// deque implementation -*- C++ -*- // Copyright (C) 2001 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #include <bits/concept_check.h> #include <bits/stl_iterator_base_types.h> #include <bits/stl_iterator_base_funcs.h> #ifndef __SGI_STL_INTERNAL_DEQUE_H #define __SGI_STL_INTERNAL_DEQUE_H /* Class invariants: * For any nonsingular iterator i: * i.node is the address of an element in the map array. The * contents of i.node is a pointer to the beginning of a node. * i.first == *(i.node) * i.last == i.first + node_size * i.cur is a pointer in the range [i.first, i.last). NOTE: * the implication of this is that i.cur is always a dereferenceable * pointer, even if i is a past-the-end iterator. * Start and Finish are always nonsingular iterators. NOTE: this means * that an empty deque must have one node, and that a deque * with N elements, where N is the buffer size, must have two nodes. * For every node other than start.node and finish.node, every element * in the node is an initialized object. If start.node == finish.node, * then [start.cur, finish.cur) are initialized objects, and * the elements outside that range are uninitialized storage. Otherwise, * [start.cur, start.last) and [finish.first, finish.cur) are initialized * objects, and [start.first, start.cur) and [finish.cur, finish.last) * are uninitialized storage. * [map, map + map_size) is a valid, non-empty range. * [start.node, finish.node] is a valid range contained within * [map, map + map_size). * A pointer in the range [map, map + map_size) points to an allocated node * if and only if the pointer is in the range [start.node, finish.node]. */ /* * In previous versions of deque, there was an extra template * parameter so users could control the node size. This extension * turns out to violate the C++ standard (it can be detected using * template template parameters), and it has been removed. */ namespace std { // Note: this function is simply a kludge to work around several compilers' // bugs in handling constant expressions. inline size_t __deque_buf_size(size_t __size) { return __size < 512 ? size_t(512 / __size) : size_t(1); } template <class _Tp, class _Ref, class _Ptr> struct _Deque_iterator { typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); } typedef random_access_iterator_tag iterator_category; typedef _Tp value_type; typedef _Ptr pointer; typedef _Ref reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp** _Map_pointer; typedef _Deque_iterator _Self; _Tp* _M_cur; _Tp* _M_first; _Tp* _M_last; _Map_pointer _M_node; _Deque_iterator(_Tp* __x, _Map_pointer __y) : _M_cur(__x), _M_first(*__y), _M_last(*__y + _S_buffer_size()), _M_node(__y) {} _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {} _Deque_iterator(const iterator& __x) : _M_cur(__x._M_cur), _M_first(__x._M_first), _M_last(__x._M_last), _M_node(__x._M_node) {} reference operator*() const { return *_M_cur; } pointer operator->() const { return _M_cur; } difference_type operator-(const _Self& __x) const { return difference_type(_S_buffer_size()) * (_M_node - __x._M_node - 1) + (_M_cur - _M_first) + (__x._M_last - __x._M_cur); } _Self& operator++() { ++_M_cur; if (_M_cur == _M_last) { _M_set_node(_M_node + 1); _M_cur = _M_first; } return *this; } _Self operator++(int) { _Self __tmp = *this; ++*this; return __tmp; } _Self& operator--() { if (_M_cur == _M_first) { _M_set_node(_M_node - 1); _M_cur = _M_last; } --_M_cur; return *this; } _Self operator--(int) { _Self __tmp = *this; --*this; return __tmp; } _Self& operator+=(difference_type __n) { difference_type __offset = __n + (_M_cur - _M_first); if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) _M_cur += __n; else { difference_type __node_offset = __offset > 0 ? __offset / difference_type(_S_buffer_size()) : -difference_type((-__offset - 1) / _S_buffer_size()) - 1; _M_set_node(_M_node + __node_offset); _M_cur = _M_first + (__offset - __node_offset * difference_type(_S_buffer_size())); } return *this; } _Self operator+(difference_type __n) const { _Self __tmp = *this; return __tmp += __n; } _Self& operator-=(difference_type __n) { return *this += -__n; } _Self operator-(difference_type __n) const { _Self __tmp = *this; return __tmp -= __n; } reference operator[](difference_type __n) const { return *(*this + __n); } bool operator==(const _Self& __x) const { return _M_cur == __x._M_cur; } bool operator!=(const _Self& __x) const { return !(*this == __x); } bool operator<(const _Self& __x) const { return (_M_node == __x._M_node) ? (_M_cur < __x._M_cur) : (_M_node < __x._M_node); } bool operator>(const _Self& __x) const { return __x < *this; } bool operator<=(const _Self& __x) const { return !(__x < *this); } bool operator>=(const _Self& __x) const { return !(*this < __x); } void _M_set_node(_Map_pointer __new_node) { _M_node = __new_node; _M_first = *__new_node; _M_last = _M_first + difference_type(_S_buffer_size()); } }; template <class _Tp, class _Ref, class _Ptr> inline _Deque_iterator<_Tp, _Ref, _Ptr> operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) { return __x + __n; } // Deque base class. It has two purposes. First, its constructor // and destructor allocate (but don't initialize) storage. This makes // exception safety easier. Second, the base class encapsulates all of // the differences between SGI-style allocators and standard-conforming // allocators. // Base class for ordinary allocators. template <class _Tp, class _Alloc, bool __is_static> class _Deque_alloc_base { public: typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type; allocator_type get_allocator() const { return _M_node_allocator; } _Deque_alloc_base(const allocator_type& __a) : _M_node_allocator(__a), _M_map_allocator(__a), _M_map(0), _M_map_size(0) {} protected: typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type _Map_allocator_type; allocator_type _M_node_allocator; _Map_allocator_type _M_map_allocator; _Tp* _M_allocate_node() { return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp))); } void _M_deallocate_node(_Tp* __p) { _M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp))); } _Tp** _M_allocate_map(size_t __n) { return _M_map_allocator.allocate(__n); } void _M_deallocate_map(_Tp** __p, size_t __n) { _M_map_allocator.deallocate(__p, __n); } _Tp** _M_map; size_t _M_map_size; }; // Specialization for instanceless allocators. template <class _Tp, class _Alloc> class _Deque_alloc_base<_Tp, _Alloc, true> { public: typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type; allocator_type get_allocator() const { return allocator_type(); } _Deque_alloc_base(const allocator_type&) : _M_map(0), _M_map_size(0) {} protected: typedef typename _Alloc_traits<_Tp, _Alloc>::_Alloc_type _Node_alloc_type; typedef typename _Alloc_traits<_Tp*, _Alloc>::_Alloc_type _Map_alloc_type; _Tp* _M_allocate_node() { return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp))); } void _M_deallocate_node(_Tp* __p) { _Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp))); } _Tp** _M_allocate_map(size_t __n) { return _Map_alloc_type::allocate(__n); } void _M_deallocate_map(_Tp** __p, size_t __n) { _Map_alloc_type::deallocate(__p, __n); } _Tp** _M_map; size_t _M_map_size; }; template <class _Tp, class _Alloc> class _Deque_base : public _Deque_alloc_base<_Tp,_Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> { public: typedef _Deque_alloc_base<_Tp,_Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> _Base; typedef typename _Base::allocator_type allocator_type; typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator; typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator; _Deque_base(const allocator_type& __a, size_t __num_elements) : _Base(__a), _M_start(), _M_finish() { _M_initialize_map(__num_elements); } _Deque_base(const allocator_type& __a) : _Base(__a), _M_start(), _M_finish() {} ~_Deque_base(); protected: void _M_initialize_map(size_t); void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish); void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish); enum { _S_initial_map_size = 8 }; protected: iterator _M_start; iterator _M_finish; }; // Non-inline member functions from _Deque_base. template <class _Tp, class _Alloc> _Deque_base<_Tp,_Alloc>::~_Deque_base() { if (_M_map) { _M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1); _M_deallocate_map(_M_map, _M_map_size); } } template <class _Tp, class _Alloc> void _Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements) { size_t __num_nodes = __num_elements / __deque_buf_size(sizeof(_Tp)) + 1; _M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2); _M_map = _M_allocate_map(_M_map_size); _Tp** __nstart = _M_map + (_M_map_size - __num_nodes) / 2; _Tp** __nfinish = __nstart + __num_nodes; __STL_TRY { _M_create_nodes(__nstart, __nfinish); } __STL_UNWIND((_M_deallocate_map(_M_map, _M_map_size), _M_map = 0, _M_map_size = 0)); _M_start._M_set_node(__nstart); _M_finish._M_set_node(__nfinish - 1); _M_start._M_cur = _M_start._M_first; _M_finish._M_cur = _M_finish._M_first + __num_elements % __deque_buf_size(sizeof(_Tp)); } template <class _Tp, class _Alloc> void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish) { _Tp** __cur; __STL_TRY { for (__cur = __nstart; __cur < __nfinish; ++__cur) *__cur = _M_allocate_node(); } __STL_UNWIND(_M_destroy_nodes(__nstart, __cur)); } template <class _Tp, class _Alloc> void _Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) { for (_Tp** __n = __nstart; __n < __nfinish; ++__n) _M_deallocate_node(*__n); } template <class _Tp, class _Alloc = allocator<_Tp> > class deque : protected _Deque_base<_Tp, _Alloc> { // concept requirements __glibcpp_class_requires(_Tp, _SGIAssignableConcept); typedef _Deque_base<_Tp, _Alloc> _Base; public: // Basic types typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef typename _Base::allocator_type allocator_type; allocator_type get_allocator() const { return _Base::get_allocator(); } public: // Iterators typedef typename _Base::iterator iterator; typedef typename _Base::const_iterator const_iterator; typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; protected: // Internal typedefs typedef pointer* _Map_pointer; static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); } protected: using _Base::_M_initialize_map; using _Base::_M_create_nodes; using _Base::_M_destroy_nodes; using _Base::_M_allocate_node; using _Base::_M_deallocate_node; using _Base::_M_allocate_map; using _Base::_M_deallocate_map; using _Base::_M_map; using _Base::_M_map_size; using _Base::_M_start; using _Base::_M_finish; public: // Basic accessors iterator begin() { return _M_start; } iterator end() { return _M_finish; } const_iterator begin() const { return _M_start; } const_iterator end() const { return _M_finish; } reverse_iterator rbegin() { return reverse_iterator(_M_finish); } reverse_iterator rend() { return reverse_iterator(_M_start); } const_reverse_iterator rbegin() const { return const_reverse_iterator(_M_finish); } const_reverse_iterator rend() const { return const_reverse_iterator(_M_start); } reference operator[](size_type __n) { return _M_start[difference_type(__n)]; } const_reference operator[](size_type __n) const { return _M_start[difference_type(__n)]; } void _M_range_check(size_type __n) const { if (__n >= this->size()) __throw_range_error("deque"); } reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } reference front() { return *_M_start; } reference back() { iterator __tmp = _M_finish; --__tmp; return *__tmp; } const_reference front() const { return *_M_start; } const_reference back() const { const_iterator __tmp = _M_finish; --__tmp; return *__tmp; } size_type size() const { return _M_finish - _M_start; } size_type max_size() const { return size_type(-1); } bool empty() const { return _M_finish == _M_start; } public: // Constructor, destructor. explicit deque(const allocator_type& __a = allocator_type()) : _Base(__a, 0) {} deque(const deque& __x) : _Base(__x.get_allocator(), __x.size()) { uninitialized_copy(__x.begin(), __x.end(), _M_start); } deque(size_type __n, const value_type& __value, const allocator_type& __a = allocator_type()) : _Base(__a, __n) { _M_fill_initialize(__value); } explicit deque(size_type __n) : _Base(allocator_type(), __n) { _M_fill_initialize(value_type()); } // Check whether it's an integral type. If so, it's not an iterator. template<class _InputIterator> deque(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } template<class _Integer> void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) { _M_initialize_map(__n); _M_fill_initialize(__x); } template<class _InputIter> void _M_initialize_dispatch(_InputIter __first, _InputIter __last, __false_type) { typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory; _M_range_initialize(__first, __last, _IterCategory()); } ~deque() { _Destroy(_M_start, _M_finish); } deque& operator= (const deque& __x) { const size_type __len = size(); if (&__x != this) { if (__len >= __x.size()) erase(copy(__x.begin(), __x.end(), _M_start), _M_finish); else { const_iterator __mid = __x.begin() + difference_type(__len); copy(__x.begin(), __mid, _M_start); insert(_M_finish, __mid, __x.end()); } } return *this; } void swap(deque& __x) { std::swap(_M_start, __x._M_start); std::swap(_M_finish, __x._M_finish); std::swap(_M_map, __x._M_map); std::swap(_M_map_size, __x._M_map_size); } public: // assign(), a generalized assignment member function. Two // versions: one that takes a count, and one that takes a range. // The range version is a member template, so we dispatch on whether // or not the type is an integer. void _M_fill_assign(size_type __n, const _Tp& __val) { if (__n > size()) { fill(begin(), end(), __val); insert(end(), __n - size(), __val); } else { erase(begin() + __n, end()); fill(begin(), end(), __val); } } void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); } template<class _InputIterator> void assign(_InputIterator __first, _InputIterator __last) { typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_assign_dispatch(__first, __last, _Integral()); } private: // helper functions for assign() template<class _Integer> void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(static_cast<size_type>(__n), static_cast<_Tp>(__val)); } template<class _InputIterator> void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory; _M_assign_aux(__first, __last, _IterCategory()); } template <class _InputIterator> void _M_assign_aux(_InputIterator __first, _InputIterator __last, input_iterator_tag); template <class _ForwardIterator> void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { size_type __len = 0; distance(__first, __last, __len); if (__len > size()) { _ForwardIterator __mid = __first; advance(__mid, size()); copy(__first, __mid, begin()); insert(end(), __mid, __last); } else erase(copy(__first, __last, begin()), end()); } public: // push_* and pop_* void push_back(const value_type& __t) { if (_M_finish._M_cur != _M_finish._M_last - 1) { _Construct(_M_finish._M_cur, __t); ++_M_finish._M_cur; } else _M_push_back_aux(__t); } void push_back() { if (_M_finish._M_cur != _M_finish._M_last - 1) { _Construct(_M_finish._M_cur); ++_M_finish._M_cur; } else _M_push_back_aux(); } void push_front(const value_type& __t) { if (_M_start._M_cur != _M_start._M_first) { _Construct(_M_start._M_cur - 1, __t); --_M_start._M_cur; } else _M_push_front_aux(__t); } void push_front() { if (_M_start._M_cur != _M_start._M_first) { _Construct(_M_start._M_cur - 1); --_M_start._M_cur; } else _M_push_front_aux(); } void pop_back() { if (_M_finish._M_cur != _M_finish._M_first) { --_M_finish._M_cur; _Destroy(_M_finish._M_cur); } else _M_pop_back_aux(); } void pop_front() { if (_M_start._M_cur != _M_start._M_last - 1) { _Destroy(_M_start._M_cur); ++_M_start._M_cur; } else _M_pop_front_aux(); } public: // Insert iterator insert(iterator position, const value_type& __x) { if (position._M_cur == _M_start._M_cur) { push_front(__x); return _M_start; } else if (position._M_cur == _M_finish._M_cur) { push_back(__x); iterator __tmp = _M_finish; --__tmp; return __tmp; } else { return _M_insert_aux(position, __x); } } iterator insert(iterator __position) { return insert(__position, value_type()); } void insert(iterator __pos, size_type __n, const value_type& __x) { _M_fill_insert(__pos, __n, __x); } void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); // Check whether it's an integral type. If so, it's not an iterator. template<class _InputIterator> void insert(iterator __pos, _InputIterator __first, _InputIterator __last) { typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_insert_dispatch(__pos, __first, __last, _Integral()); } template<class _Integer> void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, __true_type) { _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<value_type>(__x)); } template<class _InputIterator> void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, __false_type) { typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory; insert(__pos, __first, __last, _IterCategory()); } void resize(size_type __new_size, const value_type& __x) { const size_type __len = size(); if (__new_size < __len) erase(_M_start + __new_size, _M_finish); else insert(_M_finish, __new_size - __len, __x); } void resize(size_type new_size) { resize(new_size, value_type()); } public: // Erase iterator erase(iterator __pos) { iterator __next = __pos; ++__next; size_type __index = __pos - _M_start; if (__index < (size() >> 1)) { copy_backward(_M_start, __pos, __next); pop_front(); } else { copy(__next, _M_finish, __pos); pop_back(); } return _M_start + __index; } iterator erase(iterator __first, iterator __last); void clear(); protected: // Internal construction/destruction void _M_fill_initialize(const value_type& __value); template <class _InputIterator> void _M_range_initialize(_InputIterator __first, _InputIterator __last, input_iterator_tag); template <class _ForwardIterator> void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag); protected: // Internal push_* and pop_* void _M_push_back_aux(const value_type&); void _M_push_back_aux(); void _M_push_front_aux(const value_type&); void _M_push_front_aux(); void _M_pop_back_aux(); void _M_pop_front_aux(); protected: // Internal insert functions template <class _InputIterator> void insert(iterator __pos, _InputIterator __first, _InputIterator __last, input_iterator_tag); template <class _ForwardIterator> void insert(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag); iterator _M_insert_aux(iterator __pos, const value_type& __x); iterator _M_insert_aux(iterator __pos); void _M_insert_aux(iterator __pos, size_type __n, const value_type& __x); template <class _ForwardIterator> void _M_insert_aux(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, size_type __n); iterator _M_reserve_elements_at_front(size_type __n) { size_type __vacancies = _M_start._M_cur - _M_start._M_first; if (__n > __vacancies) _M_new_elements_at_front(__n - __vacancies); return _M_start - difference_type(__n); } iterator _M_reserve_elements_at_back(size_type __n) { size_type __vacancies = (_M_finish._M_last - _M_finish._M_cur) - 1; if (__n > __vacancies) _M_new_elements_at_back(__n - __vacancies); return _M_finish + difference_type(__n); } void _M_new_elements_at_front(size_type __new_elements); void _M_new_elements_at_back(size_type __new_elements); protected: // Allocation of _M_map and nodes // Makes sure the _M_map has space for new nodes. Does not actually // add the nodes. Can invalidate _M_map pointers. (And consequently, // deque iterators.) void _M_reserve_map_at_back (size_type __nodes_to_add = 1) { if (__nodes_to_add + 1 > _M_map_size - (_M_finish._M_node - _M_map)) _M_reallocate_map(__nodes_to_add, false); } void _M_reserve_map_at_front (size_type __nodes_to_add = 1) { if (__nodes_to_add > size_type(_M_start._M_node - _M_map)) _M_reallocate_map(__nodes_to_add, true); } void _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); }; // Non-inline member functions template <class _Tp, class _Alloc> template <class _InputIter> void deque<_Tp, _Alloc> ::_M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag) { iterator __cur = begin(); for ( ; __first != __last && __cur != end(); ++__cur, ++__first) *__cur = *__first; if (__first == __last) erase(__cur, end()); else insert(end(), __first, __last); } template <class _Tp, class _Alloc> void deque<_Tp, _Alloc>::_M_fill_insert(iterator __pos, size_type __n, const value_type& __x) { if (__pos._M_cur == _M_start._M_cur) { iterator __new_start = _M_reserve_elements_at_front(__n); __STL_TRY { uninitialized_fill(__new_start, _M_start, __x); _M_start = __new_start; } __STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node)); } else if (__pos._M_cur == _M_finish._M_cur) { iterator __new_finish = _M_reserve_elements_at_back(__n); __STL_TRY { uninitialized_fill(_M_finish, __new_finish, __x); _M_finish = __new_finish; } __STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1)); } else _M_insert_aux(__pos, __n, __x); } template <class _Tp, class _Alloc> typename deque<_Tp,_Alloc>::iterator deque<_Tp,_Alloc>::erase(iterator __first, iterator __last) { if (__first == _M_start && __last == _M_finish) { clear(); return _M_finish; } else { difference_type __n = __last - __first; difference_type __elems_before = __first - _M_start; if (static_cast<size_type>(__elems_before) < (size() - __n) / 2) { copy_backward(_M_start, __first, __last); iterator __new_start = _M_start + __n; _Destroy(_M_start, __new_start); _M_destroy_nodes(__new_start._M_node, _M_start._M_node); _M_start = __new_start; } else { copy(__last, _M_finish, __first); iterator __new_finish = _M_finish - __n; _Destroy(__new_finish, _M_finish); _M_destroy_nodes(__new_finish._M_node + 1, _M_finish._M_node + 1); _M_finish = __new_finish; } return _M_start + __elems_before; } } template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::clear() { for (_Map_pointer __node = _M_start._M_node + 1; __node < _M_finish._M_node; ++__node) { _Destroy(*__node, *__node + _S_buffer_size()); _M_deallocate_node(*__node); } if (_M_start._M_node != _M_finish._M_node) { _Destroy(_M_start._M_cur, _M_start._M_last); _Destroy(_M_finish._M_first, _M_finish._M_cur); _M_deallocate_node(_M_finish._M_first); } else _Destroy(_M_start._M_cur, _M_finish._M_cur); _M_finish = _M_start; } // Precondition: _M_start and _M_finish have already been initialized, // but none of the deque's elements have yet been constructed. template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_fill_initialize(const value_type& __value) { _Map_pointer __cur; __STL_TRY { for (__cur = _M_start._M_node; __cur < _M_finish._M_node; ++__cur) uninitialized_fill(*__cur, *__cur + _S_buffer_size(), __value); uninitialized_fill(_M_finish._M_first, _M_finish._M_cur, __value); } __STL_UNWIND(_Destroy(_M_start, iterator(*__cur, __cur))); } template <class _Tp, class _Alloc> template <class _InputIterator> void deque<_Tp,_Alloc>::_M_range_initialize(_InputIterator __first, _InputIterator __last, input_iterator_tag) { _M_initialize_map(0); __STL_TRY { for ( ; __first != __last; ++__first) push_back(*__first); } __STL_UNWIND(clear()); } template <class _Tp, class _Alloc> template <class _ForwardIterator> void deque<_Tp,_Alloc>::_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { size_type __n = 0; distance(__first, __last, __n); _M_initialize_map(__n); _Map_pointer __cur_node; __STL_TRY { for (__cur_node = _M_start._M_node; __cur_node < _M_finish._M_node; ++__cur_node) { _ForwardIterator __mid = __first; advance(__mid, _S_buffer_size()); uninitialized_copy(__first, __mid, *__cur_node); __first = __mid; } uninitialized_copy(__first, __last, _M_finish._M_first); } __STL_UNWIND(_Destroy(_M_start, iterator(*__cur_node, __cur_node))); } // Called only if _M_finish._M_cur == _M_finish._M_last - 1. template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_push_back_aux(const value_type& __t) { value_type __t_copy = __t; _M_reserve_map_at_back(); *(_M_finish._M_node + 1) = _M_allocate_node(); __STL_TRY { _Construct(_M_finish._M_cur, __t_copy); _M_finish._M_set_node(_M_finish._M_node + 1); _M_finish._M_cur = _M_finish._M_first; } __STL_UNWIND(_M_deallocate_node(*(_M_finish._M_node + 1))); } // Called only if _M_finish._M_cur == _M_finish._M_last - 1. template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_push_back_aux() { _M_reserve_map_at_back(); *(_M_finish._M_node + 1) = _M_allocate_node(); __STL_TRY { _Construct(_M_finish._M_cur); _M_finish._M_set_node(_M_finish._M_node + 1); _M_finish._M_cur = _M_finish._M_first; } __STL_UNWIND(_M_deallocate_node(*(_M_finish._M_node + 1))); } // Called only if _M_start._M_cur == _M_start._M_first. template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_push_front_aux(const value_type& __t) { value_type __t_copy = __t; _M_reserve_map_at_front(); *(_M_start._M_node - 1) = _M_allocate_node(); __STL_TRY { _M_start._M_set_node(_M_start._M_node - 1); _M_start._M_cur = _M_start._M_last - 1; _Construct(_M_start._M_cur, __t_copy); } __STL_UNWIND((++_M_start, _M_deallocate_node(*(_M_start._M_node - 1)))); } // Called only if _M_start._M_cur == _M_start._M_first. template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_push_front_aux() { _M_reserve_map_at_front(); *(_M_start._M_node - 1) = _M_allocate_node(); __STL_TRY { _M_start._M_set_node(_M_start._M_node - 1); _M_start._M_cur = _M_start._M_last - 1; _Construct(_M_start._M_cur); } __STL_UNWIND((++_M_start, _M_deallocate_node(*(_M_start._M_node - 1)))); } // Called only if _M_finish._M_cur == _M_finish._M_first. template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_pop_back_aux() { _M_deallocate_node(_M_finish._M_first); _M_finish._M_set_node(_M_finish._M_node - 1); _M_finish._M_cur = _M_finish._M_last - 1; _Destroy(_M_finish._M_cur); } // Called only if _M_start._M_cur == _M_start._M_last - 1. Note that // if the deque has at least one element (a precondition for this member // function), and if _M_start._M_cur == _M_start._M_last, then the deque // must have at least two nodes. template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_pop_front_aux() { _Destroy(_M_start._M_cur); _M_deallocate_node(_M_start._M_first); _M_start._M_set_node(_M_start._M_node + 1); _M_start._M_cur = _M_start._M_first; } template <class _Tp, class _Alloc> template <class _InputIterator> void deque<_Tp,_Alloc>::insert(iterator __pos, _InputIterator __first, _InputIterator __last, input_iterator_tag) { copy(__first, __last, inserter(*this, __pos)); } template <class _Tp, class _Alloc> template <class _ForwardIterator> void deque<_Tp,_Alloc>::insert(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { size_type __n = 0; distance(__first, __last, __n); if (__pos._M_cur == _M_start._M_cur) { iterator __new_start = _M_reserve_elements_at_front(__n); __STL_TRY { uninitialized_copy(__first, __last, __new_start); _M_start = __new_start; } __STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node)); } else if (__pos._M_cur == _M_finish._M_cur) { iterator __new_finish = _M_reserve_elements_at_back(__n); __STL_TRY { uninitialized_copy(__first, __last, _M_finish); _M_finish = __new_finish; } __STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1)); } else _M_insert_aux(__pos, __first, __last, __n); } template <class _Tp, class _Alloc> typename deque<_Tp, _Alloc>::iterator deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos, const value_type& __x) { difference_type __index = __pos - _M_start; value_type __x_copy = __x; if (static_cast<size_type>(__index) < size() / 2) { push_front(front()); iterator __front1 = _M_start; ++__front1; iterator __front2 = __front1; ++__front2; __pos = _M_start + __index; iterator __pos1 = __pos; ++__pos1; copy(__front2, __pos1, __front1); } else { push_back(back()); iterator __back1 = _M_finish; --__back1; iterator __back2 = __back1; --__back2; __pos = _M_start + __index; copy_backward(__pos, __back2, __back1); } *__pos = __x_copy; return __pos; } template <class _Tp, class _Alloc> typename deque<_Tp,_Alloc>::iterator deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos) { difference_type __index = __pos - _M_start; if (static_cast<size_type>(__index) < size() / 2) { push_front(front()); iterator __front1 = _M_start; ++__front1; iterator __front2 = __front1; ++__front2; __pos = _M_start + __index; iterator __pos1 = __pos; ++__pos1; copy(__front2, __pos1, __front1); } else { push_back(back()); iterator __back1 = _M_finish; --__back1; iterator __back2 = __back1; --__back2; __pos = _M_start + __index; copy_backward(__pos, __back2, __back1); } *__pos = value_type(); return __pos; } template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos, size_type __n, const value_type& __x) { const difference_type __elems_before = __pos - _M_start; size_type __length = this->size(); value_type __x_copy = __x; if (__elems_before < difference_type(__length / 2)) { iterator __new_start = _M_reserve_elements_at_front(__n); iterator __old_start = _M_start; __pos = _M_start + __elems_before; __STL_TRY { if (__elems_before >= difference_type(__n)) { iterator __start_n = _M_start + difference_type(__n); uninitialized_copy(_M_start, __start_n, __new_start); _M_start = __new_start; copy(__start_n, __pos, __old_start); fill(__pos - difference_type(__n), __pos, __x_copy); } else { __uninitialized_copy_fill(_M_start, __pos, __new_start, _M_start, __x_copy); _M_start = __new_start; fill(__old_start, __pos, __x_copy); } } __STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node)); } else { iterator __new_finish = _M_reserve_elements_at_back(__n); iterator __old_finish = _M_finish; const difference_type __elems_after = difference_type(__length) - __elems_before; __pos = _M_finish - __elems_after; __STL_TRY { if (__elems_after > difference_type(__n)) { iterator __finish_n = _M_finish - difference_type(__n); uninitialized_copy(__finish_n, _M_finish, _M_finish); _M_finish = __new_finish; copy_backward(__pos, __finish_n, __old_finish); fill(__pos, __pos + difference_type(__n), __x_copy); } else { __uninitialized_fill_copy(_M_finish, __pos + difference_type(__n), __x_copy, __pos, _M_finish); _M_finish = __new_finish; fill(__pos, __old_finish, __x_copy); } } __STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1)); } } template <class _Tp, class _Alloc> template <class _ForwardIterator> void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, size_type __n) { const difference_type __elemsbefore = __pos - _M_start; size_type __length = size(); if (static_cast<size_type>(__elemsbefore) < __length / 2) { iterator __new_start = _M_reserve_elements_at_front(__n); iterator __old_start = _M_start; __pos = _M_start + __elemsbefore; __STL_TRY { if (__elemsbefore >= difference_type(__n)) { iterator __start_n = _M_start + difference_type(__n); uninitialized_copy(_M_start, __start_n, __new_start); _M_start = __new_start; copy(__start_n, __pos, __old_start); copy(__first, __last, __pos - difference_type(__n)); } else { _ForwardIterator __mid = __first; advance(__mid, difference_type(__n) - __elemsbefore); __uninitialized_copy_copy(_M_start, __pos, __first, __mid, __new_start); _M_start = __new_start; copy(__mid, __last, __old_start); } } __STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node)); } else { iterator __new_finish = _M_reserve_elements_at_back(__n); iterator __old_finish = _M_finish; const difference_type __elemsafter = difference_type(__length) - __elemsbefore; __pos = _M_finish - __elemsafter; __STL_TRY { if (__elemsafter > difference_type(__n)) { iterator __finish_n = _M_finish - difference_type(__n); uninitialized_copy(__finish_n, _M_finish, _M_finish); _M_finish = __new_finish; copy_backward(__pos, __finish_n, __old_finish); copy(__first, __last, __pos); } else { _ForwardIterator __mid = __first; advance(__mid, __elemsafter); __uninitialized_copy_copy(__mid, __last, __pos, _M_finish, _M_finish); _M_finish = __new_finish; copy(__first, __mid, __pos); } } __STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1)); } } template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_new_elements_at_front(size_type __new_elems) { size_type __new_nodes = (__new_elems + _S_buffer_size() - 1) / _S_buffer_size(); _M_reserve_map_at_front(__new_nodes); size_type __i; __STL_TRY { for (__i = 1; __i <= __new_nodes; ++__i) *(_M_start._M_node - __i) = _M_allocate_node(); } # ifdef __STL_USE_EXCEPTIONS catch(...) { for (size_type __j = 1; __j < __i; ++__j) _M_deallocate_node(*(_M_start._M_node - __j)); throw; } # endif /* __STL_USE_EXCEPTIONS */ } template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_new_elements_at_back(size_type __new_elems) { size_type __new_nodes = (__new_elems + _S_buffer_size() - 1) / _S_buffer_size(); _M_reserve_map_at_back(__new_nodes); size_type __i; __STL_TRY { for (__i = 1; __i <= __new_nodes; ++__i) *(_M_finish._M_node + __i) = _M_allocate_node(); } # ifdef __STL_USE_EXCEPTIONS catch(...) { for (size_type __j = 1; __j < __i; ++__j) _M_deallocate_node(*(_M_finish._M_node + __j)); throw; } # endif /* __STL_USE_EXCEPTIONS */ } template <class _Tp, class _Alloc> void deque<_Tp,_Alloc>::_M_reallocate_map(size_type __nodes_to_add, bool __add_at_front) { size_type __old_num_nodes = _M_finish._M_node - _M_start._M_node + 1; size_type __new_num_nodes = __old_num_nodes + __nodes_to_add; _Map_pointer __new_nstart; if (_M_map_size > 2 * __new_num_nodes) { __new_nstart = _M_map + (_M_map_size - __new_num_nodes) / 2 + (__add_at_front ? __nodes_to_add : 0); if (__new_nstart < _M_start._M_node) copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart); else copy_backward(_M_start._M_node, _M_finish._M_node + 1, __new_nstart + __old_num_nodes); } else { size_type __new_map_size = _M_map_size + max(_M_map_size, __nodes_to_add) + 2; _Map_pointer __new_map = _M_allocate_map(__new_map_size); __new_nstart = __new_map + (__new_map_size - __new_num_nodes) / 2 + (__add_at_front ? __nodes_to_add : 0); copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart); _M_deallocate_map(_M_map, _M_map_size); _M_map = __new_map; _M_map_size = __new_map_size; } _M_start._M_set_node(__new_nstart); _M_finish._M_set_node(__new_nstart + __old_num_nodes - 1); } // Nonmember functions. template <class _Tp, class _Alloc> inline bool operator==(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return __x.size() == __y.size() && equal(__x.begin(), __x.end(), __y.begin()); } template <class _Tp, class _Alloc> inline bool operator<(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } template <class _Tp, class _Alloc> inline bool operator!=(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return !(__x == __y); } template <class _Tp, class _Alloc> inline bool operator>(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return __y < __x; } template <class _Tp, class _Alloc> inline bool operator<=(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return !(__y < __x); } template <class _Tp, class _Alloc> inline bool operator>=(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y) { return !(__x < __y); } template <class _Tp, class _Alloc> inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) { __x.swap(__y); } } // namespace std #endif /* __SGI_STL_INTERNAL_DEQUE_H */ // Local Variables: // mode:C++ // End: