/* Implementation of the MATMUL intrinsic Copyright 2002 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with libgfortran; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include #include #include #include "libgfortran.h" /* This is a C version of the following fortran pseudo-code. The key point is the loop order -- we access all arrays column-first, which improves the performance enough to boost galgel spec score by 50%. DIMENSION A(M,COUNT), B(COUNT,N), C(M,N) C = 0 DO J=1,N DO K=1,COUNT DO I=1,M C(I,J) = C(I,J)+A(I,K)*B(K,J) */ extern void matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b); export_proto(matmul_c8); void matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b) { GFC_COMPLEX_8 *abase; GFC_COMPLEX_8 *bbase; GFC_COMPLEX_8 *dest; index_type rxstride, rystride, axstride, aystride, bxstride, bystride; index_type x, y, n, count, xcount, ycount; assert (GFC_DESCRIPTOR_RANK (a) == 2 || GFC_DESCRIPTOR_RANK (b) == 2); /* C[xcount,ycount] = A[xcount, count] * B[count,ycount] Either A or B (but not both) can be rank 1: o One-dimensional argument A is implicitly treated as a row matrix dimensioned [1,count], so xcount=1. o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. */ if (retarray->data == NULL) { if (GFC_DESCRIPTOR_RANK (a) == 1) { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound; retarray->dim[0].stride = 1; } else if (GFC_DESCRIPTOR_RANK (b) == 1) { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound; retarray->dim[0].stride = 1; } else { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound; retarray->dim[0].stride = 1; retarray->dim[1].lbound = 0; retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound; retarray->dim[1].stride = retarray->dim[0].ubound+1; } retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_8) * size0 (retarray)); retarray->base = 0; } abase = a->data; bbase = b->data; dest = retarray->data; if (retarray->dim[0].stride == 0) retarray->dim[0].stride = 1; if (a->dim[0].stride == 0) a->dim[0].stride = 1; if (b->dim[0].stride == 0) b->dim[0].stride = 1; if (GFC_DESCRIPTOR_RANK (retarray) == 1) { /* One-dimensional result may be addressed in the code below either as a row or a column matrix. We want both cases to work. */ rxstride = rystride = retarray->dim[0].stride; } else { rxstride = retarray->dim[0].stride; rystride = retarray->dim[1].stride; } if (GFC_DESCRIPTOR_RANK (a) == 1) { /* Treat it as a a row matrix A[1,count]. */ axstride = a->dim[0].stride; aystride = 1; xcount = 1; count = a->dim[0].ubound + 1 - a->dim[0].lbound; } else { axstride = a->dim[0].stride; aystride = a->dim[1].stride; count = a->dim[1].ubound + 1 - a->dim[1].lbound; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; } assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); if (GFC_DESCRIPTOR_RANK (b) == 1) { /* Treat it as a column matrix B[count,1] */ bxstride = b->dim[0].stride; /* bystride should never be used for 1-dimensional b. in case it is we want it to cause a segfault, rather than an incorrect result. */ bystride = 0xDEADBEEF; ycount = 1; } else { bxstride = b->dim[0].stride; bystride = b->dim[1].stride; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; } assert (a->base == 0); assert (b->base == 0); assert (retarray->base == 0); abase = a->data; bbase = b->data; dest = retarray->data; if (rxstride == 1 && axstride == 1 && bxstride == 1) { GFC_COMPLEX_8 *bbase_y; GFC_COMPLEX_8 *dest_y; GFC_COMPLEX_8 *abase_n; GFC_COMPLEX_8 bbase_yn; memset (dest, 0, (sizeof (GFC_COMPLEX_8) * size0(retarray))); for (y = 0; y < ycount; y++) { bbase_y = bbase + y*bystride; dest_y = dest + y*rystride; for (n = 0; n < count; n++) { abase_n = abase + n*aystride; bbase_yn = bbase_y[n]; for (x = 0; x < xcount; x++) { dest_y[x] += abase_n[x] * bbase_yn; } } } } else { for (y = 0; y < ycount; y++) for (x = 0; x < xcount; x++) dest[x*rxstride + y*rystride] = (GFC_COMPLEX_8)0; for (y = 0; y < ycount; y++) for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; } }