// Bits and pieces used in algorithms -*- C++ -*- // Copyright (C) 2001 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_algobase.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef __GLIBCPP_INTERNAL_ALGOBASE_H #define __GLIBCPP_INTERNAL_ALGOBASE_H #include #include #include #include #include #include #include #include #include #include #include #include #include namespace std { // swap and iter_swap /** * @brief Swaps the contents of two iterators. * @param a An iterator. * @param b Another iterator. * @return Nothing. * * This function swaps the values pointed to by two iterators, not the * iterators themselves. */ template inline void iter_swap(_ForwardIter1 __a, _ForwardIter2 __b) { typedef typename iterator_traits<_ForwardIter1>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIter2>::value_type _ValueType2; // concept requirements __glibcpp_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIter1>) __glibcpp_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIter2>) __glibcpp_function_requires(_ConvertibleConcept<_ValueType1, _ValueType2>) __glibcpp_function_requires(_ConvertibleConcept<_ValueType2, _ValueType1>) _ValueType1 __tmp = *__a; *__a = *__b; *__b = __tmp; } /** * @brief Swaps two values. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return Nothing. * * This is the simple classic generic implementation. It will work on * any type which has a copy constructor and an assignment operator. */ template inline void swap(_Tp& __a, _Tp& __b) { // concept requirements __glibcpp_function_requires(_SGIAssignableConcept<_Tp>) _Tp __tmp = __a; __a = __b; __b = __tmp; } //-------------------------------------------------- // min and max #undef min #undef max /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return The lesser of the parameters. * * This is the simple classic generic implementation. It will work on * temporary expressions, since they are only evaluated once, unlike a * preprocessor macro. */ template inline const _Tp& min(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcpp_function_requires(_LessThanComparableConcept<_Tp>) //return __b < __a ? __b : __a; if (__b < __a) return __b; return __a; } /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return The greater of the parameters. * * This is the simple classic generic implementation. It will work on * temporary expressions, since they are only evaluated once, unlike a * preprocessor macro. */ template inline const _Tp& max(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcpp_function_requires(_LessThanComparableConcept<_Tp>) //return __a < __b ? __b : __a; if (__a < __b) return __b; return __a; } /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @param comp A @link s20_3_3_comparisons comparison functor@endlink. * @return The lesser of the parameters. * * This will work on temporary expressions, since they are only evaluated * once, unlike a preprocessor macro. */ template inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__b, __a) ? __b : __a; if (__comp(__b, __a)) return __b; return __a; } /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @param comp A @link s20_3_3_comparisons comparison functor@endlink. * @return The greater of the parameters. * * This will work on temporary expressions, since they are only evaluated * once, unlike a preprocessor macro. */ template inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__a, __b) ? __b : __a; if (__comp(__a, __b)) return __b; return __a; } //-------------------------------------------------- // copy // All of these auxiliary functions serve two purposes. (1) Replace // calls to copy with memmove whenever possible. (Memmove, not memcpy, // because the input and output ranges are permitted to overlap.) // (2) If we're using random access iterators, then write the loop as // a for loop with an explicit count. template inline _OutputIter __copy(_InputIter __first, _InputIter __last, _OutputIter __result, input_iterator_tag) { for ( ; __first != __last; ++__result, ++__first) *__result = *__first; return __result; } template inline _OutputIter __copy(_RandomAccessIter __first, _RandomAccessIter __last, _OutputIter __result, random_access_iterator_tag) { typedef typename iterator_traits<_RandomAccessIter>::difference_type _Distance; for (_Distance __n = __last - __first; __n > 0; --__n) { *__result = *__first; ++__first; ++__result; } return __result; } template inline _Tp* __copy_trivial(const _Tp* __first, const _Tp* __last, _Tp* __result) { memmove(__result, __first, sizeof(_Tp) * (__last - __first)); return __result + (__last - __first); } template inline _OutputIter __copy_aux2(_InputIter __first, _InputIter __last, _OutputIter __result, __false_type) { return __copy(__first, __last, __result, __iterator_category(__first)); } template inline _OutputIter __copy_aux2(_InputIter __first, _InputIter __last, _OutputIter __result, __true_type) { return __copy(__first, __last, __result, __iterator_category(__first)); } template inline _Tp* __copy_aux2(_Tp* __first, _Tp* __last, _Tp* __result, __true_type) { return __copy_trivial(__first, __last, __result); } template inline _Tp* __copy_aux2(const _Tp* __first, const _Tp* __last, _Tp* __result, __true_type) { return __copy_trivial(__first, __last, __result); } template inline _OutputIter __copy_ni2(_InputIter __first, _InputIter __last, _OutputIter __result, __true_type) { typedef typename iterator_traits<_InputIter>::value_type _ValueType; typedef typename __type_traits<_ValueType>::has_trivial_assignment_operator _Trivial; return _OutputIter(__copy_aux2(__first, __last, __result.base(), _Trivial())); } template inline _OutputIter __copy_ni2(_InputIter __first, _InputIter __last, _OutputIter __result, __false_type) { typedef typename iterator_traits<_InputIter>::value_type _ValueType; typedef typename __type_traits<_ValueType>::has_trivial_assignment_operator _Trivial; return __copy_aux2(__first, __last, __result, _Trivial()); } template inline _OutputIter __copy_ni1(_InputIter __first, _InputIter __last, _OutputIter __result, __true_type) { typedef typename _Is_normal_iterator<_OutputIter>::_Normal __Normal; return __copy_ni2(__first.base(), __last.base(), __result, __Normal()); } template inline _OutputIter __copy_ni1(_InputIter __first, _InputIter __last, _OutputIter __result, __false_type) { typedef typename _Is_normal_iterator<_OutputIter>::_Normal __Normal; return __copy_ni2(__first, __last, __result, __Normal()); } /** * @brief Copies the range [first,last) into result. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return result + (first - last) * * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). If the input range and the output * range overlap, then the copy_backward function should be used instead. */ template inline _OutputIter copy(_InputIter __first, _InputIter __last, _OutputIter __result) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter>) __glibcpp_function_requires(_OutputIteratorConcept<_OutputIter, typename iterator_traits<_InputIter>::value_type>) typedef typename _Is_normal_iterator<_InputIter>::_Normal __Normal; return __copy_ni1(__first, __last, __result, __Normal()); } //-------------------------------------------------- // copy_backward template inline _BidirectionalIter2 __copy_backward(_BidirectionalIter1 __first, _BidirectionalIter1 __last, _BidirectionalIter2 __result, bidirectional_iterator_tag) { while (__first != __last) *--__result = *--__last; return __result; } template inline _BidirectionalIter __copy_backward(_RandomAccessIter __first, _RandomAccessIter __last, _BidirectionalIter __result, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIter>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) *--__result = *--__last; return __result; } // This dispatch class is a workaround for compilers that do not // have partial ordering of function templates. All we're doing is // creating a specialization so that we can turn a call to copy_backward // into a memmove whenever possible. template struct __copy_backward_dispatch { static _BidirectionalIter2 copy(_BidirectionalIter1 __first, _BidirectionalIter1 __last, _BidirectionalIter2 __result) { return __copy_backward(__first, __last, __result, __iterator_category(__first)); } }; template struct __copy_backward_dispatch<_Tp*, _Tp*, __true_type> { static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) { const ptrdiff_t _Num = __last - __first; memmove(__result - _Num, __first, sizeof(_Tp) * _Num); return __result - _Num; } }; template struct __copy_backward_dispatch { static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) { return __copy_backward_dispatch<_Tp*, _Tp*, __true_type> ::copy(__first, __last, __result); } }; template inline _BI2 __copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result) { typedef typename __type_traits::value_type> ::has_trivial_assignment_operator _Trivial; return __copy_backward_dispatch<_BI1, _BI2, _Trivial> ::copy(__first, __last, __result); } template inline _BI2 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last, _BI2 __result, __true_type) { return _BI2(__copy_backward_aux(__first, __last, __result.base())); } template inline _BI2 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last, _BI2 __result, __false_type) { return __copy_backward_aux(__first, __last, __result); } template inline _BI2 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last, _BI2 __result, __true_type) { typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal; return __copy_backward_output_normal_iterator(__first.base(), __last.base(), __result, __Normal()); } template inline _BI2 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last, _BI2 __result, __false_type) { typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal; return __copy_backward_output_normal_iterator(__first, __last, __result, __Normal()); } /** * @brief Copies the range [first,last) into result. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return result - (first - last) * * The function has the same effect as copy, but starts at the end of the * range and works its way to the start, returning the start of the result. * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). */ template inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) { // concept requirements __glibcpp_function_requires(_BidirectionalIteratorConcept<_BI1>) __glibcpp_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>) __glibcpp_function_requires(_ConvertibleConcept< typename iterator_traits<_BI1>::value_type, typename iterator_traits<_BI2>::value_type>) typedef typename _Is_normal_iterator<_BI1>::_Normal __Normal; return __copy_backward_input_normal_iterator(__first, __last, __result, __Normal()); } //-------------------------------------------------- // copy_n (not part of the C++ standard) template pair<_InputIter, _OutputIter> __copy_n(_InputIter __first, _Size __count, _OutputIter __result, input_iterator_tag) { for ( ; __count > 0; --__count) { *__result = *__first; ++__first; ++__result; } return pair<_InputIter, _OutputIter>(__first, __result); } template inline pair<_RAIter, _OutputIter> __copy_n(_RAIter __first, _Size __count, _OutputIter __result, random_access_iterator_tag) { _RAIter __last = __first + __count; return pair<_RAIter, _OutputIter>(__last, copy(__first, __last, __result)); } /** * @brief Copies the range [first,first+count) into [result,result+count). * @param first An input iterator. * @param count The number of elements to copy. * @param result An output iterator. * @return A std::pair composed of first+count and result+count. * * This is an SGI extension. * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). * @ingroup SGIextensions */ template inline pair<_InputIter, _OutputIter> copy_n(_InputIter __first, _Size __count, _OutputIter __result) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter>) __glibcpp_function_requires(_OutputIteratorConcept<_OutputIter, typename iterator_traits<_InputIter>::value_type>) return __copy_n(__first, __count, __result, __iterator_category(__first)); } //-------------------------------------------------- // fill and fill_n /** * @brief Fills the range [first,last) with copies of value. * @param first A forward iterator. * @param last A forward iterator. * @param value A reference-to-const of arbitrary type. * @return Nothing. * * This function fills a range with copies of the same value. For one-byte * types filling contiguous areas of memory, this becomes an inline call to * @c memset. */ template void fill(_ForwardIter __first, _ForwardIter __last, const _Tp& __value) { // concept requirements __glibcpp_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIter>) for ( ; __first != __last; ++__first) *__first = __value; } /** * @brief Fills the range [first,first+n) with copies of value. * @param first An output iterator. * @param n The count of copies to perform. * @param value A reference-to-const of arbitrary type. * @return The iterator at first+n. * * This function fills a range with copies of the same value. For one-byte * types filling contiguous areas of memory, this becomes an inline call to * @c memset. */ template _OutputIter fill_n(_OutputIter __first, _Size __n, const _Tp& __value) { // concept requirements __glibcpp_function_requires(_OutputIteratorConcept<_OutputIter,_Tp>) for ( ; __n > 0; --__n, ++__first) *__first = __value; return __first; } // Specialization: for one-byte types we can use memset. inline void fill(unsigned char* __first, unsigned char* __last, const unsigned char& __c) { unsigned char __tmp = __c; memset(__first, __tmp, __last - __first); } inline void fill(signed char* __first, signed char* __last, const signed char& __c) { signed char __tmp = __c; memset(__first, static_cast(__tmp), __last - __first); } inline void fill(char* __first, char* __last, const char& __c) { char __tmp = __c; memset(__first, static_cast(__tmp), __last - __first); } template inline unsigned char* fill_n(unsigned char* __first, _Size __n, const unsigned char& __c) { fill(__first, __first + __n, __c); return __first + __n; } template inline signed char* fill_n(char* __first, _Size __n, const signed char& __c) { fill(__first, __first + __n, __c); return __first + __n; } template inline char* fill_n(char* __first, _Size __n, const char& __c) { fill(__first, __first + __n, __c); return __first + __n; } //-------------------------------------------------- // equal and mismatch /** * @brief Finds the places in ranges which don't match. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @return A pair of iterators pointing to the first mismatch. * * This compares the elements of two ranges using @c == and returns a pair * of iterators. The first iterator points into the first range, the * second iterator points into the second range, and the elements pointed * to by the iterators are not equal. */ template pair<_InputIter1, _InputIter2> mismatch(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter1>) __glibcpp_function_requires(_InputIteratorConcept<_InputIter2>) __glibcpp_function_requires(_EqualityComparableConcept< typename iterator_traits<_InputIter1>::value_type>) __glibcpp_function_requires(_EqualityComparableConcept< typename iterator_traits<_InputIter2>::value_type>) while (__first1 != __last1 && *__first1 == *__first2) { ++__first1; ++__first2; } return pair<_InputIter1, _InputIter2>(__first1, __first2); } /** * @brief Finds the places in ranges which don't match. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink. * @return A pair of iterators pointing to the first mismatch. * * This compares the elements of two ranges using the binary_pred * parameter, and returns a pair * of iterators. The first iterator points into the first range, the * second iterator points into the second range, and the elements pointed * to by the iterators are not equal. */ template pair<_InputIter1, _InputIter2> mismatch(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter1>) __glibcpp_function_requires(_InputIteratorConcept<_InputIter2>) while (__first1 != __last1 && __binary_pred(*__first1, *__first2)) { ++__first1; ++__first2; } return pair<_InputIter1, _InputIter2>(__first1, __first2); } /** * @brief Tests a range for element-wise equality. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @return A boolean true or false. * * This compares the elements of two ranges using @c == and returns true or * false depending on whether all of the corresponding elements of the * ranges are equal. */ template inline bool equal(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter1>) __glibcpp_function_requires(_InputIteratorConcept<_InputIter2>) __glibcpp_function_requires(_EqualOpConcept< typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type>) for ( ; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) return false; return true; } /** * @brief Tests a range for element-wise equality. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink. * @return A boolean true or false. * * This compares the elements of two ranges using the binary_pred * parameter, and returns true or * false depending on whether all of the corresponding elements of the * ranges are equal. */ template inline bool equal(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter1>) __glibcpp_function_requires(_InputIteratorConcept<_InputIter2>) for ( ; __first1 != __last1; ++__first1, ++__first2) if (!__binary_pred(*__first1, *__first2)) return false; return true; } //-------------------------------------------------- // lexicographical_compare and lexicographical_compare_3way. // (the latter is not part of the C++ standard.) /** * @brief Performs "dictionary" comparison on ranges. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param last2 An input iterator. * @return A boolean true or false. * * "Returns true if the sequence of elements defined by the range * [first1,last1) is lexicographically less than the sequence of elements * defined by the range [first2,last2). Returns false otherwise." * (Quoted from [25.3.8]/1.) If the iterators are all character pointers, * then this is an inline call to @c memcmp. */ template bool lexicographical_compare(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter1>) __glibcpp_function_requires(_InputIteratorConcept<_InputIter2>) __glibcpp_function_requires(_LessThanComparableConcept< typename iterator_traits<_InputIter1>::value_type>) __glibcpp_function_requires(_LessThanComparableConcept< typename iterator_traits<_InputIter2>::value_type>) for ( ; __first1 != __last1 && __first2 != __last2 ; ++__first1, ++__first2) { if (*__first1 < *__first2) return true; if (*__first2 < *__first1) return false; } return __first1 == __last1 && __first2 != __last2; } /** * @brief Performs "dictionary" comparison on ranges. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param last2 An input iterator. * @param comp A @link s20_3_3_comparisons comparison functor@endlink. * @return A boolean true or false. * * The same as the four-parameter @c lexigraphical_compare, but uses the * comp parameter instead of @c <. */ template bool lexicographical_compare(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _Compare __comp) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter1>) __glibcpp_function_requires(_InputIteratorConcept<_InputIter2>) for ( ; __first1 != __last1 && __first2 != __last2 ; ++__first1, ++__first2) { if (__comp(*__first1, *__first2)) return true; if (__comp(*__first2, *__first1)) return false; } return __first1 == __last1 && __first2 != __last2; } inline bool lexicographical_compare(const unsigned char* __first1, const unsigned char* __last1, const unsigned char* __first2, const unsigned char* __last2) { const size_t __len1 = __last1 - __first1; const size_t __len2 = __last2 - __first2; const int __result = memcmp(__first1, __first2, min(__len1, __len2)); return __result != 0 ? __result < 0 : __len1 < __len2; } inline bool lexicographical_compare(const char* __first1, const char* __last1, const char* __first2, const char* __last2) { #if CHAR_MAX == SCHAR_MAX return lexicographical_compare((const signed char*) __first1, (const signed char*) __last1, (const signed char*) __first2, (const signed char*) __last2); #else /* CHAR_MAX == SCHAR_MAX */ return lexicographical_compare((const unsigned char*) __first1, (const unsigned char*) __last1, (const unsigned char*) __first2, (const unsigned char*) __last2); #endif /* CHAR_MAX == SCHAR_MAX */ } template int __lexicographical_compare_3way(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2) { while (__first1 != __last1 && __first2 != __last2) { if (*__first1 < *__first2) return -1; if (*__first2 < *__first1) return 1; ++__first1; ++__first2; } if (__first2 == __last2) { return !(__first1 == __last1); } else { return -1; } } inline int __lexicographical_compare_3way(const unsigned char* __first1, const unsigned char* __last1, const unsigned char* __first2, const unsigned char* __last2) { const ptrdiff_t __len1 = __last1 - __first1; const ptrdiff_t __len2 = __last2 - __first2; const int __result = memcmp(__first1, __first2, min(__len1, __len2)); return __result != 0 ? __result : (__len1 == __len2 ? 0 : (__len1 < __len2 ? -1 : 1)); } inline int __lexicographical_compare_3way(const char* __first1, const char* __last1, const char* __first2, const char* __last2) { #if CHAR_MAX == SCHAR_MAX return __lexicographical_compare_3way( (const signed char*) __first1, (const signed char*) __last1, (const signed char*) __first2, (const signed char*) __last2); #else return __lexicographical_compare_3way((const unsigned char*) __first1, (const unsigned char*) __last1, (const unsigned char*) __first2, (const unsigned char*) __last2); #endif } /** * @brief @c memcmp on steroids. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param last2 An input iterator. * @return An int, as with @c memcmp. * * The return value will be less than zero if the first range is * "lexigraphically less than" the second, greater than zero if the second * range is "lexigraphically less than" the first, and zero otherwise. * This is an SGI extension. * @ingroup SGIextensions */ template int lexicographical_compare_3way(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2) { // concept requirements __glibcpp_function_requires(_InputIteratorConcept<_InputIter1>) __glibcpp_function_requires(_InputIteratorConcept<_InputIter2>) __glibcpp_function_requires(_LessThanComparableConcept< typename iterator_traits<_InputIter1>::value_type>) __glibcpp_function_requires(_LessThanComparableConcept< typename iterator_traits<_InputIter2>::value_type>) return __lexicographical_compare_3way(__first1, __last1, __first2, __last2); } } // namespace std #endif /* __GLIBCPP_INTERNAL_ALGOBASE_H */ // Local Variables: // mode:C++ // End: