* @date October 23, 1998.
* @status API complete to JDK 1.3.
*/
public final class BitSet implements Cloneable, Serializable
{
/**
* Create a new empty bit set.
*/
public BitSet()
{
this(64);
}
/**
* Create a new empty bit set, with a given size. This
* constructor reserves enough space to represent the integers
* from 0
to nbits-1
.
* @param nbits the initial size of the bit set.
* @throws NegativeArraySizeException if the specified initial
* size is negative.
* @require nbits >= 0
*/
public BitSet(int nbits)
{
if (nbits < 0)
throw new NegativeArraySizeException();
int length = nbits / 64;
if (nbits % 64 != 0)
++length;
bits = new long[length];
}
/**
* Performs the logical AND operation on this bit set and the
* given set
. This means it builds the intersection
* of the two sets. The result is stored into this bit set.
* @param set the second bit set.
* @require set != null
*/
public void and(BitSet bs)
{
int max = Math.min(bits.length, bs.bits.length);
int i;
for (i = 0; i < max; ++i)
bits[i] &= bs.bits[i];
for (; i < bits.length; ++i)
bits[i] = 0;
}
/**
* Performs the logical AND operation on this bit set and the
* complement of the given set
. This means it
* selects every element in the first set, that isn't in the
* second set. The result is stored into this bit set.
* @param set the second bit set.
* @require set != null
* @since JDK1.2
*/
public void andNot(BitSet bs)
{
int max = Math.min(bits.length, bs.bits.length);
int i;
for (i = 0; i < max; ++i)
bits[i] &= ~bs.bits[i];
}
/**
* Removes the integer bitIndex
from this set. That is
* the corresponding bit is cleared. If the index is not in the set,
* this method does nothing.
* @param bitIndex a non-negative integer.
* @exception ArrayIndexOutOfBoundsException if the specified bit index
* is negative.
* @require bitIndex >= 0
*/
public void clear(int pos)
{
if (pos < 0)
throw new IndexOutOfBoundsException();
int bit = pos % 64;
int offset = pos / 64;
ensure(offset);
bits[offset] &= ~(1L << bit);
}
/**
* Create a clone of this bit set, that is an instance of the same
* class and contains the same elements. But it doesn't change when
* this bit set changes.
* @return the clone of this object.
*/
public Object clone()
{
BitSet bs = new BitSet(bits.length * 64);
System.arraycopy(bits, 0, bs.bits, 0, bits.length);
return bs;
}
/**
* Returns true if the obj
is a bit set that contains
* exactly the same elements as this bit set, otherwise false.
* @return true if obj equals this bit set.
*/
public boolean equals(Object obj)
{
if (!(obj instanceof BitSet))
return false;
BitSet bs = (BitSet) obj;
int max = Math.min(bits.length, bs.bits.length);
int i;
for (i = 0; i < max; ++i)
if (bits[i] != bs.bits[i])
return false;
// If one is larger, check to make sure all extra bits are 0.
for (int j = i; j < bits.length; ++j)
if (bits[j] != 0)
return false;
for (int j = i; j < bs.bits.length; ++j)
if (bs.bits[j] != 0)
return false;
return true;
}
/**
* Returns true if the integer bitIndex
is in this bit
* set, otherwise false.
* @param bitIndex a non-negative integer
* @return the value of the bit at the specified index.
* @exception ArrayIndexOutOfBoundsException if the specified bit index
* is negative.
* @require bitIndex >= 0
*/
public boolean get(int pos)
{
if (pos < 0)
throw new IndexOutOfBoundsException();
int bit = pos % 64;
int offset = pos / 64;
if (offset >= bits.length)
return false;
return (bits[offset] & (1L << bit)) == 0 ? false : true;
}
/**
* Returns a hash code value for this bit set. The hash code of
* two bit sets containing the same integers is identical. The algorithm
* used to compute it is as follows:
*
* Suppose the bits in the BitSet were to be stored in an array of
* long integers called bits
, in such a manner that
* bit k
is set in the BitSet (for non-negative values
* of k
) if and only if
*
*
* ((k/64) < bits.length) && ((bits[k/64] & (1L << (bit % 64))) != 0)
*
*
* Then the following definition of the hashCode method
* would be a correct implementation of the actual algorithm:
*
*
* public int hashCode() {
* long h = 1234;
* for (int i = bits.length-1; i>=0; i--) {
* h ^= bits[i] * (i + 1);
* }
* return (int)((h >> 32) ^ h);
* }
*
*
* Note that the hash code values changes, if the set is changed.
* @return the hash code value for this bit set.
*/
public int hashCode()
{
long h = 1234;
for (int i = bits.length - 1; i >= 0; --i)
h ^= bits[i] * (i + 1);
return (int) ((h >> 32) ^ h);
}
/**
* Returns the logical number of bits actually used by this bit
* set. It returns the index of the highest set bit plus one.
* Note that this method doesn't return the number of set bits.
* @return the index of the highest set bit plus one.
*/
public int length()
{
// Set i to highest index that contains a non-zero value.
int i;
for (i = bits.length - 1; i >= 0 && bits[i] == 0; --i)
;
// if i < 0 all bits are cleared.
if (i < 0)
return 0;
// Now determine the exact length.
long b = bits[i];
int len = (i + 1) * 64;
// b >= 0 checks if the highest bit is zero.
while (b >= 0)
{
--len;
b <<= 1;
}
return len;
}
/**
* Performs the logical OR operation on this bit set and the
* given set
. This means it builds the union
* of the two sets. The result is stored into this bit set, which
* grows as necessary.
* @param set the second bit set.
* @exception OutOfMemoryError if the current set can't grow.
* @require set != null
*/
public void or(BitSet bs)
{
ensure(bs.bits.length - 1);
int i;
for (i = 0; i < bs.bits.length; ++i)
bits[i] |= bs.bits[i];
}
/**
* Add the integer bitIndex
to this set. That is
* the corresponding bit is set to true. If the index was already in
* the set, this method does nothing. The size of this structure
* is automatically increased as necessary.
* @param bitIndex a non-negative integer.
* @exception ArrayIndexOutOfBoundsException if the specified bit index
* is negative.
* @require bitIndex >= 0
*/
public void set(int pos)
{
if (pos < 0)
throw new IndexOutOfBoundsException();
int bit = pos % 64;
int offset = pos / 64;
ensure(offset);
bits[offset] |= 1L << bit;
}
/**
* Returns the number of bits actually used by this bit set. Note
* that this method doesn't return the number of set bits.
* @returns the number of bits currently used.
*/
public int size()
{
return bits.length * 64;
}
/**
* Returns the string representation of this bit set. This
* consists of a comma separated list of the integers in this set
* surrounded by curly braces. There is a space after each comma.
* @return the string representation.
*/
public String toString()
{
String r = "{";
boolean first = true;
for (int i = 0; i < bits.length; ++i)
{
long bit = 1;
long word = bits[i];
if (word == 0)
continue;
for (int j = 0; j < 64; ++j)
{
if ((word & bit) != 0)
{
if (!first)
r += ", ";
r += Integer.toString(64 * i + j);
first = false;
}
bit <<= 1;
}
}
return r += "}";
}
/**
* Performs the logical XOR operation on this bit set and the
* given set
. This means it builds the symmetric
* remainder of the two sets (the elements that are in one set,
* but not in the other). The result is stored into this bit set,
* which grows as necessary.
* @param set the second bit set.
* @exception OutOfMemoryError if the current set can't grow.
* @require set != null
*/
public void xor(BitSet bs)
{
ensure(bs.bits.length - 1);
int i;
for (i = 0; i < bs.bits.length; ++i)
bits[i] ^= bs.bits[i];
}
// Make sure the vector is big enough.
private final void ensure(int lastElt)
{
if (lastElt + 1 > bits.length)
{
long[] nd = new long[lastElt + 1];
System.arraycopy(bits, 0, nd, 0, bits.length);
bits = nd;
}
}
// The actual bits.
long[] bits;
private static final long serialVersionUID = 7997698588986878753L;
}