// -*- C++ -*- // Copyright (C) 2001, 2002 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * Copyright (c) 1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bitset * This is a Standard C++ Library header. You should @c #include this header * in your programs, rather than any of the "st[dl]_*.h" implementation files. */ #ifndef _GLIBCPP_BITSET_H #define _GLIBCPP_BITSET_H #pragma GCC system_header #include // for size_t #include // for memset #include #include // for invalid_argument, out_of_range, // overflow_error #include // for ostream (operator<<) #include // for istream (operator>>) #define _GLIBCPP_BITSET_BITS_PER_WORD (CHAR_BIT*sizeof(unsigned long)) #define _GLIBCPP_BITSET_WORDS(__n) \ ((__n) < 1 ? 0 : ((__n) + _GLIBCPP_BITSET_BITS_PER_WORD - 1)/_GLIBCPP_BITSET_BITS_PER_WORD) namespace std { extern unsigned char _S_bit_count[256]; extern unsigned char _S_first_one[256]; /** * @if maint * Base class, general case. It is a class inveriant that _Nw will be * nonnegative. * * See documentation for bitset. * @endif */ template struct _Base_bitset { typedef unsigned long _WordT; /// 0 is the least significant word. _WordT _M_w[_Nw]; _Base_bitset() { _M_do_reset(); } _Base_bitset(unsigned long __val) { _M_do_reset(); _M_w[0] = __val; } static size_t _S_whichword(size_t __pos ) { return __pos / _GLIBCPP_BITSET_BITS_PER_WORD; } static size_t _S_whichbyte(size_t __pos ) { return (__pos % _GLIBCPP_BITSET_BITS_PER_WORD) / CHAR_BIT; } static size_t _S_whichbit(size_t __pos ) { return __pos % _GLIBCPP_BITSET_BITS_PER_WORD; } static _WordT _S_maskbit(size_t __pos ) { return (static_cast<_WordT>(1)) << _S_whichbit(__pos); } _WordT& _M_getword(size_t __pos) { return _M_w[_S_whichword(__pos)]; } _WordT _M_getword(size_t __pos) const { return _M_w[_S_whichword(__pos)]; } _WordT& _M_hiword() { return _M_w[_Nw - 1]; } _WordT _M_hiword() const { return _M_w[_Nw - 1]; } void _M_do_and(const _Base_bitset<_Nw>& __x) { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] &= __x._M_w[__i]; } void _M_do_or(const _Base_bitset<_Nw>& __x) { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] |= __x._M_w[__i]; } void _M_do_xor(const _Base_bitset<_Nw>& __x) { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] ^= __x._M_w[__i]; } void _M_do_left_shift(size_t __shift); void _M_do_right_shift(size_t __shift); void _M_do_flip() { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] = ~_M_w[__i]; } void _M_do_set() { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] = ~static_cast<_WordT>(0); } void _M_do_reset() { memset(_M_w, 0, _Nw * sizeof(_WordT)); } bool _M_is_equal(const _Base_bitset<_Nw>& __x) const { for (size_t __i = 0; __i < _Nw; ++__i) { if (_M_w[__i] != __x._M_w[__i]) return false; } return true; } bool _M_is_any() const { for (size_t __i = 0; __i < _Nw; __i++) { if (_M_w[__i] != static_cast<_WordT>(0)) return true; } return false; } size_t _M_do_count() const { size_t __result = 0; const unsigned char* __byte_ptr = (const unsigned char*)_M_w; const unsigned char* __end_ptr = (const unsigned char*)(_M_w + _Nw); while ( __byte_ptr < __end_ptr ) { __result += _S_bit_count[*__byte_ptr]; __byte_ptr++; } return __result; } unsigned long _M_do_to_ulong() const; // find first "on" bit size_t _M_do_find_first(size_t __not_found) const; // find the next "on" bit that follows "prev" size_t _M_do_find_next(size_t __prev, size_t __not_found) const; }; // Definitions of non-inline functions from _Base_bitset. template void _Base_bitset<_Nw>::_M_do_left_shift(size_t __shift) { if (__shift != 0) { const size_t __wshift = __shift / _GLIBCPP_BITSET_BITS_PER_WORD; const size_t __offset = __shift % _GLIBCPP_BITSET_BITS_PER_WORD; if (__offset == 0) for (size_t __n = _Nw - 1; __n >= __wshift; --__n) _M_w[__n] = _M_w[__n - __wshift]; else { const size_t __sub_offset = _GLIBCPP_BITSET_BITS_PER_WORD - __offset; for (size_t __n = _Nw - 1; __n > __wshift; --__n) _M_w[__n] = (_M_w[__n - __wshift] << __offset) | (_M_w[__n - __wshift - 1] >> __sub_offset); _M_w[__wshift] = _M_w[0] << __offset; } fill(_M_w + 0, _M_w + __wshift, static_cast<_WordT>(0)); } } template void _Base_bitset<_Nw>::_M_do_right_shift(size_t __shift) { if (__shift != 0) { const size_t __wshift = __shift / _GLIBCPP_BITSET_BITS_PER_WORD; const size_t __offset = __shift % _GLIBCPP_BITSET_BITS_PER_WORD; const size_t __limit = _Nw - __wshift - 1; if (__offset == 0) for (size_t __n = 0; __n <= __limit; ++__n) _M_w[__n] = _M_w[__n + __wshift]; else { const size_t __sub_offset = _GLIBCPP_BITSET_BITS_PER_WORD - __offset; for (size_t __n = 0; __n < __limit; ++__n) _M_w[__n] = (_M_w[__n + __wshift] >> __offset) | (_M_w[__n + __wshift + 1] << __sub_offset); _M_w[__limit] = _M_w[_Nw-1] >> __offset; } fill(_M_w + __limit + 1, _M_w + _Nw, static_cast<_WordT>(0)); } } template unsigned long _Base_bitset<_Nw>::_M_do_to_ulong() const { for (size_t __i = 1; __i < _Nw; ++__i) if (_M_w[__i]) __throw_overflow_error("bitset -- too large to fit in unsigned long"); return _M_w[0]; } template size_t _Base_bitset<_Nw>::_M_do_find_first(size_t __not_found) const { for (size_t __i = 0; __i < _Nw; __i++ ) { _WordT __thisword = _M_w[__i]; if ( __thisword != static_cast<_WordT>(0) ) { // find byte within word for (size_t __j = 0; __j < sizeof(_WordT); __j++ ) { unsigned char __this_byte = static_cast(__thisword & (~(unsigned char)0)); if (__this_byte) return __i*_GLIBCPP_BITSET_BITS_PER_WORD + __j*CHAR_BIT + _S_first_one[__this_byte]; __thisword >>= CHAR_BIT; } } } // not found, so return an indication of failure. return __not_found; } template size_t _Base_bitset<_Nw>::_M_do_find_next(size_t __prev, size_t __not_found) const { // make bound inclusive ++__prev; // check out of bounds if ( __prev >= _Nw * _GLIBCPP_BITSET_BITS_PER_WORD ) return __not_found; // search first word size_t __i = _S_whichword(__prev); _WordT __thisword = _M_w[__i]; // mask off bits below bound __thisword &= (~static_cast<_WordT>(0)) << _S_whichbit(__prev); if ( __thisword != static_cast<_WordT>(0) ) { // find byte within word // get first byte into place __thisword >>= _S_whichbyte(__prev) * CHAR_BIT; for (size_t __j = _S_whichbyte(__prev); __j < sizeof(_WordT); __j++) { unsigned char __this_byte = static_cast(__thisword & (~(unsigned char)0)); if ( __this_byte ) return __i*_GLIBCPP_BITSET_BITS_PER_WORD + __j*CHAR_BIT + _S_first_one[__this_byte]; __thisword >>= CHAR_BIT; } } // check subsequent words __i++; for ( ; __i < _Nw; __i++ ) { __thisword = _M_w[__i]; if ( __thisword != static_cast<_WordT>(0) ) { // find byte within word for (size_t __j = 0; __j < sizeof(_WordT); __j++ ) { unsigned char __this_byte = static_cast(__thisword & (~(unsigned char)0)); if ( __this_byte ) return __i*_GLIBCPP_BITSET_BITS_PER_WORD + __j*CHAR_BIT + _S_first_one[__this_byte]; __thisword >>= CHAR_BIT; } } } // not found, so return an indication of failure. return __not_found; } // end _M_do_find_next /** * @if maint * Base class, specialization for a single word. * * See documentation for bitset. * @endif */ template<> struct _Base_bitset<1> { typedef unsigned long _WordT; _WordT _M_w; _Base_bitset( void ) : _M_w(0) {} _Base_bitset(unsigned long __val) : _M_w(__val) {} static size_t _S_whichword(size_t __pos ) { return __pos / _GLIBCPP_BITSET_BITS_PER_WORD; } static size_t _S_whichbyte(size_t __pos ) { return (__pos % _GLIBCPP_BITSET_BITS_PER_WORD) / CHAR_BIT; } static size_t _S_whichbit(size_t __pos ) { return __pos % _GLIBCPP_BITSET_BITS_PER_WORD; } static _WordT _S_maskbit(size_t __pos ) { return (static_cast<_WordT>(1)) << _S_whichbit(__pos); } _WordT& _M_getword(size_t) { return _M_w; } _WordT _M_getword(size_t) const { return _M_w; } _WordT& _M_hiword() { return _M_w; } _WordT _M_hiword() const { return _M_w; } void _M_do_and(const _Base_bitset<1>& __x) { _M_w &= __x._M_w; } void _M_do_or(const _Base_bitset<1>& __x) { _M_w |= __x._M_w; } void _M_do_xor(const _Base_bitset<1>& __x) { _M_w ^= __x._M_w; } void _M_do_left_shift(size_t __shift) { _M_w <<= __shift; } void _M_do_right_shift(size_t __shift) { _M_w >>= __shift; } void _M_do_flip() { _M_w = ~_M_w; } void _M_do_set() { _M_w = ~static_cast<_WordT>(0); } void _M_do_reset() { _M_w = 0; } bool _M_is_equal(const _Base_bitset<1>& __x) const { return _M_w == __x._M_w; } bool _M_is_any() const { return _M_w != 0; } size_t _M_do_count() const { size_t __result = 0; const unsigned char* __byte_ptr = (const unsigned char*)&_M_w; const unsigned char* __end_ptr = ((const unsigned char*)&_M_w)+sizeof(_M_w); while ( __byte_ptr < __end_ptr ) { __result += _S_bit_count[*__byte_ptr]; __byte_ptr++; } return __result; } unsigned long _M_do_to_ulong() const { return _M_w; } size_t _M_do_find_first(size_t __not_found) const; // find the next "on" bit that follows "prev" size_t _M_do_find_next(size_t __prev, size_t __not_found) const; }; /** * @if maint * Base class, specialization for no storage (zero-length %bitset). * * See documentation for bitset. * @endif */ template<> struct _Base_bitset<0> { typedef unsigned long _WordT; _Base_bitset() {} _Base_bitset(unsigned long) {} static size_t _S_whichword(size_t __pos ) { return __pos / _GLIBCPP_BITSET_BITS_PER_WORD; } static size_t _S_whichbyte(size_t __pos ) { return (__pos % _GLIBCPP_BITSET_BITS_PER_WORD) / CHAR_BIT; } static size_t _S_whichbit(size_t __pos ) { return __pos % _GLIBCPP_BITSET_BITS_PER_WORD; } static _WordT _S_maskbit(size_t __pos ) { return (static_cast<_WordT>(1)) << _S_whichbit(__pos); } // This would normally give access to the data. The bounds-checking // in the bitset class will prevent the user from getting this far, // but (1) it must still return an lvalue to compile, and (2) the // user might call _Unchecked_set directly, in which case this /needs/ // to fail. Let's not penalize zero-length users unless they actually // make an unchecked call; all the memory ugliness is therefore // localized to this single should-never-get-this-far function. _WordT& _M_getword(size_t) const { __throw_out_of_range("bitset -- zero-length"); return *new _WordT; } _WordT _M_hiword() const { return 0; } void _M_do_and(const _Base_bitset<0>&) { } void _M_do_or(const _Base_bitset<0>&) { } void _M_do_xor(const _Base_bitset<0>&) { } void _M_do_left_shift(size_t) { } void _M_do_right_shift(size_t) { } void _M_do_flip() { } void _M_do_set() { } void _M_do_reset() { } // Are all empty bitsets equal to each other? Are they equal to // themselves? How to compare a thing which has no state? What is // the sound of one zero-length bitset clapping? bool _M_is_equal(const _Base_bitset<0>&) const { return true; } bool _M_is_any() const { return false; } size_t _M_do_count() const { return 0; } unsigned long _M_do_to_ulong() const { return 0; } // Normally "not found" is the size, but that could also be // misinterpreted as an index in this corner case. Oh well. size_t _M_do_find_first(size_t) const { return 0; } size_t _M_do_find_next(size_t, size_t) const { return 0; } }; // Helper class to zero out the unused high-order bits in the highest word. template struct _Sanitize { static void _S_do_sanitize(unsigned long& __val) { __val &= ~((~static_cast(0)) << _Extrabits); } }; template<> struct _Sanitize<0> { static void _S_do_sanitize(unsigned long) { } }; /** * @brief The %bitset class represents a @e fixed-size sequence of bits. * * @ingroup Containers * * (Note that %bitset does @e not meet the formal requirements of a * container. Mainly, it lacks iterators.) * * The template argument, @a _Nb, may be any non-negative number of type * size_t. * * A %bitset of size N has N % (sizeof(unsigned long) * CHAR_BIT) unused * bits. (They are the high-order bits in the highest word.) It is * a class invariant that those unused bits are always zero. * * If you think of %bitset as "a simple array of bits," be aware that * your mental picture is reversed: a %bitset behaves the same way as * bits in integers do, with the bit at index 0 in the "least significant * / right-hand" position, and the bit at index N-1 in the "most * significant / left-hand" position. Thus, unlike other containers, a * %bitset's index "counts from right to left," to put it very loosely. * * This behavior is preserved when translating to and from strings. For * example, the first line of the following program probably prints * "b('a') is 0001100001" on a modern ASCII system. * * @code * #include * #include * #include * * using namespace std; * * int main() * { * long a = 'a'; * bitset<10> b(a); * * cout << "b('a') is " << b << endl; * * ostringstream s; * s << b; * string str = s.str(); * cout << "index 3 in the string is " << str[3] << " but\n" * << "index 3 in the bitset is " << b[3] << endl; * } * @endcode * * Also see http://gcc.gnu.org/onlinedocs/libstdc++/ext/sgiexts.html#ch23 * * @if maint * Most of the actual code isn't contained in %bitset<> itself, but in the * base class _Base_bitset. The base class works with whole words, not with * individual bits. This allows us to specialize _Base_bitset for the * important special case where the %bitset is only a single word. * * Extra confusion can result due to the fact that the storage for * _Base_bitset @e is a regular array, and is indexed as such. This is * carefully encapsulated. * @endif */ template class bitset : private _Base_bitset<_GLIBCPP_BITSET_WORDS(_Nb)> { private: typedef _Base_bitset<_GLIBCPP_BITSET_WORDS(_Nb)> _Base; typedef unsigned long _WordT; void _M_do_sanitize() { _Sanitize<_Nb%_GLIBCPP_BITSET_BITS_PER_WORD>:: _S_do_sanitize(this->_M_hiword()); } public: /** * This encapsulates the concept of a single bit. An instance of this * class is a proxy for an actual bit; this way the individual bit * operations are done as faster word-size bitwise instructions. * * Most users will never need to use this class directly; conversions * to and from bool are automatic and should be transparent. Overloaded * operators help to preserve the illusion. * * (On a typical system, this "bit %reference" is 64 times the size of * an actual bit. Ha.) */ class reference { friend class bitset; _WordT *_M_wp; size_t _M_bpos; // left undefined reference(); public: reference(bitset& __b, size_t __pos) { _M_wp = &__b._M_getword(__pos); _M_bpos = _Base::_S_whichbit(__pos); } ~reference() { } // for b[i] = __x; reference& operator=(bool __x) { if ( __x ) *_M_wp |= _Base::_S_maskbit(_M_bpos); else *_M_wp &= ~_Base::_S_maskbit(_M_bpos); return *this; } // for b[i] = b[__j]; reference& operator=(const reference& __j) { if ( (*(__j._M_wp) & _Base::_S_maskbit(__j._M_bpos)) ) *_M_wp |= _Base::_S_maskbit(_M_bpos); else *_M_wp &= ~_Base::_S_maskbit(_M_bpos); return *this; } // flips the bit bool operator~() const { return (*(_M_wp) & _Base::_S_maskbit(_M_bpos)) == 0; } // for __x = b[i]; operator bool() const { return (*(_M_wp) & _Base::_S_maskbit(_M_bpos)) != 0; } // for b[i].flip(); reference& flip() { *_M_wp ^= _Base::_S_maskbit(_M_bpos); return *this; } }; friend class reference; // 23.3.5.1 constructors: /// All bits set to zero. bitset() { } /// Initial bits bitwise-copied from a single word (others set to zero). bitset(unsigned long __val) : _Base(__val) { _M_do_sanitize(); } /** * @brief Use a subset of a string. * @param s A string of '0' and '1' characters. * @param pos Index of the first character in @a s to use; defaults * to zero. * @throw std::out_of_range If @a pos is bigger the size of @a s. * @throw std::invalid_argument If a character appears in the string * which is neither '0' nor '1'. */ template explicit bitset(const basic_string<_CharT, _Traits, _Alloc>& __s, size_t __pos = 0) : _Base() { if (__pos > __s.size()) __throw_out_of_range("bitset -- initial position is larger than " "the string itself"); _M_copy_from_string(__s, __pos, basic_string<_CharT, _Traits, _Alloc>::npos); } /** * @brief Use a subset of a string. * @param s A string of '0' and '1' characters. * @param pos Index of the first character in @a s to use. * @param n The number of characters to copy. * @throw std::out_of_range If @a pos is bigger the size of @a s. * @throw std::invalid_argument If a character appears in the string * which is neither '0' nor '1'. */ template bitset(const basic_string<_CharT, _Traits, _Alloc>& __s, size_t __pos, size_t __n) : _Base() { if (__pos > __s.size()) __throw_out_of_range("bitset -- initial position is larger than " "the string itself"); _M_copy_from_string(__s, __pos, __n); } // 23.3.5.2 bitset operations: //@{ /** * @brief Operations on bitsets. * @param rhs A same-sized bitset. * * These should be self-explanatory. */ bitset<_Nb>& operator&=(const bitset<_Nb>& __rhs) { this->_M_do_and(__rhs); return *this; } bitset<_Nb>& operator|=(const bitset<_Nb>& __rhs) { this->_M_do_or(__rhs); return *this; } bitset<_Nb>& operator^=(const bitset<_Nb>& __rhs) { this->_M_do_xor(__rhs); return *this; } //@} //@{ /** * @brief Operations on bitsets. * @param pos The number of places to shift. * * These should be self-explanatory. */ bitset<_Nb>& operator<<=(size_t __pos) { this->_M_do_left_shift(__pos); this->_M_do_sanitize(); return *this; } bitset<_Nb>& operator>>=(size_t __pos) { this->_M_do_right_shift(__pos); this->_M_do_sanitize(); return *this; } //@} //@{ /** * These versions of single-bit set, reset, flip, and test are * extensions from the SGI version. They do no range checking. * @ingroup SGIextensions */ bitset<_Nb>& _Unchecked_set(size_t __pos) { this->_M_getword(__pos) |= _Base::_S_maskbit(__pos); return *this; } bitset<_Nb>& _Unchecked_set(size_t __pos, int __val) { if (__val) this->_M_getword(__pos) |= _Base::_S_maskbit(__pos); else this->_M_getword(__pos) &= ~_Base::_S_maskbit(__pos); return *this; } bitset<_Nb>& _Unchecked_reset(size_t __pos) { this->_M_getword(__pos) &= ~_Base::_S_maskbit(__pos); return *this; } bitset<_Nb>& _Unchecked_flip(size_t __pos) { this->_M_getword(__pos) ^= _Base::_S_maskbit(__pos); return *this; } bool _Unchecked_test(size_t __pos) const { return (this->_M_getword(__pos) & _Base::_S_maskbit(__pos)) != static_cast<_WordT>(0); } //@} // Set, reset, and flip. /** * @brief Sets every bit to true. */ bitset<_Nb>& set() { this->_M_do_set(); this->_M_do_sanitize(); return *this; } /** * @brief Sets a given bit to a particular value. * @param pos The index of the bit. * @param val Either true or false, defaults to true. * @throw std::out_of_range If @a pos is bigger the size of the %set. */ bitset<_Nb>& set(size_t __pos, bool __val = true) { if (__pos >= _Nb) __throw_out_of_range("bitset -- set() argument too large"); return _Unchecked_set(__pos, __val); } /** * @brief Sets every bit to false. */ bitset<_Nb>& reset() { this->_M_do_reset(); return *this; } /** * @brief Sets a given bit to false. * @param pos The index of the bit. * @throw std::out_of_range If @a pos is bigger the size of the %set. * * Same as writing @c set(pos,false). */ bitset<_Nb>& reset(size_t __pos) { if (__pos >= _Nb) __throw_out_of_range("bitset -- reset() argument too large"); return _Unchecked_reset(__pos); } /** * @brief Toggles every bit to its opposite value. */ bitset<_Nb>& flip() { this->_M_do_flip(); this->_M_do_sanitize(); return *this; } /** * @brief Toggles a given bit to its opposite value. * @param pos The index of the bit. * @throw std::out_of_range If @a pos is bigger the size of the %set. */ bitset<_Nb>& flip(size_t __pos) { if (__pos >= _Nb) __throw_out_of_range("bitset -- flip() argument too large"); return _Unchecked_flip(__pos); } /// See the no-argument flip(). bitset<_Nb> operator~() const { return bitset<_Nb>(*this).flip(); } //@{ /** * @brief Array-indexing support. * @param pos Index into the %bitset. * @return A bool for a 'const %bitset'. For non-const bitsets, an * instance of the reference proxy class. * @note These operators do no range checking and throw no exceptions, * as required by DR 11 to the standard. * * @if maint * _GLIBCPP_RESOLVE_LIB_DEFECTS Note that this implementation already * resolves DR 11 (items 1 and 2), but does not do the range-checking * required by that DR's resolution. -pme * The DR has since been changed: range-checking is a precondition * (users' responsibility), and these functions must not throw. -pme * @endif */ reference operator[](size_t __pos) { return reference(*this,__pos); } bool operator[](size_t __pos) const { return _Unchecked_test(__pos); } //@} /** * @brief Retuns a numerical interpretation of the %bitset. * @return The integral equivalent of the bits. * @throw std::overflow_error If there are too many bits to be * represented in an @c unsigned @c long. */ unsigned long to_ulong() const { return this->_M_do_to_ulong(); } /** * @brief Retuns a character interpretation of the %bitset. * @return The string equivalent of the bits. * * Note the ordering of the bits: decreasing character positions * correspond to increasing bit positions (see the main class notes for * an example). * * Also note that you must specify the string's template parameters * explicitly. Given a bitset @c bs and a string @s: * @code * s = bs.to_string,allocator >(); * @endcode */ template basic_string<_CharT, _Traits, _Alloc> to_string() const { basic_string<_CharT, _Traits, _Alloc> __result; _M_copy_to_string(__result); return __result; } // Helper functions for string operations. template void _M_copy_from_string(const basic_string<_CharT,_Traits,_Alloc>& __s, size_t, size_t); template void _M_copy_to_string(basic_string<_CharT,_Traits,_Alloc>&) const; /// Returns the number of bits which are set. size_t count() const { return this->_M_do_count(); } /// Returns the total number of bits. size_t size() const { return _Nb; } //@{ /// These comparisons for equality/inequality are, well, @e bitwise. bool operator==(const bitset<_Nb>& __rhs) const { return this->_M_is_equal(__rhs); } bool operator!=(const bitset<_Nb>& __rhs) const { return !this->_M_is_equal(__rhs); } //@} /** * @brief Tests the value of a bit. * @param pos The index of a bit. * @return The value at @a pos. * @throw std::out_of_range If @a pos is bigger the size of the %set. */ bool test(size_t __pos) const { if (__pos >= _Nb) __throw_out_of_range("bitset -- test() argument too large"); return _Unchecked_test(__pos); } /** * @brief Tests whether any of the bits are on. * @return True if at least one bit is set. */ bool any() const { return this->_M_is_any(); } /** * @brief Tests whether any of the bits