/* --------------------------------- SHS.CC ------------------------------- */ /* * NIST proposed Secure Hash Standard. * * Written 2 September 1992, Peter C. Gutmann. * This implementation placed in the public domain. * * Comments to pgut1@cs.aukuni.ac.nz */ #include #include "shs.h" /* The SHS f()-functions */ #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */ #define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */ #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */ #define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */ /* The SHS Mysterious Constants */ #define K1 0x5A827999L /* Rounds 0-19 */ #define K2 0x6ED9EBA1L /* Rounds 20-39 */ #define K3 0x8F1BBCDCL /* Rounds 40-59 */ #define K4 0xCA62C1D6L /* Rounds 60-79 */ /* SHS initial values */ #define h0init 0x67452301L #define h1init 0xEFCDAB89L #define h2init 0x98BADCFEL #define h3init 0x10325476L #define h4init 0xC3D2E1F0L /* 32-bit rotate - kludged with shifts */ #define S(n,X) ((X << n) | (X >> (32 - n))) /* The initial expanding function */ #define expand(count) W [count] = W [count - 3] ^ W [count - 8] ^ W [count - 14] ^ W [count - 16] /* The four SHS sub-rounds */ #define subRound1(count) \ { \ temp = S (5, A) + f1 (B, C, D) + E + W [count] + K1; \ E = D; \ D = C; \ C = S (30, B); \ B = A; \ A = temp; \ } #define subRound2(count) \ { \ temp = S (5, A) + f2 (B, C, D) + E + W [count] + K2; \ E = D; \ D = C; \ C = S (30, B); \ B = A; \ A = temp; \ } #define subRound3(count) \ { \ temp = S (5, A) + f3 (B, C, D) + E + W [count] + K3; \ E = D; \ D = C; \ C = S (30, B); \ B = A; \ A = temp; \ } #define subRound4(count) \ { \ temp = S (5, A) + f4 (B, C, D) + E + W [count] + K4; \ E = D; \ D = C; \ C = S (30, B); \ B = A; \ A = temp; \ } /* The two buffers of 5 32-bit words */ LONG h0, h1, h2, h3, h4; LONG A, B, C, D, E; local void byteReverse OF((LONG *buffer, int byteCount)); void shsTransform OF((SHS_INFO *shsInfo)); /* Initialize the SHS values */ void shsInit (SHS_INFO *shsInfo) { /* Set the h-vars to their initial values */ shsInfo->digest [0] = h0init; shsInfo->digest [1] = h1init; shsInfo->digest [2] = h2init; shsInfo->digest [3] = h3init; shsInfo->digest [4] = h4init; /* Initialise bit count */ shsInfo->countLo = shsInfo->countHi = 0L; } /* * Perform the SHS transformation. Note that this code, like MD5, seems to * break some optimizing compilers - it may be necessary to split it into * sections, eg based on the four subrounds */ void shsTransform (SHS_INFO *shsInfo) { LONG W [80], temp; int i; /* Step A. Copy the data buffer into the local work buffer */ for (i = 0; i < 16; i++) W [i] = shsInfo->data [i]; /* Step B. Expand the 16 words into 64 temporary data words */ expand (16); expand (17); expand (18); expand (19); expand (20); expand (21); expand (22); expand (23); expand (24); expand (25); expand (26); expand (27); expand (28); expand (29); expand (30); expand (31); expand (32); expand (33); expand (34); expand (35); expand (36); expand (37); expand (38); expand (39); expand (40); expand (41); expand (42); expand (43); expand (44); expand (45); expand (46); expand (47); expand (48); expand (49); expand (50); expand (51); expand (52); expand (53); expand (54); expand (55); expand (56); expand (57); expand (58); expand (59); expand (60); expand (61); expand (62); expand (63); expand (64); expand (65); expand (66); expand (67); expand (68); expand (69); expand (70); expand (71); expand (72); expand (73); expand (74); expand (75); expand (76); expand (77); expand (78); expand (79); /* Step C. Set up first buffer */ A = shsInfo->digest [0]; B = shsInfo->digest [1]; C = shsInfo->digest [2]; D = shsInfo->digest [3]; E = shsInfo->digest [4]; /* Step D. Serious mangling, divided into four sub-rounds */ subRound1 (0); subRound1 (1); subRound1 (2); subRound1 (3); subRound1 (4); subRound1 (5); subRound1 (6); subRound1 (7); subRound1 (8); subRound1 (9); subRound1 (10); subRound1 (11); subRound1 (12); subRound1 (13); subRound1 (14); subRound1 (15); subRound1 (16); subRound1 (17); subRound1 (18); subRound1 (19); subRound2 (20); subRound2 (21); subRound2 (22); subRound2 (23); subRound2 (24); subRound2 (25); subRound2 (26); subRound2 (27); subRound2 (28); subRound2 (29); subRound2 (30); subRound2 (31); subRound2 (32); subRound2 (33); subRound2 (34); subRound2 (35); subRound2 (36); subRound2 (37); subRound2 (38); subRound2 (39); subRound3 (40); subRound3 (41); subRound3 (42); subRound3 (43); subRound3 (44); subRound3 (45); subRound3 (46); subRound3 (47); subRound3 (48); subRound3 (49); subRound3 (50); subRound3 (51); subRound3 (52); subRound3 (53); subRound3 (54); subRound3 (55); subRound3 (56); subRound3 (57); subRound3 (58); subRound3 (59); subRound4 (60); subRound4 (61); subRound4 (62); subRound4 (63); subRound4 (64); subRound4 (65); subRound4 (66); subRound4 (67); subRound4 (68); subRound4 (69); subRound4 (70); subRound4 (71); subRound4 (72); subRound4 (73); subRound4 (74); subRound4 (75); subRound4 (76); subRound4 (77); subRound4 (78); subRound4 (79); /* Step E. Build message digest */ shsInfo->digest [0] += A; shsInfo->digest [1] += B; shsInfo->digest [2] += C; shsInfo->digest [3] += D; shsInfo->digest [4] += E; } local void byteReverse (LONG *buffer, int byteCount) { LONG value; int count; /* * Find out what the byte order is on this machine. * Big endian is for machines that place the most significant byte * first (eg. Sun SPARC). Little endian is for machines that place * the least significant byte first (eg. VAX). * * We figure out the byte order by stuffing a 2 byte string into a * short and examining the left byte. '@' = 0x40 and 'P' = 0x50 * If the left byte is the 'high' byte, then it is 'big endian'. * If the left byte is the 'low' byte, then the machine is 'little * endian'. * * -- Shawn A. Clifford (sac@eng.ufl.edu) */ /* * Several bugs fixed -- Pat Myrto (pat@rwing.uucp) */ if ((*(unsigned short *) ("@P") >> 8) == '@') return; byteCount /= sizeof (LONG); for (count = 0; count < byteCount; count++) { value = (buffer [count] << 16) | (buffer [count] >> 16); buffer [count] = ((value & 0xFF00FF00L) >> 8) | ((value & 0x00FF00FFL) << 8); } } /* * Update SHS for a block of data. This code assumes that the buffer size is * a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot more * efficient since it does away with the need to handle partial blocks * between calls to shsUpdate() */ void shsUpdate (SHS_INFO *shsInfo, BYTE *buffer, int count) { /* Update bitcount */ if ((shsInfo->countLo + ((LONG) count << 3)) < shsInfo->countLo) shsInfo->countHi++; /* Carry from low to high bitCount */ shsInfo->countLo += ((LONG) count << 3); shsInfo->countHi += ((LONG) count >> 29); /* Process data in SHS_BLOCKSIZE chunks */ while (count >= SHS_BLOCKSIZE) { memcpy (shsInfo->data, buffer, SHS_BLOCKSIZE); byteReverse (shsInfo->data, SHS_BLOCKSIZE); shsTransform (shsInfo); buffer += SHS_BLOCKSIZE; count -= SHS_BLOCKSIZE; } /* * Handle any remaining bytes of data. * This should only happen once on the final lot of data */ memcpy (shsInfo->data, buffer, count); } void shsFinal (SHS_INFO *shsInfo) { int count; LONG lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi; /* Compute number of bytes mod 64 */ count = (int) ((shsInfo->countLo >> 3) & 0x3F); /* * Set the first char of padding to 0x80. * This is safe since there is always at least one byte free */ ((BYTE *) shsInfo->data) [count++] = 0x80; /* Pad out to 56 mod 64 */ if (count > 56) { /* Two lots of padding: Pad the first block to 64 bytes */ memset ((BYTE *) shsInfo->data + count, 0, 64 - count); byteReverse (shsInfo->data, SHS_BLOCKSIZE); shsTransform (shsInfo); /* Now fill the next block with 56 bytes */ memset (shsInfo->data, 0, 56); } else /* Pad block to 56 bytes */ memset ((BYTE *) shsInfo->data + count, 0, 56 - count); byteReverse (shsInfo->data, SHS_BLOCKSIZE); /* Append length in bits and transform */ shsInfo->data [14] = highBitcount; shsInfo->data [15] = lowBitcount; shsTransform (shsInfo); byteReverse (shsInfo->data, SHS_DIGESTSIZE); }