/* Special implementation of the SPREAD intrinsic Copyright 2008 Free Software Foundation, Inc. Contributed by Thomas Koenig , based on spread_generic.c written by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Ligbfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with libgfortran; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "libgfortran.h" #include #include #include #if defined (HAVE_GFC_INTEGER_16) void spread_i16 (gfc_array_i16 *ret, const gfc_array_i16 *source, const index_type along, const index_type pncopies) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type rdelta = 0; index_type rrank; index_type rs; GFC_INTEGER_16 *rptr; GFC_INTEGER_16 * restrict dest; /* s.* indicates the source array. */ index_type sstride[GFC_MAX_DIMENSIONS]; index_type sstride0; index_type srank; const GFC_INTEGER_16 *sptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type n; index_type dim; index_type ncopies; srank = GFC_DESCRIPTOR_RANK(source); rrank = srank + 1; if (rrank > GFC_MAX_DIMENSIONS) runtime_error ("return rank too large in spread()"); if (along > rrank) runtime_error ("dim outside of rank in spread()"); ncopies = pncopies; if (ret->data == NULL) { /* The front end has signalled that we need to populate the return array descriptor. */ ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rrank; dim = 0; rs = 1; for (n = 0; n < rrank; n++) { ret->dim[n].stride = rs; ret->dim[n].lbound = 0; if (n == along - 1) { ret->dim[n].ubound = ncopies - 1; rdelta = rs; rs *= ncopies; } else { count[dim] = 0; extent[dim] = source->dim[dim].ubound + 1 - source->dim[dim].lbound; sstride[dim] = source->dim[dim].stride; rstride[dim] = rs; ret->dim[n].ubound = extent[dim]-1; rs *= extent[dim]; dim++; } } ret->offset = 0; if (rs > 0) ret->data = internal_malloc_size (rs * sizeof(GFC_INTEGER_16)); else { ret->data = internal_malloc_size (1); return; } } else { int zero_sized; zero_sized = 0; dim = 0; if (GFC_DESCRIPTOR_RANK(ret) != rrank) runtime_error ("rank mismatch in spread()"); if (compile_options.bounds_check) { for (n = 0; n < rrank; n++) { index_type ret_extent; ret_extent = ret->dim[n].ubound + 1 - ret->dim[n].lbound; if (n == along - 1) { rdelta = ret->dim[n].stride; if (ret_extent != ncopies) runtime_error("Incorrect extent in return value of SPREAD" " intrinsic in dimension %ld: is %ld," " should be %ld", (long int) n+1, (long int) ret_extent, (long int) ncopies); } else { count[dim] = 0; extent[dim] = source->dim[dim].ubound + 1 - source->dim[dim].lbound; if (ret_extent != extent[dim]) runtime_error("Incorrect extent in return value of SPREAD" " intrinsic in dimension %ld: is %ld," " should be %ld", (long int) n+1, (long int) ret_extent, (long int) extent[dim]); if (extent[dim] <= 0) zero_sized = 1; sstride[dim] = source->dim[dim].stride; rstride[dim] = ret->dim[n].stride; dim++; } } } else { for (n = 0; n < rrank; n++) { if (n == along - 1) { rdelta = ret->dim[n].stride; } else { count[dim] = 0; extent[dim] = source->dim[dim].ubound + 1 - source->dim[dim].lbound; if (extent[dim] <= 0) zero_sized = 1; sstride[dim] = source->dim[dim].stride; rstride[dim] = ret->dim[n].stride; dim++; } } } if (zero_sized) return; if (sstride[0] == 0) sstride[0] = 1; } sstride0 = sstride[0]; rstride0 = rstride[0]; rptr = ret->data; sptr = source->data; while (sptr) { /* Spread this element. */ dest = rptr; for (n = 0; n < ncopies; n++) { *dest = *sptr; dest += rdelta; } /* Advance to the next element. */ sptr += sstride0; rptr += rstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ sptr -= sstride[n] * extent[n]; rptr -= rstride[n] * extent[n]; n++; if (n >= srank) { /* Break out of the loop. */ sptr = NULL; break; } else { count[n]++; sptr += sstride[n]; rptr += rstride[n]; } } } } /* This version of spread_internal treats the special case of a scalar source. This is much simpler than the more general case above. */ void spread_scalar_i16 (gfc_array_i16 *ret, const GFC_INTEGER_16 *source, const index_type along, const index_type pncopies) { int n; int ncopies = pncopies; GFC_INTEGER_16 * restrict dest; index_type stride; if (GFC_DESCRIPTOR_RANK (ret) != 1) runtime_error ("incorrect destination rank in spread()"); if (along > 1) runtime_error ("dim outside of rank in spread()"); if (ret->data == NULL) { ret->data = internal_malloc_size (ncopies * sizeof (GFC_INTEGER_16)); ret->offset = 0; ret->dim[0].stride = 1; ret->dim[0].lbound = 0; ret->dim[0].ubound = ncopies - 1; } else { if (ncopies - 1 > (ret->dim[0].ubound - ret->dim[0].lbound) / ret->dim[0].stride) runtime_error ("dim too large in spread()"); } dest = ret->data; stride = ret->dim[0].stride; for (n = 0; n < ncopies; n++) { *dest = *source; dest += stride; } } #endif