int digits = __glibcpp_digits (wchar_t); static const int digits10 = __glibcpp_digits10 (wchar_t); static const bool is_signed = __glibcpp_signed (wchar_t); static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static wchar_t epsilon() throw() { return 0; } static wchar_t round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static wchar_t infinity() throw() { return wchar_t(); } static wchar_t quiet_NaN() throw() { return wchar_t(); } static wchar_t signaling_NaN() throw() { return wchar_t(); } static wchar_t denorm_min() throw() { return wchar_t(); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static short min() throw() { return -__SHRT_MAX__ - 1; } static short max() throw() { return __SHRT_MAX__; } static const int digits = __glibcpp_digits (short); static const int digits10 = __glibcpp_digits10 (short); static const bool is_signed = true; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static short epsilon() throw() { return 0; } static short round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static short infinity() throw() { return short(); } static short quiet_NaN() throw() { return short(); } static short signaling_NaN() throw() { return short(); } static short denorm_min() throw() { return short(); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static unsigned short min() throw() { return 0; } static unsigned short max() throw() { return __SHRT_MAX__ * 2U + 1; } static const int digits = __glibcpp_digits (unsigned short); static const int digits10 = __glibcpp_digits10 (unsigned short); static const bool is_signed = false; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static unsigned short epsilon() throw() { return 0; } static unsigned short round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static unsigned short infinity() throw() { return static_cast(0); } static unsigned short quiet_NaN() throw() { return static_cast(0); } static unsigned short signaling_NaN() throw() { return static_cast(0); } static unsigned short denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static int min() throw() { return -__INT_MAX__ - 1; } static int max() throw() { return __INT_MAX__; } static const int digits = __glibcpp_digits (int); static const int digits10 = __glibcpp_digits10 (int); static const bool is_signed = true; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static int epsilon() throw() { return 0; } static int round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static int infinity() throw() { return static_cast(0); } static int quiet_NaN() throw() { return static_cast(0); } static int signaling_NaN() throw() { return static_cast(0); } static int denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static unsigned int min() throw() { return 0; } static unsigned int max() throw() { return __INT_MAX__ * 2U + 1; } static const int digits = __glibcpp_digits (unsigned int); static const int digits10 = __glibcpp_digits10 (unsigned int); static const bool is_signed = false; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static unsigned int epsilon() throw() { return 0; } static unsigned int round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static unsigned int infinity() throw() { return static_cast(0); } static unsigned int quiet_NaN() throw() { return static_cast(0); } static unsigned int signaling_NaN() throw() { return static_cast(0); } static unsigned int denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static long min() throw() { return -__LONG_MAX__ - 1; } static long max() throw() { return __LONG_MAX__; } static const int digits = __glibcpp_digits (long); static const int digits10 = __glibcpp_digits10 (long); static const bool is_signed = true; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static long epsilon() throw() { return 0; } static long round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static long infinity() throw() { return static_cast(0); } static long quiet_NaN() throw() { return static_cast(0); } static long signaling_NaN() throw() { return static_cast(0); } static long denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static unsigned long min() throw() { return 0; } static unsigned long max() throw() { return __LONG_MAX__ * 2UL + 1; } static const int digits = __glibcpp_digits (unsigned long); static const int digits10 = __glibcpp_digits10 (unsigned long); static const bool is_signed = false; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static unsigned long epsilon() throw() { return 0; } static unsigned long round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static unsigned long infinity() throw() { return static_cast(0); } static unsigned long quiet_NaN() throw() { return static_cast(0); } static unsigned long signaling_NaN() throw() { return static_cast(0); } static unsigned long denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static long long min() throw() { return -__LONG_LONG_MAX__ - 1; } static long long max() throw() { return __LONG_LONG_MAX__; } static const int digits = __glibcpp_digits (long long); static const int digits10 = __glibcpp_digits10 (long long); static const bool is_signed = true; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static long long epsilon() throw() { return 0; } static long long round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static long long infinity() throw() { return static_cast(0); } static long long quiet_NaN() throw() { return static_cast(0); } static long long signaling_NaN() throw() { return static_cast(0); } static long long denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static unsigned long long min() throw() { return 0; } static unsigned long long max() throw() { return __LONG_LONG_MAX__ * 2ULL + 1; } static const int digits = __glibcpp_digits (unsigned long long); static const int digits10 = __glibcpp_digits10 (unsigned long long); static const bool is_signed = false; static const bool is_integer = true; static const bool is_exact = true; static const int radix = 2; static unsigned long long epsilon() throw() { return 0; } static unsigned long long round_error() throw() { return 0; } static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static unsigned long long infinity() throw() { return static_cast(0); } static unsigned long long quiet_NaN() throw() { return static_cast(0); } static unsigned long long signaling_NaN() throw() { return static_cast(0); } static unsigned long long denorm_min() throw() { return static_cast(0); } static const bool is_iec559 = false; static const bool is_bounded = true; static const bool is_modulo = true; static const bool traps = __glibcpp_integral_traps; static const bool tinyness_before = false; static const float_round_style round_style = round_toward_zero; }; template<> struct numeric_limits { static const bool is_specialized = true; static float min() throw() { return __FLT_MIN__; } static float max() throw() { return __FLT_MAX__; } static const int digits = __FLT_MANT_DIG__; static const int digits10 = __FLT_DIG__; static const bool is_signed = true; static const bool is_integer = false; static const bool is_exact = false; static const int radix = __FLT_RADIX__; static float epsilon() throw() { return __FLT_EPSILON__; } static float round_error() throw() { return 0.5F; } static const int min_exponent = __FLT_MIN_EXP__; static const int min_exponent10 = __FLT_MIN_10_EXP__; static const int max_exponent = __FLT_MAX_EXP__; static const int max_exponent10 = __FLT_MAX_10_EXP__; static const bool has_infinity = __FLT_HAS_INFINITY__; static const bool has_quiet_NaN = __FLT_HAS_QUIET_NAN__; static const bool has_signaling_NaN = has_quiet_NaN; static const float_denorm_style has_denorm = __FLT_DENORM_MIN__ ? denorm_present : denorm_absent; static const bool has_denorm_loss = __glibcpp_float_has_denorm_loss; static float infinity() throw() { return __builtin_huge_valf (); } static float quiet_NaN() throw() { return __builtin_nanf (""); } static float signaling_NaN() throw() { return __builtin_nansf (""); } static float denorm_min() throw() { return __FLT_DENORM_MIN__; } static const bool is_iec559 = has_infinity && has_quiet_NaN && has_denorm == denorm_present; static const bool is_bounded = true; static const bool is_modulo = false; static const bool traps = __glibcpp_float_traps; static const bool tinyness_before = __glibcpp_float_tinyness_before; static const float_round_style round_style = round_to_nearest; }; #undef __glibcpp_float_has_denorm_loss #undef __glibcpp_float_traps #undef __glibcpp_float_tinyness_before template<> struct numeric_limits { static const bool is_specialized = true; static double min() throw() { return __DBL_MIN__; } static double max() throw() { return __DBL_MAX__; } static const int digits = __DBL_MANT_DIG__; static const int digits10 = __DBL_DIG__; static const bool is_signed = true; static const bool is_integer = false; static const bool is_exact = false; static const int radix = __FLT_RADIX__; static double epsilon() throw() { return __DBL_EPSILON__; } static double round_error() throw() { return 0.5; } static const int min_exponent = __DBL_MIN_EXP__; static const int min_exponent10 = __DBL_MIN_10_EXP__; static const int max_exponent = __DBL_MAX_EXP__; static const int max_exponent10 = __DBL_MAX_10_EXP__; static const bool has_infinity = __DBL_HAS_INFINITY__; static const bool has_quiet_NaN = __DBL_HAS_QUIET_NAN__; static const bool has_signaling_NaN = has_quiet_NaN; static const float_denorm_style has_denorm = __DBL_DENORM_MIN__ ? denorm_present : denorm_absent; static const bool has_denorm_loss = __glibcpp_double_has_denorm_loss; static double infinity() throw() { return __builtin_huge_val(); } static double quiet_NaN() throw() { return __builtin_nan (""); } static double signaling_NaN() throw() { return __builtin_nans (""); } static double denorm_min() throw() { return __DBL_DENORM_MIN__; } static const bool is_iec559 = has_infinity && has_quiet_NaN && has_denorm == denorm_present; static const bool is_bounded = true; static const bool is_modulo = false; static const bool traps = __glibcpp_double_traps; static const bool tinyness_before = __glibcpp_double_tinyness_before; static const float_round_style round_style = round_to_nearest; }; #undef __glibcpp_double_has_denorm_loss #undef __glibcpp_double_traps #undef __glibcpp_double_tinyness_before template<> struct numeric_limits { static const bool is_specialized = true; static long double min() throw() { return __LDBL_MIN__; } static long double max() throw() { return __LDBL_MAX__; } static const int digits = __LDBL_MANT_DIG__; static const int digits10 = __LDBL_DIG__; static const bool is_signed = true; static const bool is_integer = false; static const bool is_exact = false; static const int radix = __FLT_RADIX__; static long double epsilon() throw() { return __LDBL_EPSILON__; } static long double round_error() throw() { return 0.5L; } static const int min_exponent = __LDBL_MIN_EXP__; static const int min_exponent10 = __LDBL_MIN_10_EXP__; static const int max_exponent = __LDBL_MAX_EXP__; static const int max_exponent10 = __LDBL_MAX_10_EXP__; static const bool has_infinity = __LDBL_HAS_INFINITY__; static const bool has_quiet_NaN = __LDBL_HAS_QUIET_NAN__; static const bool has_signaling_NaN = has_quiet_NaN; static const float_denorm_style has_denorm = __LDBL_DENORM_MIN__ ? denorm_present : denorm_absent; static const bool has_denorm_loss = __glibcpp_long_double_has_denorm_loss; static long double infinity() throw() { return __builtin_huge_vall (); } static long double quiet_NaN() throw() { return __builtin_nanl (""); } static long double signaling_NaN() throw() { return __builtin_nansl (""); } static long double denorm_min() throw() { return __LDBL_DENORM_MIN__; } static const bool is_iec559 = has_infinity && has_quiet_NaN && has_denorm == denorm_present; static const bool is_bounded = true; static const bool is_modulo = false; static const bool traps = __glibcpp_long_double_traps; static const bool tinyness_before = __glibcpp_long_double_tinyness_before; static const float_round_style round_style = round_to_nearest; }; #undef __glibcpp_long_double_has_denorm_loss #undef __glibcpp_long_double_traps #undef __glibcpp_long_double_tinyness_before } // namespace std #undef __glibcpp_signed #undef __glibcpp_min #undef __glibcpp_max #undef __glibcpp_digits #undef __glibcpp_digits10 #endif // _CPP_NUMERIC_LIMITS