// Locale support -*- C++ -*- // Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. // Warning: this file is not meant for user inclusion. Use . #ifndef _CPP_BITS_LOCFACETS_TCC #define _CPP_BITS_LOCFACETS_TCC 1 #include #include // For strof, strtold #include // For numeric_limits #include #include // For auto_ptr #include // For streambuf_iterators #include // For isspace namespace std { template locale locale::combine(const locale& __other) { locale __copy(*this); __copy._M_impl->_M_replace_facet(__other._M_impl, &_Facet::id); __copy._M_impl->_M_has_name = false; return __copy; } template bool locale::operator()(const basic_string<_CharT,_Traits,_Alloc>& __s1, const basic_string<_CharT,_Traits,_Alloc>& __s2) const { // XXX should not need to qualify here. // typedef collate<_CharT> __collate_type; typedef std::collate<_CharT> __collate_type; const __collate_type* __fcoll = &use_facet<__collate_type>(*this); return (__fcoll->compare(__s1.data(), __s1.data() + __s1.length(), __s2.data(), __s2.data() + __s2.length()) < 0); } template const _Facet& use_facet(const locale& __loc) { const locale::facet* __fp = (const _Facet*)0; // check derivation locale::id& __id = _Facet::id; // check member id size_t __i = __id._M_index; const locale::_Impl* __tmp = __loc._M_impl; if (__id._M_index >= __loc._M_impl->_M_facets->size() || (__fp = (*(__tmp->_M_facets))[__i]) == 0) return _Use_facet_failure_handler<_Facet>(__loc); return static_cast(*__fp); } template bool has_facet(const locale& __loc) throw() { typedef locale::_Impl::__vec_facet __vec_facet; locale::id& __id = _Facet::id; // check member id size_t __i = __id._M_index; __vec_facet* __tmpv = __loc._M_impl->_M_facets; return (__i < __tmpv->size() && (*__tmpv)[__i] != 0); } // __match_parallel // matches input __s against a set of __ntargs strings in __targets, // placing in __matches a vector of indices into __targets which // match, and in __remain the number of such matches. If it hits // end of sequence before it minimizes the set, sets __eof. // Empty strings are never matched. template _InIter __match_parallel(_InIter __s, _InIter __end, int __ntargs, const basic_string<_CharT>* __targets, int* __matches, int& __remain, bool& __eof) { typedef basic_string<_CharT> __string_type; __eof = false; for (int __ti = 0; __ti < __ntargs; ++__ti) __matches[__ti] = __ti; __remain = __ntargs; size_t __pos = 0; do { { int __ti = 0; for (;__ti < __remain && __pos == __targets[__matches[__ti]].size(); ++__ti) { } if (__ti == __remain) { if (__pos == 0) __remain = 0; return __s; } } if (__s == __end) __eof = true; bool __matched = false; for (int __ti = 0; __ti < __remain; ) { const __string_type& __target = __targets[__matches[__ti]]; if (__pos < __target.size()) { if (__eof || __target[__pos] != *__s) { __matches[__ti] = __matches[--__remain]; continue; } __matched = true; } ++__ti; } if (__matched) { ++__s; ++__pos; } for (int __ti = 0; __ti < __remain;) { if (__pos > __targets[__matches[__ti]].size()) { __matches[__ti] = __matches[--__remain]; continue; } ++__ti; } } while (__remain); return __s; } template locale::id ctype<_CharT>::id; template locale::id codecvt<_InternT,_ExternT,_StateT>::id; template int _Format_cache<_CharT>::_S_pword_ix; template const char _Format_cache<_CharT>:: _S_literals[] = "-+xX0123456789abcdef0123456789ABCDEF"; template _Format_cache<_CharT>::_Format_cache() : _M_valid(true), _M_use_grouping(false) { } template<> _Format_cache::_Format_cache() : _M_valid(true), _M_decimal_point('.'), _M_thousands_sep(','), _M_truename("true"), _M_falsename("false"), _M_use_grouping(false) { } #ifdef _GLIBCPP_USE_WCHAR_T template<> _Format_cache::_Format_cache() : _M_valid(true), _M_decimal_point(L'.'), _M_thousands_sep(L','), _M_truename(L"true"), _M_falsename(L"false"), _M_use_grouping(false) { } #endif template void _Format_cache<_CharT>::_M_populate(ios_base& __io) { locale __loc = __io.getloc (); numpunct<_CharT> const& __np = use_facet >(__loc); _M_truename = __np.truename(); _M_falsename = __np.falsename(); _M_thousands_sep = __np.thousands_sep(); _M_decimal_point = __np.decimal_point(); _M_grouping = __np.grouping(); _M_use_grouping = _M_grouping.size() != 0 && _M_grouping.data()[0] != 0; _M_valid = true; } // This function is always called via a pointer installed in // an ios_base by ios_base::register_callback. template void _Format_cache<_CharT>:: _S_callback(ios_base::event __ev, ios_base& __ios, int __ix) throw() { void*& __p = __ios.pword(__ix); switch (__ev) { case ios_base::erase_event: delete static_cast<_Format_cache<_CharT>*> (__p); __p = 0; break; case ios_base::copyfmt_event: // If just stored zero, the callback would get registered again. try { __p = new _Format_cache<_CharT>; } catch(...) { } break; case ios_base::imbue_event: static_cast<_Format_cache<_CharT>*>(__p)->_M_valid = false; break; } } template _Format_cache<_CharT>* _Format_cache<_CharT>::_S_get(ios_base& __ios) { if (!_S_pword_ix) _S_pword_ix = ios_base::xalloc(); // XXX MT void*& __p = __ios.pword(_S_pword_ix); // XXX What if pword fails? must check failbit, throw. if (__p == 0) // XXX MT? maybe sentry takes care of it { auto_ptr<_Format_cache<_CharT> > __ap(new _Format_cache<_CharT>); __ios.register_callback(&_Format_cache<_CharT>::_S_callback, _S_pword_ix); __p = __ap.release(); } _Format_cache<_CharT>* __ncp = static_cast<_Format_cache<_CharT>*>(__p); if (!__ncp->_M_valid) __ncp->_M_populate(__ios); return __ncp; } template locale::id num_get<_CharT, _InIter>::id; // This member function takes an (w)istreambuf_iterator object and // parses it into a generic char array suitable for parsing with // strto[l,ll,f,d]. The thought was to encapsulate the conversion // into this one function, and thus the num_get::do_get member // functions can just adjust for the type of the overloaded // argument and process the char array returned from _M_extract. // Other things were also considered, including a fused // multiply-add loop that would obviate the need for any call to // strto... at all: however, it would b e a bit of a pain, because // you'd have to be able to return either floating or integral // types, etc etc. The current approach seems to be smack dab in // the middle between an unoptimized approach using sscanf, and // some kind of hyper-optimized approach alluded to above. // XXX // Need to do partial specialization to account for differences // between character sets. For char, this is pretty // straightforward, but for wchar_t, the conversion to a plain-jane // char type is a bit more involved. template void num_get<_CharT, _InIter>:: _M_extract(iter_type /*__beg*/, iter_type /*__end*/, ios_base& /*__io*/, ios_base::iostate& /*__err*/, char* /*__xtrc*/, int& /*__base*/, bool /*__fp*/) const { // XXX Not currently done: need to expand upon char version below. } template<> void num_get >:: _M_extract(istreambuf_iterator __beg, istreambuf_iterator __end, ios_base& __io, ios_base::iostate& __err, char* __xtrc, int& __base, bool __fp) const { typedef _Format_cache __cache_type; // Prepare for possible failure __xtrc[0] = '\0'; // Stage 1: determine a conversion specifier. ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield; if (__basefield == ios_base::dec) __base = 10; else if (__basefield == ios_base::oct) __base = 8; else if (__basefield == ios_base::hex) __base = 16; else __base = 0; // As far as I can tell, bases other than 10 are not available for // floating point types if (__fp) __base = 10; // Stage 2: extract characters. __cache_type const* __fmt = __cache_type::_S_get(__io); bool __valid = __beg != __end; // Fail quickly if !__valid if (!__valid) { __err |= (ios_base::eofbit | ios_base::failbit); return; } // Acceptable formats for numbers here are based on 22.2.3.1 string __grp; int __sep_pos = 0; int __pos = 0; const char* __lits = __fmt->_S_literals; char __c = *__beg; // Check first for sign bool __testsign = false; if ((__c == __lits[__cache_type::_S_minus]) || (__c == __lits[__cache_type::_S_plus])) { __xtrc[__pos++] = __c; ++__beg; __testsign = true; // whitespace may follow a sign while ((__beg != __end) && (isspace(*__beg))) ++__beg; // There had better be more to come... if (__beg == __end) { __xtrc[__pos] = '\0'; __err |= (ios_base::eofbit | ios_base::failbit); return; } } bool __testzero = false; // Has there been a leading zero? // Now check if first character is a zero __c = *__beg; if (__c == __lits[__cache_type::_S_digits]) { __testzero = true; ++__beg; // We have to check for __beg == __end here. If so, // a plain '0' (possibly with a sign) can be got rid of now if (__beg == __end) { __xtrc[__pos++] = __c; __xtrc[__pos] = '\0'; __err |= ios_base::eofbit; return; } // Figure out base for integer types only // Based on Table 55 of 22.2.2.1.2 if (!__fp && __base != 10 && __base != 8) { // Here, __base == 0 or 16 __c = *__beg; if ((__c == __lits[__cache_type::_S_x]) || (__c == __lits[__cache_type::_S_X])) { ++__beg; __base = 16; __testzero = false; // "0x" is not a leading zero } else __base = 8; } // Remove any more leading zeros while (__beg != __end) { if (*__beg == __lits[__cache_type::_S_digits]) { ++__beg; __testzero = true; } else break; } } else if (__base == 0) // 1st character is not zero __base = 10; // We now seek "units", i.e. digits and thousands separators. // We may need to know if anything is found here. A leading zero // (removed by now) would count. bool __testunits = __testzero; while (__valid && __beg != __end) { __valid = false; __c = *__beg; const char* __p = strchr(__fmt->_S_literals, __c); // NB: strchr returns true for __c == 0x0 if (__p && __c) { // Try first for acceptable digit; record it if found if ((__p >= &__lits[__cache_type::_S_digits] && __p < &__lits[__cache_type::_S_digits + __base]) || (__p >= &__lits[__cache_type::_S_udigits] && __p < &__lits[__cache_type::_S_udigits + __base])) { __xtrc[__pos++] = __c; ++__sep_pos; __valid = true; __testunits = true; } } else if (__c == __fmt->_M_thousands_sep && __fmt->_M_use_grouping) { // NB: Thousands separator at the beginning of a string // is a no-no, as is two consecutive thousands // separators if (__sep_pos) { __grp += static_cast(__sep_pos); __sep_pos = 0; __valid = true; } else __err |= ios_base::failbit; } if (__valid) ++__beg; } // Digit grouping is checked. If _M_groupings() doesn't // match, then get very very upset, and set failbit. if (__fmt->_M_use_grouping && !__grp.empty()) { // Add the ending grouping __grp += static_cast(__sep_pos); // __grp is parsed L to R // 1,222,444 == __grp of "/1/3/3" // __fmt->_M_grouping is parsed R to L // 1,222,444 == __fmt->_M_grouping of "/3" == "/3/3/3" int __i = 0; int __j = 0; const int __len = __fmt->_M_grouping.size(); int __n = __grp.size(); bool __test = true; // Parsed number groupings have to match the // numpunct::grouping string exactly, starting at the // right-most point of the parsed sequence of elements ... while (__test && __i < __n - 1) for (__j = 0; __test && __j < __len && __i < __n - 1; ++__j,++__i) __test &= __fmt->_M_grouping[__j] == __grp[__n - __i - 1]; // ... but the last parsed grouping can be <= numpunct // grouping. __j == __len ? __j = 0 : __j; __test &= __fmt->_M_grouping[__j] >= __grp[__n - __i - 1]; if (!__test) { __err |= ios_base::failbit; __xtrc[__pos] = '\0'; if (__beg == __end) __err |= ios_base::eofbit; return; } } // If there was nothing but zeros, put one in the output string if (__testzero && (__pos == 0 || (__pos == 1 && __testsign))) __xtrc[__pos++] = __lits[__cache_type::_S_digits]; // That's it for integer types. Remaining code is for floating point if (__fp && __beg != __end) { __c = *__beg; // Check first for decimal point. There MUST be one if // __testunits is false. bool __testdec = false; // Is there a decimal point // with digits following it? if (__c == __fmt->_M_decimal_point) { __xtrc[__pos++] = '.'; ++__beg; // Now we get any digits after the decimal point // There MUST be some if __testunits is false. while (__beg != __end) { __c = *__beg; const char* __p = strchr(__fmt->_S_literals, __c); if ((__p >= &__lits[__cache_type::_S_digits] && __p < &__lits[__cache_type::_S_digits + __base]) || (__p >= &__lits[__cache_type::_S_udigits] && __p < &__lits[__cache_type::_S_udigits + __base])) { __xtrc[__pos++] = __c; ++__beg; __testdec = true; } else break; } } if (!__testunits && !__testdec) // Ill formed { __err |= ios_base::failbit; __xtrc[__pos] = '\0'; if (__beg == __end) __err |= ios_base::eofbit; return; } // Now we may find an exponent if (__beg != __end) { __c = *__beg; if ((__c == __lits[__cache_type::_S_ee]) || (__c == __lits[__cache_type::_S_Ee])) { __xtrc[__pos++] = __c; ++__beg; // Now there may be a sign if (__beg != __end) { __c = *__beg; if ((__c == __lits[__cache_type::_S_minus]) || (__c == __lits[__cache_type::_S_plus])) { __xtrc[__pos++] = __c; ++__beg; // whitespace may follow a sign while ((__beg != __end) && (isspace(*__beg))) ++__beg; } } // And now there must be some digits if (__beg == __end) { __xtrc[__pos] = '\0'; __err |= (ios_base::eofbit | ios_base::failbit); return; } while (__beg != __end) { __c = *__beg; const char* __p = strchr(__fmt->_S_literals, __c); if ((__p >= &__lits[__cache_type::_S_digits] && __p < &__lits[__cache_type::_S_digits + __base]) || (__p >= &__lits[__cache_type::_S_udigits] && __p < &__lits[__cache_type::_S_udigits + __base])) { __xtrc[__pos++] = __c; ++__beg; } else break; } } } // Finally, that's it for floating point } // Finish up __xtrc[__pos] = '\0'; if (__beg == __end) __err |= ios_base::eofbit; } // NB: This is an unresolved library defect #17 // _GLIBCPP_RESOLVE_LIB_DEFECTS template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, bool& __v) const { // Parse bool values as long if (!(__io.flags() & ios_base::boolalpha)) { // NB: We can't just call do_get(long) here, as it might // refer to a derived class. // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; long __l = strtol(__xtrc, &__sanity, __base); if (!(__err & ios_base::failbit) && __l <= 1 && __sanity != __xtrc && *__sanity == '\0' && errno == 0) __v = __l; else __err |= ios_base::failbit; } // Parse bool values as alphanumeric else { typedef _Format_cache __fcache_type; __fcache_type* __fmt = __fcache_type::_S_get(__io); const char_type* __true = __fmt->_M_truename.c_str(); const char_type* __false = __fmt->_M_falsename.c_str(); const size_t __truelen = __traits_type::length(__true) - 1; const size_t __falselen = __traits_type::length(__false) - 1; for (size_t __pos = 0; __beg != __end; ++__pos) { char_type __c = *__beg++; bool __testf = __c == __false[__pos]; bool __testt = __c == __true[__pos]; if (!(__testf || __testt)) { __err |= ios_base::failbit; break; } else if (__testf && __pos == __falselen) { __v = 0; break; } else if (__testt && __pos == __truelen) { __v = 1; break; } } if (__beg == __end) __err |= ios_base::eofbit; } return __beg; } #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, short& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; long __l = strtol(__xtrc, &__sanity, __base); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0 && __l >= SHRT_MIN && __l <= SHRT_MAX) __v = static_cast(__l); else __err |= ios_base::failbit; return __beg; } template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, int& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32] = {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; long __l = strtol(__xtrc, &__sanity, __base); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0 && __l >= INT_MIN && __l <= INT_MAX) __v = static_cast(__l); else __err |= ios_base::failbit; return __beg; } #endif template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, long& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; long __l = strtol(__xtrc, &__sanity, __base); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0) __v = __l; else __err |= ios_base::failbit; return __beg; } #ifdef _GLIBCPP_USE_LONG_LONG template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, long long& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; long long __ll = strtoll(__xtrc, &__sanity, __base); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0) __v = __ll; else __err |= ios_base::failbit; return __beg; } #endif template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned short& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; unsigned long __ul = strtoul(__xtrc, &__sanity, __base); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0 && __ul <= USHRT_MAX) __v = static_cast(__ul); else __err |= ios_base::failbit; return __beg; } template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned int& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; unsigned long __ul = strtoul(__xtrc, &__sanity, __base); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0 && __ul <= UINT_MAX) __v = static_cast(__ul); else __err |= ios_base::failbit; return __beg; } template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32] = {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; unsigned long __ul = strtoul(__xtrc, &__sanity, __base); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0) __v = __ul; else __err |= ios_base::failbit; return __beg; } #ifdef _GLIBCPP_USE_LONG_LONG template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long long& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; unsigned long long __ull = strtoull(__xtrc, &__sanity, __base); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0) __v = __ull; else __err |= ios_base::failbit; return __beg; } #endif template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, float& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 256 for // floating-point types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, true); // Stage 2: convert and store results. char* __sanity; errno = 0; #ifdef _GLIBCPP_HAVE_STRTOF float __f = strtof(__xtrc, &__sanity); #else float __f = static_cast(strtod(__xtrc, &__sanity)); #endif if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0) __v = __f; else __err |= ios_base::failbit; return __beg; } template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, double& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 256 for // floating-point types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, true); // Stage 2: convert and store results. char* __sanity; errno = 0; double __d = strtod(__xtrc, &__sanity); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0) __v = __d; else __err |= ios_base::failbit; return __beg; } #if defined(_GLIBCPP_HAVE_STRTOLD) && !defined(__hpux) template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, long double& __v) const { // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 256 for // floating-point types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, true); // Stage 2: convert and store results. char* __sanity; errno = 0; long double __ld = strtold(__xtrc, &__sanity); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0) __v = __ld; else __err |= ios_base::failbit; return __beg; } #else template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, long double& __v) const { // Stage 1: extract char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, true); // Stage 2: determine a conversion specifier. ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield; const char* __conv; if (__basefield == ios_base::oct) __conv = "%Lo"; else if (__basefield == ios_base::hex) __conv = "%LX"; else if (__basefield == 0) __conv = "%Li"; else __conv = "%Lg"; // Stage 3: store results. long double __ld; int __p = sscanf(__xtrc, __conv, &__ld); if (__p && static_cast<__traits_type::int_type>(__p) != __traits_type::eof()) __v = __ld; else __err |= ios_base::failbit; return __beg; } #endif template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, void*& __v) const { // Prepare for hex formatted input typedef ios_base::fmtflags fmtflags; fmtflags __fmt = __io.flags(); fmtflags __fmtmask = ~(ios_base::showpos | ios_base::basefield | ios_base::uppercase | ios_base::internal); __io.flags(__fmt & __fmtmask | (ios_base::hex | ios_base::showbase)); // Stage 1: extract and determine the conversion specifier. // Assuming leading zeros eliminated, thus the size of 32 for // integral types. char __xtrc[32]= {'\0'}; int __base; _M_extract(__beg, __end, __io, __err, __xtrc, __base, false); // Stage 2: convert and store results. char* __sanity; errno = 0; void* __vp = reinterpret_cast(strtoul(__xtrc, &__sanity, __base)); if (!(__err & ios_base::failbit) && __sanity != __xtrc && *__sanity == '\0' && errno == 0) __v = __vp; else __err |= ios_base::failbit; // Reset from hex formatted input __io.flags(__fmt); return __beg; } template locale::id num_put<_CharT, _OutIter>::id; // _S_fill is specialized for ostreambuf_iterator, random access iterator. template inline _OutIter _S_fill(_OutIter __s, _CharT __fill, int __padding); template _RaIter _S_fill(_RaIter __s, _CharT __fill, int __padding, random_access_iterator_tag) { fill_n(__s, __fill); return __s + __padding; } template _OutIter _S_fill(_OutIter __s, _CharT __fill, int __padding, _Tag) { while (--__padding >= 0) { *__s = __fill; ++__s; } return __s; } template inline _OutIter _S_fill(_OutIter __s, _CharT __fill, int __padding) { return _S_fill(__s, __fill, __padding, iterator_traits<_OutIter>::iterator_category()); } template _OutIter _S_pad_numeric(_OutIter __s, ios_base::fmtflags __flags, _CharT __fill, int __width, _CharT const* __first, _CharT const* __middle, _CharT const* __last) { int __padding = __width - (__last - __first); if (__padding < 0) __padding = 0; ios_base::fmtflags __aflags = __flags & ios_base::adjustfield; bool __testfield = __padding == 0 || __aflags == ios_base::left || __aflags == ios_base::internal; // This was needlessly complicated. if (__first != __middle) { if (!__testfield) { _S_fill(__s, __fill, __padding); __padding = 0; } copy(__first, __middle, __s); } _OutIter __s2 = __s; if (__padding && __aflags != ios_base::left) { _S_fill(__s2, __fill, __padding); __padding = 0; } _OutIter __s3 = copy(__middle, __last, __s2); if (__padding) _S_fill(__s3, __fill, __padding); return __s3; } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const { const _Format_cache<_CharT>* __fmt = _Format_cache<_CharT>::_S_get(__io); ios_base::fmtflags __flags = __io.flags(); if ((__flags & ios_base::boolalpha) == 0) { unsigned long __uv = __v; return _S_format(__s, __io, __fill, false, __uv); } else { const char_type* __first; const char_type* __last; if (__v) { __first = __fmt->_M_truename.data(); __last = __first + __fmt->_M_truename.size(); } else { __first = __fmt->_M_falsename.data(); __last = __first + __fmt->_M_falsename.size(); } copy(__first, __last, __s); } return __s; } // _S_group_digits inserts "group separator" characters into an array // of characters. It's recursive, one iteration per group. It moves // the characters in the buffer this way: "xxxx12345" -> "12,345xxx". // Call this only with __grouping != __grend. template _CharT* _S_group_digits(_CharT* __s, _CharT __grsep, char const* __grouping, char const* __grend, _CharT const* __first, _CharT const* __last) { if (__last - __first > *__grouping) { __s = _S_group_digits(__s, __grsep, (__grouping + 1 == __grend ? __grouping : __grouping + 1), __grend, __first, __last - *__grouping); __first = __last - *__grouping; *__s++ = __grsep; } do { *__s++ = *__first++; } while (__first != __last); return __s; } template _OutIter _S_format(_OutIter __s, ios_base& __io, _CharT __fill, bool __neg, _ValueT __v) { // Leave room for "+/-," "0x," and commas. const long _M_room = numeric_limits<_ValueT>::digits10 * 2 + 4; _CharT __digits[_M_room]; _CharT* __front = __digits + _M_room; ios_base::fmtflags __flags = __io.flags(); const _Format_cache<_CharT>* __fmt = _Format_cache<_CharT>::_S_get(__io); char const* __table = __fmt->_S_literals + __fmt->_S_digits; ios_base::fmtflags __basefield = (__flags & __io.basefield); _CharT* __sign_end = __front; if (__basefield == ios_base::hex) { if (__flags & ios_base::uppercase) __table += 16; // use ABCDEF do *--__front = __table[__v & 15]; while ((__v >>= 4) != 0); __sign_end = __front; if (__flags & ios_base::showbase) { *--__front = __fmt->_S_literals[__fmt->_S_x + ((__flags & ios_base::uppercase) ? 1 : 0)]; *--__front = __table[0]; } } else if (__basefield == ios_base::oct) { do *--__front = __table[__v & 7]; while ((__v >>= 3) != 0); if (__flags & ios_base::showbase && static_cast(*__front) != __table[0]) *--__front = __table[0]; __sign_end = __front; } else { // NB: This is _lots_ faster than using ldiv. do *--__front = __table[__v % 10]; while ((__v /= 10) != 0); __sign_end = __front; // NB: ios_base:hex || ios_base::oct assumed to be unsigned. if (__neg || (__flags & ios_base::showpos)) *--__front = __fmt->_S_literals[__fmt->_S_plus - __neg]; } // XXX should specialize! if (!__fmt->_M_use_grouping && !__io.width()) return copy(__front, __digits + _M_room, __s); if (!__fmt->_M_use_grouping) return _S_pad_numeric(__s, __flags, __fill, __io.width(0), __front, __sign_end, __digits + _M_room); _CharT* __p = __digits; while (__front < __sign_end) *__p++ = *__front++; const char* __gr = __fmt->_M_grouping.data(); __front = _S_group_digits(__p, __fmt->_M_thousands_sep, __gr, __gr + __fmt->_M_grouping.size(), __sign_end, __digits + _M_room); return _S_pad_numeric(__s, __flags, __fill, __io.width(0), __digits, __p, __front); } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const { unsigned long __uv = __v; bool __neg = false; if (__v < 0) { __neg = true; __uv = -__uv; } return _S_format(__s, __io, __fill, __neg, __uv); } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, unsigned long __v) const { return _S_format(__s, __io, __fill, false, __v); } #ifdef _GLIBCPP_USE_LONG_LONG template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __b, char_type __fill, long long __v) const { unsigned long long __uv = __v; bool __neg = false; if (__v < 0) { __neg = true; __uv = -__uv; } return _S_format(__s, __b, __fill, __neg, __uv); } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, unsigned long long __v) const { return _S_format(__s, __io, __fill, false, __v); } #endif // The following code uses sprintf() to convert floating point // values for insertion into a stream. The current implementation // replicates the code in _S_pad_numeric() (in _S_output_float()) in // order to prevent having to create a "wide" buffer in addition to // the "narrow" buffer passed to sprintf(). An optimization would be // to replace sprintf() with code that works directly on a wide // buffer and then use _S_pad_numeric() to do the padding. It would // be good to replace sprintf() anyway to avoid accidental buffer // overruns and to gain back the efficiency that C++ provides by // knowing up front the type of the values to insert. This // implementation follows the C++ standard fairly directly as // outlined in 22.2.2.2 [lib.locale.num.put] bool _S_build_float_format(ios_base& __io, char* __fptr, char __modifier, streamsize __prec) { bool __incl_prec = false; ios_base::fmtflags __flags = __io.flags(); *__fptr++ = '%'; // [22.2.2.2.2] Table 60 if (__flags & ios_base::showpos) *__fptr++ = '+'; if (__flags & ios_base::showpoint) *__fptr++ = '#'; // As per [22.2.2.2.2.11] if (__flags & ios_base::fixed || __prec > 0) { *__fptr++ = '.'; *__fptr++ = '*'; __incl_prec = true; } if (__modifier) *__fptr++ = __modifier; ios_base::fmtflags __fltfield = __flags & ios_base::floatfield; // [22.2.2.2.2] Table 58 if (__fltfield == ios_base::fixed) *__fptr++ = 'f'; else if (__fltfield == ios_base::scientific) *__fptr++ = (__flags & ios_base::uppercase) ? 'E' : 'e'; else *__fptr++ = (__flags & ios_base::uppercase) ? 'G' : 'g'; *__fptr = '\0'; return __incl_prec; } template _OutIter _S_output_float(_OutIter __s, ios_base& __io,_CharT __fill, const char* __sptr, size_t __slen) { size_t __padding = __io.width() > streamsize(__slen) ? __io.width() -__slen : 0; locale __loc = __io.getloc(); ctype<_CharT> const& __ct = use_facet >(__loc); ios_base::fmtflags __adjfield = __io.flags() & ios_base::adjustfield; const char* const __eptr = __sptr + __slen; // [22.2.2.2.2.19] Table 61 if (__adjfield == ios_base::internal) { // [22.2.2.2.2.14]; widen() if (__sptr < __eptr && (*__sptr == '+' || *__sptr == '-')) { __s = __ct.widen(*__sptr); ++__s; ++__sptr; } __s = _S_fill(__s, __fill, __padding); __padding = 0; } else if (__adjfield != ios_base::left) { __s = _S_fill(__s, __fill, __padding); __padding = 0; } // the "C" locale decimal character char __decimal_point = *(localeconv()->decimal_point); const _Format_cache<_CharT>* __fmt = _Format_cache<_CharT>::_S_get(__io); for (; __sptr != __eptr; ++__s, ++__sptr) { // [22.2.2.2.2.17]; decimal point conversion if (*__sptr == __decimal_point) __s = __fmt->_M_decimal_point; // [22.2.2.2.2.14]; widen() else __s = __ct.widen(*__sptr); } // [22.2.2.2.2.19] Table 61 if (__padding) _S_fill(__s, __fill, __padding); __io.width(0); return __s; } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const { const streamsize __max_prec = numeric_limits::digits10 + 3; streamsize __prec = __io.precision(); // Protect against sprintf() buffer overflows. if (__prec > __max_prec) __prec = __max_prec; // The *2 provides for signs, exp, 'E', and pad. char __sbuf[__max_prec*2]; size_t __slen; // Long enough for the max format spec. char __fbuf[16]; if (_S_build_float_format(__io, __fbuf, 0, __prec)) __slen = sprintf(__sbuf, __fbuf, __prec, __v); else __slen = sprintf(__sbuf, __fbuf, __v); // [22.2.2.2.2] Stages 2-4. return _S_output_float(__s, __io, __fill, __sbuf, __slen); } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, long double __v) const { const streamsize __max_prec = numeric_limits::digits10 + 3; streamsize __prec = __io.precision(); // Protect against sprintf() buffer overflows. if (__prec > __max_prec) __prec = __max_prec; // The *2 provides for signs, exp, 'E', and pad. char __sbuf[__max_prec*2]; size_t __slen; // Long enough for the max format spec. char __fbuf[16]; // 'L' as per [22.2.2.2.2] Table 59 if ( _S_build_float_format(__io, __fbuf, 'L', __prec)) __slen = sprintf(__sbuf, __fbuf, __prec, __v); else __slen = sprintf(__sbuf, __fbuf, __v); // [22.2.2.2.2] Stages 2-4 return _S_output_float(__s, __io, __fill, __sbuf, __slen); } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, const void* __v) const { typedef ios_base::fmtflags fmtflags; fmtflags __fmt = __io.flags(); fmtflags __fmtmask = ~(ios_base::showpos | ios_base::basefield | ios_base::uppercase | ios_base::internal); __io.flags(__fmt & __fmtmask | (ios_base::hex | ios_base::showbase)); try { _OutIter __s2 = _S_format(__s, __io, __fill, false, reinterpret_cast(__v)); __io.flags(__fmt); return __s2; } catch (...) { __io.flags(__fmt); throw; } } template locale::id numpunct<_CharT>::id; template locale::id collate<_CharT>::id; // Support for time_get: // Note that these partial specializations could, and maybe should, // be changed to full specializations (by eliminating the _Dummy // argument) and moved to a .cc file. template struct _Weekdaynames; template struct _Weekdaynames { static const char* const _S_names[14]; }; template const char* const _Weekdaynames::_S_names[14] = { "Sun", "Sunday", "Mon", "Monday", "Tue", "Tuesday", "Wed", "Wednesday", "Thu", "Thursday", "Fri", "Friday", "Sat", "Saturday" }; #ifdef _GLIBCPP_USE_WCHAR_T template struct _Weekdaynames { static const wchar_t* const _S_names[14]; }; template const wchar_t* const _Weekdaynames::_S_names[14] = { L"Sun", L"Sunday", L"Mon", L"Monday", L"Tue", L"Tuesday", L"Wed", L"Wednesday", L"Thu", L"Thursday", L"Fri", L"Friday", L"Sat", L"Saturday" }; #endif template struct _Monthnames; template struct _Monthnames { static const char* const _S_names[24]; }; template const char* const _Monthnames::_S_names[24] = { "Jan", "January", "Feb", "February", "Mar", "March", "Apr", "April", "May", "May", "Jun", "June", "Jul", "July", "Aug", "August", "Sep", "September", "Oct", "October", "Nov", "November", "Dec", "December" }; #ifdef _GLIBCPP_USE_WCHAR_T template struct _Monthnames { static const wchar_t* const _S_names[24]; }; template const wchar_t* const _Monthnames::_S_names[24] = { L"Jan", L"January", L"Feb", L"February", L"Mar", L"March", L"Apr", L"April", L"May", L"May", L"Jun", L"June", L"Jul", L"July", L"Aug", L"August", L"Sep", L"September", L"Oct", L"October", L"Nov", L"November", L"Dec", L"December" }; #endif template locale::id time_get<_CharT, _InIter>::id; template _InIter time_get<_CharT, _InIter>:: do_get_weekday(iter_type __s, iter_type __end, ios_base& __io, ios_base::iostate& __err, tm* __t) const { if (!_M_daynames) { _M_daynames = new basic_string<_CharT>[14]; for (int __i = 0; __i < 14; ++__i) _M_daynames[__i] = _Weekdaynames<_CharT>::_S_names[__i]; } bool __at_eof = false; int __remain = 0; int __matches[14]; iter_type __out = __match_parallel(__s, __end, 14, _M_daynames, __matches, __remain, __at_eof); __err = ios_base::iostate(0); if (__at_eof) __err |= __io.eofbit; if (__remain == 1 || __remain == 2 && (__matches[0]>>1) == (__matches[1]>>1)) __t->tm_wday = (__matches[0]>>1); else __err |= __io.failbit; return __out; } template _InIter time_get<_CharT, _InIter>:: do_get_monthname(iter_type __s, iter_type __end, ios_base& __io, ios_base::iostate& __err, tm* __t) const { if (!_M_monthnames) { _M_monthnames = new basic_string<_CharT>[24]; for (int __i = 0; __i < 24; ++__i) _M_monthnames[__i] = _Monthnames<_CharT>::_S_names[__i]; } bool __at_eof = false; int __remain = 0; int __matches[24]; iter_type __out = __match_parallel( __s, __end, 24, _M_monthnames, __matches, __remain, __at_eof); __err = ios_base::iostate(0); if (__at_eof) __err |= __io.eofbit; if (__remain == 1 || __remain == 2 && (__matches[0]>>1) == (__matches[1]>>1)) __t->tm_mon = (__matches[0]>>1); else __err |= __io.failbit; return __out; } template locale::id time_put<_CharT, _OutIter>::id; template locale::id money_get<_CharT, _InIter>::id; template locale::id money_put<_CharT, _OutIter>::id; template locale::id moneypunct<_CharT,_Intl>::id; template locale::id messages<_CharT>::id; template<> const ctype& use_facet > (const locale& __loc) { size_t __i = ctype::id._M_index; const locale::_Impl* __tmp = __loc._M_impl; return static_cast&>(* (*(__tmp->_M_facets))[__i]); } #ifdef _GLIBCPP_USE_WCHAR_T template<> const ctype& use_facet< const ctype > (const locale& __loc) { size_t __i = ctype::id._M_index; const locale::_Impl* __tmp = __loc._M_impl; return static_cast&>(* (*(__tmp->_M_facets))[__i]); } #endif } // std:: #endif /* _CPP_BITS_LOCFACETS_TCC */ // Local Variables: // mode:c++ // End: