// Components for manipulating sequences of characters -*- C++ -*- // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. // // ISO C++ 14882: 21 Strings library // // This file is included by . It is not meant to be included // separately. // Written by Jason Merrill based upon the specification by Takanori Adachi // in ANSI X3J16/94-0013R2. Rewritten by Nathan Myers to ISO-14882. #ifndef _CPP_BITS_STRING_TCC #define _CPP_BITS_STRING_TCC 1 #pragma GCC system_header namespace std { template const typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: _Rep::_S_max_size = (((npos - sizeof(_Rep))/sizeof(_CharT)) - 1) / 4; template const _CharT basic_string<_CharT, _Traits, _Alloc>:: _Rep::_S_terminal = _CharT(); template const typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>::npos; // Linker sets _S_empty_rep_storage to all 0s (one reference, empty string) // at static init time (before static ctors are run). template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>::_S_empty_rep_storage[ (sizeof(_Rep) + sizeof(_CharT) + sizeof(size_type) - 1)/sizeof(size_type)]; // NB: This is the special case for Input Iterators, used in // istreambuf_iterators, etc. // Input Iterators have a cost structure very different from // pointers, calling for a different coding style. template template _CharT* basic_string<_CharT, _Traits, _Alloc>:: _S_construct(_InIter __beg, _InIter __end, const _Alloc& __a, input_iterator_tag) { if (__beg == __end && __a == _Alloc()) return _S_empty_rep()._M_refcopy(); // Avoid reallocation for common case. _CharT __buf[100]; size_type __i = 0; while (__beg != __end && __i < sizeof(__buf) / sizeof(_CharT)) { __buf[__i++] = *__beg; ++__beg; } _Rep* __r = _Rep::_S_create(__i, __a); traits_type::copy(__r->_M_refdata(), __buf, __i); __r->_M_length = __i; try { // NB: this loop looks precisely this way because // it avoids comparing __beg != __end any more // than strictly necessary; != might be expensive! for (;;) { _CharT* __p = __r->_M_refdata() + __r->_M_length; _CharT* __last = __r->_M_refdata() + __r->_M_capacity; for (;;) { if (__beg == __end) { __r->_M_length = __p - __r->_M_refdata(); *__p = _Rep::_S_terminal; // grrr. return __r->_M_refdata(); } if (__p == __last) break; *__p++ = *__beg; ++__beg; } // Allocate more space. size_type __len = __p - __r->_M_refdata(); _Rep* __another = _Rep::_S_create(__len + 1, __a); traits_type::copy(__another->_M_refdata(), __r->_M_refdata(), __len); __r->_M_destroy(__a); __r = __another; __r->_M_length = __len; } } catch(...) { __r->_M_destroy(__a); __throw_exception_again; } return 0; } template template _CharT* basic_string<_CharT, _Traits, _Alloc>:: _S_construct(_InIter __beg, _InIter __end, const _Alloc& __a, forward_iterator_tag) { size_type __dnew = static_cast(distance(__beg, __end)); if (__beg == __end && __a == _Alloc()) return _S_empty_rep()._M_refcopy(); // NB: Not required, but considered best practice. if (__builtin_expect(__beg == _InIter(), 0)) __throw_logic_error("attempt to create string with null pointer"); // Check for out_of_range and length_error exceptions. _Rep* __r = _Rep::_S_create(__dnew, __a); try { _S_copy_chars(__r->_M_refdata(), __beg, __end); } catch(...) { __r->_M_destroy(__a); __throw_exception_again; } __r->_M_length = __dnew; __r->_M_refdata()[__dnew] = _Rep::_S_terminal; // grrr. return __r->_M_refdata(); } template _CharT* basic_string<_CharT, _Traits, _Alloc>:: _S_construct(size_type __n, _CharT __c, const _Alloc& __a) { if (__n == 0 && __a == _Alloc()) return _S_empty_rep()._M_refcopy(); // Check for out_of_range and length_error exceptions. _Rep* __r = _Rep::_S_create(__n, __a); try { if (__n) traits_type::assign(__r->_M_refdata(), __n, __c); } catch(...) { __r->_M_destroy(__a); __throw_exception_again; } __r->_M_length = __n; __r->_M_refdata()[__n] = _Rep::_S_terminal; // grrr return __r->_M_refdata(); } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const basic_string& __str) : _M_dataplus(__str._M_rep()->_M_grab(_Alloc(), __str.get_allocator()), __str.get_allocator()) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const _Alloc& __a) : _M_dataplus(_S_construct(size_type(), _CharT(), __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const basic_string& __str, size_type __pos, size_type __n) : _M_dataplus(_S_construct(__str._M_check(__pos), __str._M_fold(__pos, __n), _Alloc()), _Alloc()) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const basic_string& __str, size_type __pos, size_type __n, const _Alloc& __a) : _M_dataplus(_S_construct(__str._M_check(__pos), __str._M_fold(__pos, __n), __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const _CharT* __s, size_type __n, const _Alloc& __a) : _M_dataplus(_S_construct(__s, __s + __n, __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const _CharT* __s, const _Alloc& __a) : _M_dataplus(_S_construct(__s, __s ? __s + traits_type::length(__s) : __s + npos, __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(size_type __n, _CharT __c, const _Alloc& __a) : _M_dataplus(_S_construct(__n, __c, __a), __a) { } template template basic_string<_CharT, _Traits, _Alloc>:: basic_string(_InputIter __beg, _InputIter __end, const _Alloc& __a) : _M_dataplus(_S_construct(__beg, __end, __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>::assign(const basic_string& __str) { if (_M_rep() != __str._M_rep()) { // XXX MT allocator_type __a = this->get_allocator(); _CharT* __tmp = __str._M_rep()->_M_grab(__a, __str.get_allocator()); _M_rep()->_M_dispose(__a); _M_data(__tmp); } return *this; } template void basic_string<_CharT, _Traits, _Alloc>::_Rep:: _M_destroy(const _Alloc& __a) throw () { size_type __size = sizeof(_Rep) + (_M_capacity + 1) * sizeof(_CharT); _Raw_bytes_alloc(__a).deallocate(reinterpret_cast(this), __size); } template void basic_string<_CharT, _Traits, _Alloc>::_M_leak_hard() { if (_M_rep()->_M_is_shared()) _M_mutate(0, 0, 0); _M_rep()->_M_set_leaked(); } // _M_mutate and, below, _M_clone, include, in the same form, an exponential // growth policy, necessary to meet amortized linear time requirements of // the library: see http://gcc.gnu.org/ml/libstdc++/2001-07/msg00085.html. // The policy is active for allocations requiring an amount of memory above // system pagesize. This is consistent with the requirements of the standard: // see, f.i., http://gcc.gnu.org/ml/libstdc++/2001-07/msg00130.html template void basic_string<_CharT, _Traits, _Alloc>:: _M_mutate(size_type __pos, size_type __len1, size_type __len2) { size_type __old_size = this->size(); const size_type __new_size = __old_size + __len2 - __len1; const _CharT* __src = _M_data() + __pos + __len1; const size_type __how_much = __old_size - __pos - __len1; if (_M_rep()->_M_is_shared() || __new_size > capacity()) { // Must reallocate. allocator_type __a = get_allocator(); // See below (_S_create) for the meaning and value of these // constants. const size_type __pagesize = 4096; const size_type __malloc_header_size = 4 * sizeof (void*); // The biggest string which fits in a memory page const size_type __page_capacity = (__pagesize - __malloc_header_size - sizeof(_Rep) - sizeof(_CharT)) / sizeof(_CharT); _Rep* __r; if (__new_size > capacity() && __new_size > __page_capacity) // Growing exponentially. __r = _Rep::_S_create(__new_size > 2*capacity() ? __new_size : 2*capacity(), __a); else __r = _Rep::_S_create(__new_size, __a); try { if (__pos) traits_type::copy(__r->_M_refdata(), _M_data(), __pos); if (__how_much) traits_type::copy(__r->_M_refdata() + __pos + __len2, __src, __how_much); } catch(...) { __r->_M_dispose(get_allocator()); __throw_exception_again; } _M_rep()->_M_dispose(__a); _M_data(__r->_M_refdata()); } else if (__how_much && __len1 != __len2) { // Work in-place traits_type::move(_M_data() + __pos + __len2, __src, __how_much); } _M_rep()->_M_set_sharable(); _M_rep()->_M_length = __new_size; _M_data()[__new_size] = _Rep::_S_terminal; // grrr. (per 21.3.4) // You cannot leave those LWG people alone for a second. } template void basic_string<_CharT, _Traits, _Alloc>::reserve(size_type __res) { if (__res > this->capacity() || _M_rep()->_M_is_shared()) { if (__res > this->max_size()) __throw_length_error("basic_string::reserve"); // Make sure we don't shrink below the current size if (__res < this->size()) __res = this->size(); allocator_type __a = get_allocator(); _CharT* __tmp = _M_rep()->_M_clone(__a, __res - this->size()); _M_rep()->_M_dispose(__a); _M_data(__tmp); } } template void basic_string<_CharT, _Traits, _Alloc>::swap(basic_string& __s) { if (_M_rep()->_M_is_leaked()) _M_rep()->_M_set_sharable(); if (__s._M_rep()->_M_is_leaked()) __s._M_rep()->_M_set_sharable(); if (this->get_allocator() == __s.get_allocator()) { _CharT* __tmp = _M_data(); _M_data(__s._M_data()); __s._M_data(__tmp); } // The code below can usually be optimized away. else { basic_string __tmp1(_M_ibegin(), _M_iend(), __s.get_allocator()); basic_string __tmp2(__s._M_ibegin(), __s._M_iend(), this->get_allocator()); *this = __tmp2; __s = __tmp1; } } template typename basic_string<_CharT, _Traits, _Alloc>::_Rep* basic_string<_CharT, _Traits, _Alloc>::_Rep:: _S_create(size_t __capacity, const _Alloc& __alloc) { typedef basic_string<_CharT, _Traits, _Alloc> __string_type; #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS // 83. String::npos vs. string::max_size() if (__capacity > _S_max_size) #else if (__capacity == npos) #endif __throw_length_error("basic_string::_S_create"); // NB: Need an array of char_type[__capacity], plus a // terminating null char_type() element, plus enough for the // _Rep data structure. Whew. Seemingly so needy, yet so elemental. size_t __size = (__capacity + 1) * sizeof(_CharT) + sizeof(_Rep); // The standard places no restriction on allocating more memory // than is strictly needed within this layer at the moment or as // requested by an explicit application call to reserve(). Many // malloc implementations perform quite poorly when an // application attempts to allocate memory in a stepwise fashion // growing each allocation size by only 1 char. Additionally, // it makes little sense to allocate less linear memory than the // natural blocking size of the malloc implementation. // Unfortunately, we would need a somewhat low-level calculation // with tuned parameters to get this perfect for any particular // malloc implementation. Fortunately, generalizations about // common features seen among implementations seems to suffice. // __pagesize need not match the actual VM page size for good // results in practice, thus we pick a common value on the low // side. __malloc_header_size is an estimate of the amount of // overhead per memory allocation (in practice seen N * sizeof // (void*) where N is 0, 2 or 4). According to folklore, // picking this value on the high side is better than // low-balling it (especially when this algorithm is used with // malloc implementations that allocate memory blocks rounded up // to a size which is a power of 2). const size_t __pagesize = 4096; // must be 2^i * __subpagesize const size_t __subpagesize = 128; // should be >> __malloc_header_size const size_t __malloc_header_size = 4 * sizeof (void*); if ((__size + __malloc_header_size) > __pagesize) { size_t __extra = (__pagesize - ((__size + __malloc_header_size) % __pagesize)) % __pagesize; __capacity += __extra / sizeof(_CharT); __size = (__capacity + 1) * sizeof(_CharT) + sizeof(_Rep); } else if (__size > __subpagesize) { size_t __extra = (__subpagesize - ((__size + __malloc_header_size) % __subpagesize)) % __subpagesize; __capacity += __extra / sizeof(_CharT); __size = (__capacity + 1) * sizeof(_CharT) + sizeof(_Rep); } // NB: Might throw, but no worries about a leak, mate: _Rep() // does not throw. void* __place = _Raw_bytes_alloc(__alloc).allocate(__size); _Rep *__p = new (__place) _Rep; __p->_M_capacity = __capacity; __p->_M_set_sharable(); // One reference. __p->_M_length = 0; return __p; } template _CharT* basic_string<_CharT, _Traits, _Alloc>::_Rep:: _M_clone(const _Alloc& __alloc, size_type __res) { // Requested capacity of the clone. const size_type __requested_cap = _M_length + __res; // See above (_S_create) for the meaning and value of these constants. const size_type __pagesize = 4096; const size_type __malloc_header_size = 4 * sizeof (void*); // The biggest string which fits in a memory page. const size_type __page_capacity = (__pagesize - __malloc_header_size - sizeof(_Rep) - sizeof(_CharT)) / sizeof(_CharT); _Rep* __r; if (__requested_cap > _M_capacity && __requested_cap > __page_capacity) // Growing exponentially. __r = _Rep::_S_create(__requested_cap > 2*_M_capacity ? __requested_cap : 2*_M_capacity, __alloc); else __r = _Rep::_S_create(__requested_cap, __alloc); if (_M_length) { try { traits_type::copy(__r->_M_refdata(), _M_refdata(), _M_length); } catch(...) { __r->_M_destroy(__alloc); __throw_exception_again; } } __r->_M_length = _M_length; return __r->_M_refdata(); } template void basic_string<_CharT, _Traits, _Alloc>::resize(size_type __n, _CharT __c) { if (__n > max_size()) __throw_length_error("basic_string::resize"); size_type __size = this->size(); if (__size < __n) this->append(__n - __size, __c); else if (__n < __size) this->erase(__n); // else nothing (in particular, avoid calling _M_mutate() unnecessarily.) } // This is the general replace helper, which currently gets instantiated both // for input iterators and reverse iterators. It buffers internally and then // calls _M_replace_safe. template template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: _M_replace(iterator __i1, iterator __i2, _InputIter __k1, _InputIter __k2, input_iterator_tag) { // Save concerned source string data in a temporary. basic_string __s(__k1, __k2); return _M_replace_safe(__i1, __i2, __s._M_ibegin(), __s._M_iend()); } // This is a special replace helper, which does not buffer internally // and can be used in "safe" situations involving forward iterators, // i.e., when source and destination ranges are known to not overlap. template template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: _M_replace_safe(iterator __i1, iterator __i2, _ForwardIter __k1, _ForwardIter __k2) { size_type __dnew = static_cast(distance(__k1, __k2)); size_type __dold = __i2 - __i1; size_type __dmax = this->max_size(); if (__dmax <= __dnew) __throw_length_error("basic_string::_M_replace"); size_type __off = __i1 - _M_ibegin(); _M_mutate(__off, __dold, __dnew); // Invalidated __i1, __i2 if (__dnew) _S_copy_chars(_M_data() + __off, __k1, __k2); return *this; } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: replace(size_type __pos1, size_type __n1, const basic_string& __str, size_type __pos2, size_type __n2) { const size_type __strsize = __str.size(); if (__pos2 > __strsize) __throw_out_of_range("basic_string::replace"); const bool __testn2 = __n2 < __strsize - __pos2; const size_type __foldn2 = __testn2 ? __n2 : __strsize - __pos2; return this->replace(__pos1, __n1, __str._M_data() + __pos2, __foldn2); } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(const basic_string& __str) { // Iff appending itself, string needs to pre-reserve the // correct size so that _M_mutate does not clobber the // iterators formed here. size_type __size = __str.size(); size_type __len = __size + this->size(); if (__len > this->capacity()) this->reserve(__len); return _M_replace_safe(_M_iend(), _M_iend(), __str._M_ibegin(), __str._M_iend()); } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(const basic_string& __str, size_type __pos, size_type __n) { // Iff appending itself, string needs to pre-reserve the // correct size so that _M_mutate does not clobber the // iterators formed here. size_type __len = min(__str.size() - __pos, __n) + this->size(); if (__len > this->capacity()) this->reserve(__len); return _M_replace_safe(_M_iend(), _M_iend(), __str._M_check(__pos), __str._M_fold(__pos, __n)); } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(const _CharT* __s, size_type __n) { size_type __len = __n + this->size(); if (__len > this->capacity()) this->reserve(__len); return _M_replace_safe(_M_iend(), _M_iend(), __s, __s + __n); } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(size_type __n, _CharT __c) { size_type __len = __n + this->size(); if (__len > this->capacity()) this->reserve(__len); return this->replace(_M_iend(), _M_iend(), __n, __c); } template basic_string<_CharT, _Traits, _Alloc> operator+(const _CharT* __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { typedef basic_string<_CharT, _Traits, _Alloc> __string_type; typedef typename __string_type::size_type __size_type; __size_type __len = _Traits::length(__lhs); __string_type __str; __str.reserve(__len + __rhs.size()); __str.append(__lhs, __lhs + __len); __str.append(__rhs); return __str; } template basic_string<_CharT, _Traits, _Alloc> operator+(_CharT __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { typedef basic_string<_CharT, _Traits, _Alloc> __string_type; typedef typename __string_type::size_type __size_type; __string_type __str; __size_type __len = __rhs.size(); __str.reserve(__len + 1); __str.append(__size_type(1), __lhs); __str.append(__rhs); return __str; } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: replace(iterator __i1, iterator __i2, size_type __n2, _CharT __c) { size_type __n1 = __i2 - __i1; size_type __off1 = __i1 - _M_ibegin(); if (max_size() - (this->size() - __n1) <= __n2) __throw_length_error("basic_string::replace"); _M_mutate (__off1, __n1, __n2); // Invalidated __i1, __i2 if (__n2) traits_type::assign(_M_data() + __off1, __n2, __c); return *this; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: copy(_CharT* __s, size_type __n, size_type __pos) const { if (__pos > this->size()) __throw_out_of_range("basic_string::copy"); if (__n > this->size() - __pos) __n = this->size() - __pos; traits_type::copy(__s, _M_data() + __pos, __n); // 21.3.5.7 par 3: do not append null. (good.) return __n; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find(const _CharT* __s, size_type __pos, size_type __n) const { size_type __size = this->size(); size_t __xpos = __pos; const _CharT* __data = _M_data(); for (; __xpos + __n <= __size; ++__xpos) if (traits_type::compare(__data + __xpos, __s, __n) == 0) return __xpos; return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find(_CharT __c, size_type __pos) const { size_type __size = this->size(); size_type __ret = npos; if (__pos < __size) { const _CharT* __data = _M_data(); size_type __n = __size - __pos; const _CharT* __p = traits_type::find(__data + __pos, __n, __c); if (__p) __ret = __p - __data; } return __ret; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: rfind(const _CharT* __s, size_type __pos, size_type __n) const { size_type __size = this->size(); if (__n <= __size) { __pos = std::min(__size - __n, __pos); const _CharT* __data = _M_data(); do { if (traits_type::compare(__data + __pos, __s, __n) == 0) return __pos; } while (__pos-- > 0); } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: rfind(_CharT __c, size_type __pos) const { size_type __size = this->size(); if (__size) { size_t __xpos = __size - 1; if (__xpos > __pos) __xpos = __pos; for (++__xpos; __xpos-- > 0; ) if (traits_type::eq(_M_data()[__xpos], __c)) return __xpos; } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_first_of(const _CharT* __s, size_type __pos, size_type __n) const { for (; __n && __pos < this->size(); ++__pos) { const _CharT* __p = traits_type::find(__s, __n, _M_data()[__pos]); if (__p) return __pos; } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_last_of(const _CharT* __s, size_type __pos, size_type __n) const { size_type __size = this->size(); if (__size && __n) { if (--__size > __pos) __size = __pos; do { if (traits_type::find(__s, __n, _M_data()[__size])) return __size; } while (__size-- != 0); } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_first_not_of(const _CharT* __s, size_type __pos, size_type __n) const { size_t __xpos = __pos; for (; __xpos < this->size(); ++__xpos) if (!traits_type::find(__s, __n, _M_data()[__xpos])) return __xpos; return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_first_not_of(_CharT __c, size_type __pos) const { size_t __xpos = __pos; for (; __xpos < this->size(); ++__xpos) if (!traits_type::eq(_M_data()[__xpos], __c)) return __xpos; return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_last_not_of(const _CharT* __s, size_type __pos, size_type __n) const { size_type __size = this->size(); if (__size) { if (--__size > __pos) __size = __pos; do { if (!traits_type::find(__s, __n, _M_data()[__size])) return __size; } while (__size--); } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_last_not_of(_CharT __c, size_type __pos) const { size_type __size = this->size(); if (__size) { if (--__size > __pos) __size = __pos; do { if (!traits_type::eq(_M_data()[__size], __c)) return __size; } while (__size--); } return npos; } template int basic_string<_CharT, _Traits, _Alloc>:: compare(size_type __pos, size_type __n, const basic_string& __str) const { size_type __size = this->size(); size_type __osize = __str.size(); if (__pos > __size) __throw_out_of_range("basic_string::compare"); size_type __rsize= min(__size - __pos, __n); size_type __len = min(__rsize, __osize); int __r = traits_type::compare(_M_data() + __pos, __str.data(), __len); if (!__r) __r = __rsize - __osize; return __r; } template int basic_string<_CharT, _Traits, _Alloc>:: compare(size_type __pos1, size_type __n1, const basic_string& __str, size_type __pos2, size_type __n2) const { size_type __size = this->size(); size_type __osize = __str.size(); if (__pos1 > __size || __pos2 > __osize) __throw_out_of_range("basic_string::compare"); size_type __rsize = min(__size - __pos1, __n1); size_type __rosize = min(__osize - __pos2, __n2); size_type __len = min(__rsize, __rosize); int __r = traits_type::compare(_M_data() + __pos1, __str.data() + __pos2, __len); if (!__r) __r = __rsize - __rosize; return __r; } template int basic_string<_CharT, _Traits, _Alloc>:: compare(const _CharT* __s) const { size_type __size = this->size(); size_type __osize = traits_type::length(__s); size_type __len = min(__size, __osize); int __r = traits_type::compare(_M_data(), __s, __len); if (!__r) __r = __size - __osize; return __r; } template int basic_string <_CharT, _Traits, _Alloc>:: compare(size_type __pos, size_type __n1, const _CharT* __s) const { size_type __size = this->size(); if (__pos > __size) __throw_out_of_range("basic_string::compare"); size_type __osize = traits_type::length(__s); size_type __rsize = min(__size - __pos, __n1); size_type __len = min(__rsize, __osize); int __r = traits_type::compare(_M_data() + __pos, __s, __len); if (!__r) __r = __rsize - __osize; return __r; } template int basic_string <_CharT, _Traits, _Alloc>:: compare(size_type __pos, size_type __n1, const _CharT* __s, size_type __n2) const { size_type __size = this->size(); if (__pos > __size) __throw_out_of_range("basic_string::compare"); size_type __osize = min(traits_type::length(__s), __n2); size_type __rsize = min(__size - __pos, __n1); size_type __len = min(__rsize, __osize); int __r = traits_type::compare(_M_data() + __pos, __s, __len); if (!__r) __r = __rsize - __osize; return __r; } template void _S_string_copy(const basic_string<_CharT, _Traits, _Alloc>& __str, _CharT* __buf, typename _Alloc::size_type __bufsiz) { typedef typename _Alloc::size_type size_type; size_type __strsize = __str.size(); size_type __bytes = min(__strsize, __bufsiz - 1); _Traits::copy(__buf, __str.data(), __bytes); __buf[__bytes] = _CharT(); } // Inhibit implicit instantiations for required instantiations, // which are defined via explicit instantiations elsewhere. // NB: This syntax is a GNU extension. extern template class basic_string; extern template basic_istream& operator>>(basic_istream&, string&); extern template basic_ostream& operator<<(basic_ostream&, const string&); extern template basic_istream& getline(basic_istream&, string&, char); extern template basic_istream& getline(basic_istream&, string&); #ifdef _GLIBCPP_USE_WCHAR_T extern template class basic_string; extern template basic_istream& operator>>(basic_istream&, wstring&); extern template basic_ostream& operator<<(basic_ostream&, const wstring&); extern template basic_istream& getline(basic_istream&, wstring&, wchar_t); extern template basic_istream& getline(basic_istream&, wstring&); #endif } // namespace std #endif