// Vector implementation -*- C++ -*- // Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_vector.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _VECTOR_H #define _VECTOR_H 1 #include #include #include namespace std { /// @if maint Primary default version. @endif /** * @if maint * See bits/stl_deque.h's _Deque_alloc_base for an explanation. * @endif */ template class _Vector_alloc_base { public: typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return _M_data_allocator; } _Vector_alloc_base(const allocator_type& __a) : _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0) { } protected: allocator_type _M_data_allocator; _Tp* _M_start; _Tp* _M_finish; _Tp* _M_end_of_storage; _Tp* _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); } void _M_deallocate(_Tp* __p, size_t __n) { if (__p) _M_data_allocator.deallocate(__p, __n); } }; /// @if maint Specialization for instanceless allocators. @endif template class _Vector_alloc_base<_Tp, _Allocator, true> { public: typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return allocator_type(); } _Vector_alloc_base(const allocator_type&) : _M_start(0), _M_finish(0), _M_end_of_storage(0) { } protected: _Tp* _M_start; _Tp* _M_finish; _Tp* _M_end_of_storage; typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type; _Tp* _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); } void _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);} }; /** * @if maint * See bits/stl_deque.h's _Deque_base for an explanation. * @endif */ template struct _Vector_base : public _Vector_alloc_base<_Tp, _Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> { public: typedef _Vector_alloc_base<_Tp, _Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> _Base; typedef typename _Base::allocator_type allocator_type; _Vector_base(const allocator_type& __a) : _Base(__a) { } _Vector_base(size_t __n, const allocator_type& __a) : _Base(__a) { this->_M_start = this->_M_allocate(__n); this->_M_finish = this->_M_start; this->_M_end_of_storage = this->_M_start + __n; } ~_Vector_base() { _M_deallocate(this->_M_start, this->_M_end_of_storage - this->_M_start); } }; /** * @brief A standard container which offers fixed time access to individual * elements in any order. * * @ingroup Containers * @ingroup Sequences * * Meets the requirements of a container, a * reversible container, and a * sequence, including the * optional sequence requirements with the * %exception of @c push_front and @c pop_front. * * In some terminology a %vector can be described as a dynamic C-style array, * it offers fast and efficient access to individual elements in any order * and saves the user from worrying about memory and size allocation. * Subscripting ( @c [] ) access is also provided as with C-style arrays. */ template > class vector : protected _Vector_base<_Tp, _Alloc> { // Concept requirements. __glibcxx_class_requires(_Tp, _SGIAssignableConcept) typedef _Vector_base<_Tp, _Alloc> _Base; typedef vector<_Tp, _Alloc> vector_type; public: typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef __gnu_cxx::__normal_iterator iterator; typedef __gnu_cxx::__normal_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef typename _Base::allocator_type allocator_type; protected: /** @if maint * These two functions and three data members are all from the * top-most base class, which varies depending on the type of * %allocator. They should be pretty self-explanatory, as * %vector uses a simple contiguous allocation scheme. @endif */ using _Base::_M_allocate; using _Base::_M_deallocate; using _Base::_M_start; using _Base::_M_finish; using _Base::_M_end_of_storage; public: // [23.2.4.1] construct/copy/destroy // (assign() and get_allocator() are also listed in this section) /** * @brief Default constructor creates no elements. */ explicit vector(const allocator_type& __a = allocator_type()) : _Base(__a) { } /** * @brief Create a %vector with copies of an exemplar element. * @param n The number of elements to initially create. * @param value An element to copy. * * This constructor fills the %vector with @a n copies of @a value. */ vector(size_type __n, const value_type& __value, const allocator_type& __a = allocator_type()) : _Base(__n, __a) { this->_M_finish = std::uninitialized_fill_n(this->_M_start, __n, __value); } /** * @brief Create a %vector with default elements. * @param n The number of elements to initially create. * * This constructor fills the %vector with @a n copies of a * default-constructed element. */ explicit vector(size_type __n) : _Base(__n, allocator_type()) { this->_M_finish = std::uninitialized_fill_n(this->_M_start, __n, value_type()); } /** * @brief %Vector copy constructor. * @param x A %vector of identical element and allocator types. * * The newly-created %vector uses a copy of the allocation * object used by @a x. All the elements of @a x are copied, * but any extra memory in * @a x (for fast expansion) will not be copied. */ vector(const vector& __x) : _Base(__x.size(), __x.get_allocator()) { this->_M_finish = std::uninitialized_copy(__x.begin(), __x.end(), this->_M_start); } /** * @brief Builds a %vector from a range. * @param first An input iterator. * @param last An input iterator. * * Create a %vector consisting of copies of the elements from * [first,last). * * If the iterators are forward, bidirectional, or random-access, then * this will call the elements' copy constructor N times (where N is * distance(first,last)) and do no memory reallocation. But if only * input iterators are used, then this will do at most 2N calls to the * copy constructor, and logN memory reallocations. */ template vector(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } /** * The dtor only erases the elements, and note that if the elements * themselves are pointers, the pointed-to memory is not touched in any * way. Managing the pointer is the user's responsibilty. */ ~vector() { std::_Destroy(this->_M_start, this->_M_finish); } /** * @brief %Vector assignment operator. * @param x A %vector of identical element and allocator types. * * All the elements of @a x are copied, but any extra memory in * @a x (for fast expansion) will not be copied. Unlike the * copy constructor, the allocator object is not copied. */ vector& operator=(const vector& __x); /** * @brief Assigns a given value to a %vector. * @param n Number of elements to be assigned. * @param val Value to be assigned. * * This function fills a %vector with @a n copies of the given * value. Note that the assignment completely changes the * %vector and that the resulting %vector's size is the same as * the number of elements assigned. Old data may be lost. */ void assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } /** * @brief Assigns a range to a %vector. * @param first An input iterator. * @param last An input iterator. * * This function fills a %vector with copies of the elements in the * range [first,last). * * Note that the assignment completely changes the %vector and * that the resulting %vector's size is the same as the number * of elements assigned. Old data may be lost. */ template void assign(_InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_assign_dispatch(__first, __last, _Integral()); } /// Get a copy of the memory allocation object. allocator_type get_allocator() const { return _Base::get_allocator(); } // iterators /** * Returns a read/write iterator that points to the first element in the * %vector. Iteration is done in ordinary element order. */ iterator begin() { return iterator (this->_M_start); } /** * Returns a read-only (constant) iterator that points to the * first element in the %vector. Iteration is done in ordinary * element order. */ const_iterator begin() const { return const_iterator (this->_M_start); } /** * Returns a read/write iterator that points one past the last * element in the %vector. Iteration is done in ordinary * element order. */ iterator end() { return iterator (this->_M_finish); } /** * Returns a read-only (constant) iterator that points one past the last * element in the %vector. Iteration is done in ordinary element order. */ const_iterator end() const { return const_iterator (this->_M_finish); } /** * Returns a read/write reverse iterator that points to the * last element in the %vector. Iteration is done in reverse * element order. */ reverse_iterator rbegin() { return reverse_iterator(end()); } /** * Returns a read-only (constant) reverse iterator that points * to the last element in the %vector. Iteration is done in * reverse element order. */ const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } /** * Returns a read/write reverse iterator that points to one before the * first element in the %vector. Iteration is done in reverse element * order. */ reverse_iterator rend() { return reverse_iterator(begin()); } /** * Returns a read-only (constant) reverse iterator that points * to one before the first element in the %vector. Iteration * is done in reverse element order. */ const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // [23.2.4.2] capacity /** Returns the number of elements in the %vector. */ size_type size() const { return size_type(end() - begin()); } /** Returns the size() of the largest possible %vector. */ size_type max_size() const { return size_type(-1) / sizeof(value_type); } /** * @brief Resizes the %vector to the specified number of elements. * @param new_size Number of elements the %vector should contain. * @param x Data with which new elements should be populated. * * This function will %resize the %vector to the specified * number of elements. If the number is smaller than the * %vector's current size the %vector is truncated, otherwise * the %vector is extended and new elements are populated with * given data. */ void resize(size_type __new_size, const value_type& __x) { if (__new_size < size()) erase(begin() + __new_size, end()); else insert(end(), __new_size - size(), __x); } /** * @brief Resizes the %vector to the specified number of elements. * @param new_size Number of elements the %vector should contain. * * This function will resize the %vector to the specified * number of elements. If the number is smaller than the * %vector's current size the %vector is truncated, otherwise * the %vector is extended and new elements are * default-constructed. */ void resize(size_type __new_size) { resize(__new_size, value_type()); } /** * Returns the total number of elements that the %vector can hold before * needing to allocate more memory. */ size_type capacity() const { return size_type(const_iterator(this->_M_end_of_storage) - begin()); } /** * Returns true if the %vector is empty. (Thus begin() would * equal end().) */ bool empty() const { return begin() == end(); } /** * @brief Attempt to preallocate enough memory for specified number of * elements. * @param n Number of elements required. * @throw std::length_error If @a n exceeds @c max_size(). * * This function attempts to reserve enough memory for the * %vector to hold the specified number of elements. If the * number requested is more than max_size(), length_error is * thrown. * * The advantage of this function is that if optimal code is a * necessity and the user can determine the number of elements * that will be required, the user can reserve the memory in * %advance, and thus prevent a possible reallocation of memory * and copying of %vector data. */ void reserve(size_type __n); // element access /** * @brief Subscript access to the data contained in the %vector. * @param n The index of the element for which data should be accessed. * @return Read/write reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and * out_of_range lookups are not defined. (For checked lookups * see at().) */ reference operator[](size_type __n) { return *(begin() + __n); } /** * @brief Subscript access to the data contained in the %vector. * @param n The index of the element for which data should be * accessed. * @return Read-only (constant) reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and * out_of_range lookups are not defined. (For checked lookups * see at().) */ const_reference operator[](size_type __n) const { return *(begin() + __n); } protected: /// @if maint Safety check used only from at(). @endif void _M_range_check(size_type __n) const { if (__n >= this->size()) __throw_out_of_range(__N("vector::_M_range_check")); } public: /** * @brief Provides access to the data contained in the %vector. * @param n The index of the element for which data should be * accessed. * @return Read/write reference to data. * @throw std::out_of_range If @a n is an invalid index. * * This function provides for safer data access. The parameter is first * checked that it is in the range of the vector. The function throws * out_of_range if the check fails. */ reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } /** * @brief Provides access to the data contained in the %vector. * @param n The index of the element for which data should be * accessed. * @return Read-only (constant) reference to data. * @throw std::out_of_range If @a n is an invalid index. * * This function provides for safer data access. The parameter * is first checked that it is in the range of the vector. The * function throws out_of_range if the check fails. */ const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } /** * Returns a read/write reference to the data at the first * element of the %vector. */ reference front() { return *begin(); } /** * Returns a read-only (constant) reference to the data at the first * element of the %vector. */ const_reference front() const { return *begin(); } /** * Returns a read/write reference to the data at the last element of the * %vector. */ reference back() { return *(end() - 1); } /** * Returns a read-only (constant) reference to the data at the last * element of the %vector. */ const_reference back() const { return *(end() - 1); } // [23.2.4.3] modifiers /** * @brief Add data to the end of the %vector. * @param x Data to be added. * * This is a typical stack operation. The function creates an * element at the end of the %vector and assigns the given data * to it. Due to the nature of a %vector this operation can be * done in constant time if the %vector has preallocated space * available. */ void push_back(const value_type& __x) { if (this->_M_finish != this->_M_end_of_storage) { std::_Construct(this->_M_finish, __x); ++this->_M_finish; } else _M_insert_aux(end(), __x); } /** * @brief Removes last element. * * This is a typical stack operation. It shrinks the %vector by one. * * Note that no data is returned, and if the last element's data is * needed, it should be retrieved before pop_back() is called. */ void pop_back() { --this->_M_finish; std::_Destroy(this->_M_finish); } /** * @brief Inserts given value into %vector before specified iterator. * @param position An iterator into the %vector. * @param x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given value before * the specified location. Note that this kind of operation * could be expensive for a %vector and if it is frequently * used the user should consider using std::list. */ iterator insert(iterator __position, const value_type& __x); /** * @brief Inserts a number of copies of given data into the %vector. * @param position An iterator into the %vector. * @param n Number of elements to be inserted. * @param x Data to be inserted. * * This function will insert a specified number of copies of * the given data before the location specified by @a position. * * Note that this kind of operation could be expensive for a * %vector and if it is frequently used the user should * consider using std::list. */ void insert(iterator __position, size_type __n, const value_type& __x) { _M_fill_insert(__position, __n, __x); } /** * @brief Inserts a range into the %vector. * @param position An iterator into the %vector. * @param first An input iterator. * @param last An input iterator. * * This function will insert copies of the data in the range * [first,last) into the %vector before the location specified * by @a pos. * * Note that this kind of operation could be expensive for a * %vector and if it is frequently used the user should * consider using std::list. */ template void insert(iterator __position, _InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_insert_dispatch(__position, __first, __last, _Integral()); } /** * @brief Remove element at given position. * @param position Iterator pointing to element to be erased. * @return An iterator pointing to the next element (or end()). * * This function will erase the element at the given position and thus * shorten the %vector by one. * * Note This operation could be expensive and if it is * frequently used the user should consider using std::list. * The user is also cautioned that this function only erases * the element, and that if the element is itself a pointer, * the pointed-to memory is not touched in any way. Managing * the pointer is the user's responsibilty. */ iterator erase(iterator __position); /** * @brief Remove a range of elements. * @param first Iterator pointing to the first element to be erased. * @param last Iterator pointing to one past the last element to be * erased. * @return An iterator pointing to the element pointed to by @a last * prior to erasing (or end()). * * This function will erase the elements in the range [first,last) and * shorten the %vector accordingly. * * Note This operation could be expensive and if it is * frequently used the user should consider using std::list. * The user is also cautioned that this function only erases * the elements, and that if the elements themselves are * pointers, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibilty. */ iterator erase(iterator __first, iterator __last); /** * @brief Swaps data with another %vector. * @param x A %vector of the same element and allocator types. * * This exchanges the elements between two vectors in constant time. * (Three pointers, so it should be quite fast.) * Note that the global std::swap() function is specialized such that * std::swap(v1,v2) will feed to this function. */ void swap(vector& __x) { std::swap(this->_M_start, __x._M_start); std::swap(this->_M_finish, __x._M_finish); std::swap(this->_M_end_of_storage, __x._M_end_of_storage); } /** * Erases all the elements. Note that this function only erases the * elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer is * the user's responsibilty. */ void clear() { erase(begin(), end()); } protected: /** * @if maint * Memory expansion handler. Uses the member allocation function to * obtain @a n bytes of memory, and then copies [first,last) into it. * @endif */ template pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first, _ForwardIterator __last) { pointer __result = this->_M_allocate(__n); try { std::uninitialized_copy(__first, __last, __result); return __result; } catch(...) { _M_deallocate(__result, __n); __throw_exception_again; } } // Internal constructor functions follow. // Called by the range constructor to implement [23.1.1]/9 template void _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type) { this->_M_start = _M_allocate(__n); this->_M_end_of_storage = this->_M_start + __n; this->_M_finish = std::uninitialized_fill_n(this->_M_start, __n, __value); } // Called by the range constructor to implement [23.1.1]/9 template void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory; _M_range_initialize(__first, __last, _IterCategory()); } // Called by the second initialize_dispatch above template void _M_range_initialize(_InputIterator __first, _InputIterator __last, input_iterator_tag) { for ( ; __first != __last; ++__first) push_back(*__first); } // Called by the second initialize_dispatch above template void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { size_type __n = std::distance(__first, __last); this->_M_start = this->_M_allocate(__n); this->_M_end_of_storage = this->_M_start + __n; this->_M_finish = std::uninitialized_copy(__first, __last, this->_M_start); } // Internal assign functions follow. The *_aux functions do the actual // assignment work for the range versions. // Called by the range assign to implement [23.1.1]/9 template void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(static_cast(__n), static_cast(__val)); } // Called by the range assign to implement [23.1.1]/9 template void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory; _M_assign_aux(__first, __last, _IterCategory()); } // Called by the second assign_dispatch above template void _M_assign_aux(_InputIterator __first, _InputIterator __last, input_iterator_tag); // Called by the second assign_dispatch above template void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag); // Called by assign(n,t), and the range assign when it turns out // to be the same thing. void _M_fill_assign(size_type __n, const value_type& __val); // Internal insert functions follow. // Called by the range insert to implement [23.1.1]/9 template void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type) { _M_fill_insert(__pos, static_cast(__n), static_cast(__val)); } // Called by the range insert to implement [23.1.1]/9 template void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, __false_type) { typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory; _M_range_insert(__pos, __first, __last, _IterCategory()); } // Called by the second insert_dispatch above template void _M_range_insert(iterator __pos, _InputIterator __first, _InputIterator __last, input_iterator_tag); // Called by the second insert_dispatch above template void _M_range_insert(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag); // Called by insert(p,n,x), and the range insert when it turns out to be // the same thing. void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); // Called by insert(p,x) void _M_insert_aux(iterator __position, const value_type& __x); }; /** * @brief Vector equality comparison. * @param x A %vector. * @param y A %vector of the same type as @a x. * @return True iff the size and elements of the vectors are equal. * * This is an equivalence relation. It is linear in the size of the * vectors. Vectors are considered equivalent if their sizes are equal, * and if corresponding elements compare equal. */ template inline bool operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return __x.size() == __y.size() && std::equal(__x.begin(), __x.end(), __y.begin()); } /** * @brief Vector ordering relation. * @param x A %vector. * @param y A %vector of the same type as @a x. * @return True iff @a x is lexicographically less than @a y. * * This is a total ordering relation. It is linear in the size of the * vectors. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template inline bool operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } /// Based on operator== template inline bool operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return !(__x == __y); } /// Based on operator< template inline bool operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return __y < __x; } /// Based on operator< template inline bool operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return !(__y < __x); } /// Based on operator< template inline bool operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return !(__x < __y); } /// See std::vector::swap(). template inline void swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y) { __x.swap(__y); } } // namespace std #endif /* _VECTOR_H */