are on. * @return True if none of the bits are set. */ bool none() const { return !this->_M_is_any(); } //@{ /// Self-explanatory. bitset<_Nb> operator<<(size_t __pos) const { return bitset<_Nb>(*this) <<= __pos; } bitset<_Nb> operator>>(size_t __pos) const { return bitset<_Nb>(*this) >>= __pos; } //@} /** * @brief Finds the index of the first "on" bit. * @return The index of the first bit set, or size() if not found. * @ingroup SGIextensions * @sa _Find_next */ size_t _Find_first() const { return this->_M_do_find_first(_Nb); } /** * @brief Finds the index of the next "on" bit after prev. * @return The index of the next bit set, or size() if not found. * @param prev Where to start searching. * @ingroup SGIextensions * @sa _Find_first */ size_t _Find_next(size_t __prev ) const { return this->_M_do_find_next(__prev, _Nb); } }; // Definitions of non-inline member functions. template template void bitset<_Nb>::_M_copy_from_string(const basic_string<_CharT,_Traits,_Alloc>& __s, size_t __pos, size_t __n) { reset(); const size_t __nbits = min(_Nb, min(__n, __s.size() - __pos)); for (size_t __i = 0; __i < __nbits; ++__i) { switch(__s[__pos + __nbits - __i - 1]) { case '0': break; case '1': set(__i); break; default: __throw_invalid_argument("bitset -- string contains characters " "which are neither 0 nor 1"); } } } template template void bitset<_Nb>::_M_copy_to_string(basic_string<_CharT, _Traits, _Alloc>& __s) const { __s.assign(_Nb, '0'); for (size_t __i = 0; __i < _Nb; ++__i) if (_Unchecked_test(__i)) __s[_Nb - 1 - __i] = '1'; } // 23.3.5.3 bitset operations: //@{ /** * @brief Global bitwise operations on bitsets. * @param x A bitset. * @param y A bitset of the same size as @a x. * @return A new bitset. * * These should be self-explanatory. */ template inline bitset<_Nb> operator&(const bitset<_Nb>& __x, const bitset<_Nb>& __y) { bitset<_Nb> __result(__x); __result &= __y; return __result; } template inline bitset<_Nb> operator|(const bitset<_Nb>& __x, const bitset<_Nb>& __y) { bitset<_Nb> __result(__x); __result |= __y; return __result; } template inline bitset<_Nb> operator^(const bitset<_Nb>& __x, const bitset<_Nb>& __y) { bitset<_Nb> __result(__x); __result ^= __y; return __result; } //@} //@{ /** * @brief Global I/O operators for bitsets. * * Direct I/O between streams and bitsets is supported. Output is * straightforward. Input will skip whitespace, only accept '0' and '1' * characters, and will only extract as many digits as the %bitset will * hold. */ template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, bitset<_Nb>& __x) { typedef typename _Traits::char_type char_type; basic_string<_CharT, _Traits> __tmp; __tmp.reserve(_Nb); // Skip whitespace typename basic_istream<_CharT, _Traits>::sentry __sentry(__is); if (__sentry) { basic_streambuf<_CharT, _Traits>* __buf = __is.rdbuf(); for (size_t __i = 0; __i < _Nb; ++__i) { static typename _Traits::int_type __eof = _Traits::eof(); typename _Traits::int_type __c1 = __buf->sbumpc(); if (_Traits::eq_int_type(__c1, __eof)) { __is.setstate(ios_base::eofbit); break; } else { char_type __c2 = _Traits::to_char_type(__c1); char_type __c = __is.narrow(__c2, '*'); if (__c == '0' || __c == '1') __tmp.push_back(__c); else if (_Traits::eq_int_type(__buf->sputbackc(__c2), __eof)) { __is.setstate(ios_base::failbit); break; } } } if (__tmp.empty() && !_Nb) __is.setstate(ios_base::failbit); else __x._M_copy_from_string(__tmp, static_cast(0), _Nb); } return __is; } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const bitset<_Nb>& __x) { basic_string<_CharT, _Traits> __tmp; __x._M_copy_to_string(__tmp); return __os << __tmp; } //@} } // namespace std #undef _GLIBCPP_BITSET_WORDS #endif /* _GLIBCPP_BITSET_H */