gcc/ada/
* exp_ch11.adb (Expand_N_Raise_Statement): Use Is_Entity_Name
consistently in tests on the name of the statement.
* exp_prag.adb (Expand_Pragma_Check): In the local propagation
case, wrap the raise statement in a block statement.
gcc/ada/
* exp_ch8.adb (Expand_N_Exception_Renaming_Declaration): Move
"Nam" constant after the body of a nested subprogram; change "T"
from variable to constant.
gcc/ada/
* doc/gnat_rm/implementation_defined_attributes.rst
(Has_Tagged_Values): Document based on the existing description
of Has_Access_Type and the comment for Has_Tagged_Component,
which is where frontend evaluates this attribute.
* gnat_rm.texi: Regenerate.
* sem_attr.adb (Analyze_Attribute): Merge processing of
Has_Access_Type and Has_Tagged_Component attributes.
* sem_util.adb (Has_Access_Type): Fix casing in comment.
* sem_util.ads (Has_Tagged_Component): Remove wrong (or
outdated) comment about the use of this routine to implement the
equality operator.
gcc/ada/
* sem_ch13.adb (Analyze_One_Aspect): Detect aspect identifiers
with membership tests.
(Check_Aspect_At_End_Of_Declarations): Likewise.
(Freeze_Entity_Checks): Likewise; a local constant is no longer
needed.
(Is_Operational_Item): Similar simplification for attribute
identifiers.
(Is_Type_Related_Rep_Item): Likewise.
(Resolve_Iterable_Operation): Detect names with a membership
test.
(Validate_Independence): Replace repeated Ekind with a
membership test.
gcc/ada/
* exp_ch2.adb (Expand_Entity_Reference): A new local predicate
Is_Object_Renaming_Name indicates whether a given expression
occurs (after looking through qualified expressions and type
conversions) as the name of an object renaming declaration. If
Current_Value is available but this new predicate is True, then
ignore the availability of Current_Value.
gcc/ada/
* doc/gnat_rm/intrinsic_subprograms.rst (Shifts and Rotates):
Document behavior on negative numbers
* gnat_rm.texi: Regenerate.
* sem_eval.adb (Fold_Shift): Set modulus to be based on the RM
size for non-modular integer types.
gcc/ada/
* exp_util.adb (Remove_Side_Effects): Only remove side-effects
in GNATprove mode when this is useful.
* sem_res.adb (Set_Slice_Subtype): Make sure in GNATprove mode
to define the Itype when needed, so that run-time errors can be
analyzed.
* sem_util.adb (Enclosing_Declaration): Correctly take into
account renaming declarations.
gcc/ada/
* libgnat/g-rannum.ads (Random): New functions returning 128-bit.
* libgnat/g-rannum.adb (Random): Implement them and alphabetize.
(To_Signed): New unchecked conversion function for 128-bit.
gcc/ada/
* exp_util.adb (Attribute_Constrained_Static_Value): Fix body
box.
* sem_attr.adb (Eval_Attribute): Replace repeated calls to
Attribute_Name with a captured value of the Attribute_Id; also,
remove extra parens around Is_Generic_Type.
gcc/ada/
* exp_attr.adb (Expand_N_Attribute_Reference): A variable that
is only incremented in the code has now type Nat; conversion is
now unnecessary.
A while back I submitted GCC10 commit:
44f77a6dea2f312ee1743f3dde465c1b8453ee13
for PR91816.
Turns out I was an idiot and forgot to include the test in the actual git commit.
Tested that the test still passes on a cross arm-none-eabi and also in a
Cortex A-15 bootstrap with no regressions.
gcc/testsuite/ChangeLog:
PR target/91816
* gcc.target/arm/pr91816.c: New test.
libstdc++-v3/ChangeLog:
PR libstdc++/97936
* include/bits/atomic_wait.h (__platform_wait): Check errno,
not just the value of EAGAIN.
(__waiters::__waiters()): Fix name of data member.
The __platform_wait function is supposed to wait until *addr != old.
The futex syscall checks the initial value and returns EAGAIN if *addr
!= old is already true, which should cause __platform_wait to return.
Instead it loops and keeps doing a futex wait, which keeps returning
EAGAIN.
libstdc++-v3/ChangeLog:
PR libstdc++/97936
* include/bits/atomic_wait.h (__platform_wait): Return if futex
sets EAGAIN.
* testsuite/30_threads/latch/3.cc: Re-enable test.
* testsuite/30_threads/semaphore/try_acquire_until.cc: Likewise.
As mentioned in the PR, we currently ICE on flexible array members in
structs and unions during __builtin_clear_padding processing.
Jason said in the PR he'd prefer an error in these cases over forcefully
handling it as [0] arrays (everything is padding then) or consider the
arrays to have as many whole elements as would fit into the tail padding.
So, this patch implements that.
2020-11-25 Jakub Jelinek <jakub@redhat.com>
PR middle-end/97943
* gimple-fold.c (clear_padding_union, clear_padding_type): Error on and
ignore flexible array member fields. Ignore fields with
error_mark_node type.
* c-c++-common/builtin-clear-padding-2.c: New test.
* c-c++-common/builtin-clear-padding-3.c: New test.
* g++.dg/ext/builtin-clear-padding-1.C: New test.
* gcc.dg/builtin-clear-padding-2.c: New test.
These tests are unstable and causing failures due to timeouts. Disable
them until the cause can be found, so that testing doesn't have to wait
for them to timeout.
libstdc++-v3/ChangeLog:
PR libstdc++/97936
PR libstdc++/97944
* testsuite/29_atomics/atomic_integral/wait_notify.cc: Disable.
Do not require pthreads, but add -pthread when appropriate.
* testsuite/30_threads/jthread/95989.cc: Likewise.
* testsuite/30_threads/latch/3.cc: Likewise.
* testsuite/30_threads/semaphore/try_acquire_until.cc: Likewise.
split_nonconstant_init_1 was confused by a CONSTRUCTOR with non-aggregate
type, which (with COMPOUND_LITERAL_P set) we use in a template to represent
a braced functional cast. It seems to me that there's no good reason to do
split_nonconstant_init at all in a template.
gcc/cp/ChangeLog:
PR c++/97899
* typeck2.c (store_init_value): Don't split_nonconstant_init in a
template.
gcc/testsuite/ChangeLog:
PR c++/97899
* g++.dg/cpp0x/initlist-template3.C: New test.
This reverts commit c4fa3728ab4f78984a549894e0e8c4d6a253e540,
which caused a regression in the default for flag_excess_precision.
2020-11-24 Ulrich Weigand <uweigand@de.ibm.com>
gcc/
PR tree-optimization/97970
* doc/invoke.texi (-ffast-math): Revert last change.
* opts.c: Revert last change.
gcc/
2020-11-24 Vladimir Makarov <vmakarov@redhat.com>
PR bootstrap/97933
* lra.c (lra_process_new_insns): Stop on the first real insn after
head of e->dest.
arm_split_atomic_op handles subtracting a constant by converting it
into addition of the negated constant. But if the type of the operand
is int and the constant is -1 we currently end up generating invalid
RTL which can lead to an abort later on.
The problem is that in a HOST_WIDE_INT, INT_MIN is represented as
0xffffffff80000000 and the negation of this is 0x0000000080000000, but
that's not a valid constant for use in SImode operations.
The fix is straight-forward which is to use gen_int_mode rather than
simply GEN_INT. This knows how to correctly sign-extend the negated
constant when this is needed.
gcc/
PR target/97534
* config/arm/arm.c (arm_split_atomic_op): Use gen_int_mode when
negating a const_int.
gcc/testsuite
* gcc.dg/pr97534.c: New test.
Deferred macros are needed for C++ modules. Header units may export
macro definitions and undefinitions. These are resolved lazily at the
point of (potential) use. (The language specifies that, it's not just
a useful optimization.) Thus, identifier nodes grow a 'deferred'
field, which fortunately doesn't expand the structure on 64-bit
systems as there was padding there. This is non-zero on NT_MACRO
nodes, if the macro is deferred. When such an identifier is lexed, it
is resolved via a callback that I added recently. That will either
provide the macro definition, or discover it there was an overriding
undef. Either way the identifier is no longer a deferred macro.
Notice it is now possible for NT_MACRO nodes to have a NULL macro
expansion.
libcpp/
* include/cpplib.h (struct cpp_hashnode): Add deferred field.
(cpp_set_deferred_macro): Define.
(cpp_get_deferred_macro): Declare.
(cpp_macro_definition): Reformat, add overload.
(cpp_macro_definition_location): Deal with deferred macro.
(cpp_alloc_token_string, cpp_compare_macro): Declare.
* internal.h (_cpp_notify_macro_use): Return bool
(_cpp_maybe_notify_macro_use): Likewise.
* directives.c (do_undef): Check macro is not undef before
warning.
(do_ifdef, do_ifndef): Deal with deferred macro.
* expr.c (parse_defined): Likewise.
* lex.c (cpp_allocate_token_string): Break out of ...
(create_literal): ... here. Call it.
(cpp_maybe_module_directive): Deal with deferred macro.
* macro.c (cpp_get_token_1): Deal with deferred macro.
(warn_of_redefinition): Deal with deferred macro.
(compare_macros): Rename to ...
(cpp_compare_macro): ... here. Make extern.
(cpp_get_deferred_macro): New.
(_cpp_notify_macro_use): Deal with deferred macro, return bool
indicating definedness.
(cpp_macro_definition): Deal with deferred macro.
Various aapcs64 tests were failing at -O1 and above because
the assignments to testfunc_ptr were being deleted as dead.
That in turn happened because FUNC_VAL_CHECK hid the tail call
to myfunc using an LR asm trick:
asm volatile ("mov %0, x30" : "=r" (saved_return_address));
asm volatile ("mov x30, %0" : : "r" ((unsigned long long) myfunc));
and so the compiler couldn't see any calls that might read
testfunc_ptr.
That in itself could be fixed by adding a memory clobber to the
second asm above, forcing the compiler to keep both the testfunc_ptr
and the saved_return_address assignments. But since this is an ABI
test, it seems better to make sure that we don't do any IPA at all.
The fact that doing IPA caused a problem was kind-of helpful and
so it might be better to avoid making the test “work” in the
presence of IPA.
The patch therefore just replaced “noinline” with “noipa”.
gcc/testsuite/
* gcc.target/aarch64/aapcs64/abitest.h (FUNC_VAL_CHECK): Use
noipa rather than noinline.
* gcc.target/aarch64/aapcs64/abitest-2.h (FUNC_VAL_CHECK): Likewise.
This turns a mysterious segfault into an exception with a more useful
message. If the exception isn't caught, the user sees this instead of
just a segfault:
terminate called after throwing an instance of 'std::system_error'
what(): Enable multithreading to use std:🧵 Operation not permitted
Aborted (core dumped)
libstdc++-v3/ChangeLog:
PR libstdc++/67791
* src/c++11/thread.cc (thread::_M_start_thread(_State_ptr, void (*)())):
Check that gthreads is available before calling __gthread_create.
Most initialization of locales and facets happens before main() during
startup, when the program is likely to only have one thread. By using
the new __gnu_cxx::__is_single_threaded() function instead of checking
__gthread_active_p() we can avoid using pthread_once or atomics for the
common case.
That said, I'm not sure why we don't just use a local static variable
instead, as __cxa_guard_acquire() already optimizes for the
single-threaded case:
static const bool init = (_S_initialize_once(), true);
I'll revisit that for GCC 12.
libstdc++-v3/ChangeLog:
* src/c++98/locale.cc (locale::facet::_S_get_c_locale())
(locale:🆔:_M_id() const): Use __is_single_threaded.
* src/c++98/locale_init.cc (locale::_S_initialize()):
Likewise.
Ensure the code will continue to compile when elf.h gets these definitions.
libgomp/ChangeLog:
* plugin/plugin-gcn.c: Don't redefine relocations if elf.h has them.
(reserved): Delete unused define.
Commit 5d9ade39b872 ("IBM Z: Fix PR97326: Enable fp compares in
vec_cmp") made it possible to create rtxes that describe signaling
comparisons on z13, which are not supported by the hardware. Restrict
this by using vcond_comparison_operator predicate.
gcc/ChangeLog:
2020-11-24 Ilya Leoshkevich <iii@linux.ibm.com>
* config/s390/vector.md: Use vcond_comparison_operator
predicate.
Commit 229752afe315 ("VEC_COND_EXPR optimizations") has improved code
generation: we no longer need "vx x,x,-1", which turned out to be
superfluous. Instead, we simply swap 0 and -1 arguments of the
preceding "vsel".
gcc/testsuite/ChangeLog:
2020-11-23 Ilya Leoshkevich <iii@linux.ibm.com>
* gcc.target/s390/zvector/autovec-double-quiet-uneq.c: Expect
that "vx" is not emitted.
* gcc.target/s390/zvector/autovec-float-quiet-uneq.c: Likewise.