re PR tree-optimization/19105 (fold does not spot anti-range test)

PR tree-optimization/19105
	PR tree-optimization/21643
	PR tree-optimization/46309
	* tree-ssa-reassoc.c (init_range_entry): Add STMT argument
	and use it if EXP is NULL.
	(update_range_test): Handle OPCODE equal to ERROR_MARK
	and oe->op NULL.
	(optimize_range_tests): Likewise.
	(final_range_test_p, suitable_cond_bb, no_side_effect_bb, get_ops,
	maybe_optimize_range_tests): New functions.
	(reassociate_bb): Call maybe_optimize_range_tests if last
	stmt of bb is GIMPLE_COND that hasn't been visited yet.

	* gcc.dg/pr19105.c: New test.
	* gcc.dg/pr21643.c: New test.
	* gcc.dg/pr46309-2.c: New test.
	* gcc.c-torture/execute/pr46309.c: New test.

From-SVN: r193028
This commit is contained in:
Jakub Jelinek 2012-10-31 09:45:27 +01:00 committed by Jakub Jelinek
parent c727fb67fb
commit d578e863b0
7 changed files with 942 additions and 30 deletions

View File

@ -1,3 +1,18 @@
2012-10-31 Jakub Jelinek <jakub@redhat.com>
PR tree-optimization/19105
PR tree-optimization/21643
PR tree-optimization/46309
* tree-ssa-reassoc.c (init_range_entry): Add STMT argument
and use it if EXP is NULL.
(update_range_test): Handle OPCODE equal to ERROR_MARK
and oe->op NULL.
(optimize_range_tests): Likewise.
(final_range_test_p, suitable_cond_bb, no_side_effect_bb, get_ops,
maybe_optimize_range_tests): New functions.
(reassociate_bb): Call maybe_optimize_range_tests if last
stmt of bb is GIMPLE_COND that hasn't been visited yet.
2012-10-31 Richard Sandiford <rdsandiford@googlemail.com>
* config/rs6000/rs6000.md (insvsi, insvdi, extvsi, extvdi): Rename to...

View File

@ -1,3 +1,13 @@
2012-10-31 Jakub Jelinek <jakub@redhat.com>
PR tree-optimization/19105
PR tree-optimization/21643
PR tree-optimization/46309
* gcc.dg/pr19105.c: New test.
* gcc.dg/pr21643.c: New test.
* gcc.dg/pr46309-2.c: New test.
* gcc.c-torture/execute/pr46309.c: New test.
2012-10-31 Alan Modra <amodra@gmail.com>
* gcc.target/powerpc/dimode_off.c: New.

View File

@ -0,0 +1,31 @@
/* PR tree-optimization/46309 */
extern void abort (void);
unsigned int *q;
__attribute__((noinline, noclone)) void
bar (unsigned int *p)
{
if (*p != 2 && *p != 3)
(!(!(*q & 263) || *p != 1)) ? abort () : 0;
}
int
main ()
{
unsigned int x, y;
asm volatile ("" : : : "memory");
x = 2;
bar (&x);
x = 3;
bar (&x);
y = 1;
x = 0;
q = &y;
bar (&x);
y = 0;
x = 1;
bar (&x);
return 0;
}

View File

@ -0,0 +1,22 @@
/* PR tree-optimization/19105 */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-reassoc1-details" } */
enum e
{
a, b, c, d, e, f, g, h
};
int range1 (enum e v, int x)
{
return x && v != c && v != d && v != e;
}
int range2 (enum e v, int x)
{
return x && (v != c && v != d && v != e);
}
/* { dg-final { scan-tree-dump-times "Optimizing range tests v_\[0-9\]*.D. -.2, 2. and -.3, 4.\[\n\r\]* into" 1 "reassoc1" } } */
/* { dg-final { cleanup-tree-dump "reassoc1" } } */

View File

@ -0,0 +1,90 @@
/* PR tree-optimization/21643 */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-reassoc1-details" } */
int
f1 (unsigned char c)
{
if (c == 0x22 || c == 0x20 || c < 0x20)
return 1;
return 0;
}
int
f2 (unsigned char c)
{
if (c == 0x22 || c <= 0x20)
return 1;
return 0;
}
int
f3 (unsigned char c)
{
if (c == 0x22)
return 1;
if (c == 0x20)
return 1;
if (c < 0x20)
return 1;
return 0;
}
int
f4 (unsigned char c)
{
if (c == 0x22 || c == 0x20 || c < 0x20)
return 2;
return 0;
}
int
f5 (unsigned char c)
{
if (c == 0x22 || c <= 0x20)
return 2;
return 0;
}
int
f6 (unsigned char c)
{
if (c == 0x22)
return 2;
if (c == 0x20)
return 2;
if (c < 0x20)
return 2;
return 0;
}
int
f7 (unsigned char c)
{
if (c != 0x22 && c != 0x20 && c >= 0x20)
return 0;
return 1;
}
int
f8 (unsigned char c)
{
if (c == 0x22 && c <= 0x20)
return 0;
return 1;
}
int
f9 (unsigned char c)
{
if (c == 0x22)
return 0;
if (c == 0x20)
return 0;
if (c < 0x20)
return 0;
return 1;
}
/* { dg-final { scan-tree-dump-times "Optimizing range tests c_\[0-9\]*.D. -.0, 31. and -.32, 32.\[\n\r\]* into" 6 "reassoc1" } } */
/* { dg-final { cleanup-tree-dump "reassoc1" } } */

View File

@ -0,0 +1,147 @@
/* PR tree-optimization/46309 */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-reassoc-details" } */
int foo (void);
void
f1 (int a)
{
_Bool v1 = (a == 3);
_Bool v2 = (a == 1);
_Bool v3 = (a == 4);
_Bool v4 = (a == 2);
if (v1 || v2 || v3 || v4)
foo ();
}
void
f2 (int a)
{
_Bool v1 = (a == 1);
_Bool v2 = (a == 2);
_Bool v3 = (a == 3);
_Bool v4 = (a == 4);
if (v1 || v2 || v3 || v4)
foo ();
}
void
f3 (unsigned int a)
{
_Bool v1 = (a <= 31);
_Bool v2 = (a >= 64 && a <= 95);
_Bool v3 = (a >= 128 && a <= 159);
_Bool v4 = (a >= 192 && a <= 223);
if (v1 || v2 || v3 || v4)
foo ();
}
void
f4 (int a)
{
_Bool v1 = (a == 3);
_Bool v2 = (a == 1);
_Bool v3 = (a == 4);
_Bool v4 = (a == 2);
_Bool v5 = (a == 7);
_Bool v6 = (a == 5);
_Bool v7 = (a == 8);
_Bool v8 = (a == 6);
if (v1 || v2 || v3 || v4 || v5 || v6 || v7 || v8)
foo ();
}
void
f5 (int a)
{
_Bool v1 = (a != 3);
_Bool v2 = (a != 1);
_Bool v3 = (a != 4);
_Bool v4 = (a != 2);
_Bool v5 = (a != 7);
_Bool v6 = (a != 5);
_Bool v7 = (a != 8);
_Bool v8 = (a != 6);
if (v1 && v2 && v3 && v4 && v5 && v6 && v7 && v8)
foo ();
}
void
f6 (int a)
{
_Bool v1 = (a != 3);
_Bool v2 = (a != 1);
_Bool v3 = (a != 4);
_Bool v4 = (a != 2);
_Bool v5 = (a != 7);
_Bool v6 = (a != 5);
_Bool v7 = (a != 8);
_Bool v8 = (a != 6);
if ((v1 && v2 && v3 && v4) && (v5 && v6 && v7 && v8))
foo ();
}
int
f7 (int a)
{
_Bool v1 = (a == 3);
_Bool v2 = (a == 1);
_Bool v3 = (a == 4);
_Bool v4 = (a == 2);
_Bool v5 = (a == 7);
_Bool v6 = (a == 5);
_Bool v7 = (a == 8);
_Bool v8 = (a == 6);
return v1 || v2 || v3 || v4 || v5 || v6 || v7 || v8;
}
_Bool
f8 (int a)
{
_Bool v1 = (a == 3);
_Bool v2 = (a == 1);
_Bool v3 = (a == 4);
_Bool v4 = (a == 2);
_Bool v5 = (a == 7);
_Bool v6 = (a == 5);
_Bool v7 = (a == 8);
_Bool v8 = (a == 6);
return v1 || v2 || v3 || v4 || v5 || v6 || v7 || v8;
}
int
f9 (int a)
{
_Bool v1 = (a != 3);
_Bool v2 = (a != 1);
_Bool v3 = (a != 4);
_Bool v4 = (a != 2);
_Bool v5 = (a != 7);
_Bool v6 = (a != 5);
_Bool v7 = (a != 8);
_Bool v8 = (a != 6);
return v1 && v2 && v3 && v4 && v5 && v6 && v7 && v8;
}
_Bool
f10 (int a)
{
_Bool v1 = (a != 3);
_Bool v2 = (a != 1);
_Bool v3 = (a != 4);
_Bool v4 = (a != 2);
_Bool v5 = (a != 7);
_Bool v6 = (a != 5);
_Bool v7 = (a != 8);
_Bool v8 = (a != 6);
return v1 && v2 && v3 && v4 && v5 && v6 && v7 && v8;
}
/* { dg-final { scan-tree-dump-times "Optimizing range tests a_\[0-9\]*.D. -.1, 1. and -.2, 2. and -.3, 3. and -.4, 4.\[\n\r\]* into" 2 "reassoc1" } } */
/* { dg-final { scan-tree-dump-times "Optimizing range tests a_\[0-9\]*.D. -.0, 31. and -.64, 95.\[\n\r\]* into" 1 "reassoc1" } } */
/* { dg-final { scan-tree-dump-times "Optimizing range tests a_\[0-9\]*.D. -.128, 159. and -.192, 223.\[\n\r\]* into" 1 "reassoc1" } } */
/* { dg-final { scan-tree-dump-times "Optimizing range tests a_\[0-9\]*.D. -.1, 1. and -.2, 2. and -.3, 3. and -.4, 4. and -.5, 5. and -.6, 6. and -.7, 7. and -.8, 8.\[\n\r\]* into" 7 "reassoc1" } } */
/* { dg-final { scan-tree-dump-times "Optimizing range tests \[^\r\n\]*_\[0-9\]* -.0, 31. and -.128, 159.\[\n\r\]* into" 1 "reassoc2" } } */
/* { dg-final { cleanup-tree-dump "reassoc1" } } */
/* { dg-final { cleanup-tree-dump "reassoc2" } } */

View File

@ -1,5 +1,5 @@
/* Reassociation for trees.
Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
Free Software Foundation, Inc.
Contributed by Daniel Berlin <dan@dberlin.org>
@ -1713,10 +1713,12 @@ struct range_entry
};
/* This is similar to make_range in fold-const.c, but on top of
GIMPLE instead of trees. */
GIMPLE instead of trees. If EXP is non-NULL, it should be
an SSA_NAME and STMT argument is ignored, otherwise STMT
argument should be a GIMPLE_COND. */
static void
init_range_entry (struct range_entry *r, tree exp)
init_range_entry (struct range_entry *r, tree exp, gimple stmt)
{
int in_p;
tree low, high;
@ -1727,7 +1729,8 @@ init_range_entry (struct range_entry *r, tree exp)
r->strict_overflow_p = false;
r->low = NULL_TREE;
r->high = NULL_TREE;
if (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp)))
if (exp != NULL_TREE
&& (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp))))
return;
/* Start with simply saying "EXP != 0" and then look at the code of EXP
@ -1735,12 +1738,14 @@ init_range_entry (struct range_entry *r, tree exp)
happen, but it doesn't seem worth worrying about this. We "continue"
the outer loop when we've changed something; otherwise we "break"
the switch, which will "break" the while. */
low = build_int_cst (TREE_TYPE (exp), 0);
low = exp ? build_int_cst (TREE_TYPE (exp), 0) : boolean_false_node;
high = low;
in_p = 0;
strict_overflow_p = false;
is_bool = false;
if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
if (exp == NULL_TREE)
is_bool = true;
else if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
{
if (TYPE_UNSIGNED (TREE_TYPE (exp)))
is_bool = true;
@ -1752,25 +1757,35 @@ init_range_entry (struct range_entry *r, tree exp)
while (1)
{
gimple stmt;
enum tree_code code;
tree arg0, arg1, exp_type;
tree nexp;
location_t loc;
if (TREE_CODE (exp) != SSA_NAME)
break;
if (exp != NULL_TREE)
{
if (TREE_CODE (exp) != SSA_NAME)
break;
stmt = SSA_NAME_DEF_STMT (exp);
if (!is_gimple_assign (stmt))
break;
stmt = SSA_NAME_DEF_STMT (exp);
if (!is_gimple_assign (stmt))
break;
code = gimple_assign_rhs_code (stmt);
arg0 = gimple_assign_rhs1 (stmt);
arg1 = gimple_assign_rhs2 (stmt);
exp_type = TREE_TYPE (exp);
}
else
{
code = gimple_cond_code (stmt);
arg0 = gimple_cond_lhs (stmt);
arg1 = gimple_cond_rhs (stmt);
exp_type = boolean_type_node;
}
code = gimple_assign_rhs_code (stmt);
arg0 = gimple_assign_rhs1 (stmt);
if (TREE_CODE (arg0) != SSA_NAME)
break;
arg1 = gimple_assign_rhs2 (stmt);
exp_type = TREE_TYPE (exp);
loc = gimple_location (stmt);
switch (code)
{
@ -1916,7 +1931,11 @@ range_entry_cmp (const void *a, const void *b)
[EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
OPCODE and OPS are arguments of optimize_range_tests. Return
true if the range merge has been successful. */
true if the range merge has been successful.
If OPCODE is ERROR_MARK, this is called from within
maybe_optimize_range_tests and is performing inter-bb range optimization.
Changes should be then performed right away, and whether an op is
BIT_AND_EXPR or BIT_IOR_EXPR is found in oe->rank. */
static bool
update_range_test (struct range_entry *range, struct range_entry *otherrange,
@ -1924,9 +1943,12 @@ update_range_test (struct range_entry *range, struct range_entry *otherrange,
VEC (operand_entry_t, heap) **ops, tree exp, bool in_p,
tree low, tree high, bool strict_overflow_p)
{
tree op = VEC_index (operand_entry_t, *ops, range->idx)->op;
location_t loc = gimple_location (SSA_NAME_DEF_STMT (op));
tree tem = build_range_check (loc, TREE_TYPE (op), exp, in_p, low, high);
operand_entry_t oe = VEC_index (oeprand_entry_t, *ops, range->idx);
tree op = oe->op;
gimple stmt = op ? SSA_NAME_DEF_STMT (op) : last_stmt (BASIC_BLOCK (oe->id));
location_t loc = gimple_location (stmt);
tree optype = op ? TREE_TYPE (op) : boolean_type_node;
tree tem = build_range_check (loc, optype, exp, in_p, low, high);
enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
gimple_stmt_iterator gsi;
@ -1961,15 +1983,45 @@ update_range_test (struct range_entry *range, struct range_entry *otherrange,
fprintf (dump_file, "\n");
}
if (opcode == BIT_IOR_EXPR)
if (opcode == BIT_IOR_EXPR
|| (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
tem = invert_truthvalue_loc (loc, tem);
tem = fold_convert_loc (loc, TREE_TYPE (op), tem);
gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (op));
tem = fold_convert_loc (loc, optype, tem);
gsi = gsi_for_stmt (stmt);
tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
GSI_SAME_STMT);
VEC_index (operand_entry_t, *ops, range->idx)->op = tem;
/* If doing inter-bb range test optimization, update the
stmts immediately. Start with changing the first range test
immediate use to the new value (TEM), or, if the first range
test is a GIMPLE_COND stmt, change that condition. */
if (opcode == ERROR_MARK)
{
if (op)
{
imm_use_iterator iter;
use_operand_p use_p;
gimple use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, op)
{
if (is_gimple_debug (use_stmt))
continue;
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, tem);
update_stmt (use_stmt);
}
}
else
{
gimple_cond_set_code (stmt, NE_EXPR);
gimple_cond_set_lhs (stmt, tem);
gimple_cond_set_rhs (stmt, boolean_false_node);
update_stmt (stmt);
}
}
oe->op = tem;
range->exp = exp;
range->low = low;
range->high = high;
@ -1978,7 +2030,84 @@ update_range_test (struct range_entry *range, struct range_entry *otherrange,
for (range = otherrange; range < otherrange + count; range++)
{
VEC_index (operand_entry_t, *ops, range->idx)->op = error_mark_node;
oe = VEC_index (oeprand_entry_t, *ops, range->idx);
/* Now change all the other range test immediate uses, so that
those tests will be optimized away. */
if (opcode == ERROR_MARK)
{
if (oe->op)
{
imm_use_iterator iter;
use_operand_p use_p;
gimple use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, oe->op)
{
if (is_gimple_debug (use_stmt))
continue;
/* If imm use of _8 is a statement like _7 = _8 | _9;,
adjust it into _7 = _9;. */
if (is_gimple_assign (use_stmt)
&& gimple_assign_rhs_code (use_stmt) == oe->rank)
{
tree expr = NULL_TREE;
if (oe->op == gimple_assign_rhs1 (use_stmt))
expr = gimple_assign_rhs2 (use_stmt);
else if (oe->op == gimple_assign_rhs2 (use_stmt))
expr = gimple_assign_rhs1 (use_stmt);
if (expr
&& expr != oe->op
&& TREE_CODE (expr) == SSA_NAME)
{
gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
gimple_assign_set_rhs_with_ops (&gsi2, SSA_NAME,
expr, NULL_TREE);
update_stmt (use_stmt);
continue;
}
}
/* If imm use of _8 is a statement like _7 = (int) _8;,
adjust it into _7 = 0; or _7 = 1;. */
if (gimple_assign_cast_p (use_stmt)
&& oe->op == gimple_assign_rhs1 (use_stmt))
{
tree lhs = gimple_assign_lhs (use_stmt);
if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
{
gimple_stmt_iterator gsi2
= gsi_for_stmt (use_stmt);
tree expr = build_int_cst (TREE_TYPE (lhs),
oe->rank == BIT_IOR_EXPR
? 0 : 1);
gimple_assign_set_rhs_with_ops (&gsi2,
INTEGER_CST,
expr, NULL_TREE);
update_stmt (use_stmt);
continue;
}
}
/* Otherwise replace the use with 0 or 1. */
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p,
build_int_cst (TREE_TYPE (oe->op),
oe->rank == BIT_IOR_EXPR
? 0 : 1));
update_stmt (use_stmt);
}
}
else
{
/* If range test was a GIMPLE_COND, simply change it
into an always false or always true condition. */
stmt = last_stmt (BASIC_BLOCK (oe->id));
if (oe->rank == BIT_IOR_EXPR)
gimple_cond_make_false (stmt);
else
gimple_cond_make_true (stmt);
update_stmt (stmt);
}
}
oe->op = error_mark_node;
range->exp = NULL_TREE;
}
return true;
@ -1986,7 +2115,12 @@ update_range_test (struct range_entry *range, struct range_entry *otherrange,
/* Optimize range tests, similarly how fold_range_test optimizes
it on trees. The tree code for the binary
operation between all the operands is OPCODE. */
operation between all the operands is OPCODE.
If OPCODE is ERROR_MARK, optimize_range_tests is called from within
maybe_optimize_range_tests for inter-bb range optimization.
In that case if oe->op is NULL, oe->id is bb->index whose
GIMPLE_COND is && or ||ed into the test, and oe->rank says
the actual opcode. */
static void
optimize_range_tests (enum tree_code opcode,
@ -2003,11 +2137,14 @@ optimize_range_tests (enum tree_code opcode,
ranges = XNEWVEC (struct range_entry, length);
for (i = 0; i < length; i++)
{
oe = VEC_index (operand_entry_t, *ops, i);
ranges[i].idx = i;
init_range_entry (ranges + i, VEC_index (operand_entry_t, *ops, i)->op);
init_range_entry (ranges + i, oe->op,
oe->op ? NULL : last_stmt (BASIC_BLOCK (oe->id)));
/* For | invert it now, we will invert it again before emitting
the optimized expression. */
if (opcode == BIT_IOR_EXPR)
if (opcode == BIT_IOR_EXPR
|| (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
ranges[i].in_p = !ranges[i].in_p;
}
@ -2124,7 +2261,7 @@ optimize_range_tests (enum tree_code opcode,
}
}
if (any_changes)
if (any_changes && opcode != ERROR_MARK)
{
j = 0;
FOR_EACH_VEC_ELT (operand_entry_t, *ops, i, oe)
@ -2141,6 +2278,462 @@ optimize_range_tests (enum tree_code opcode,
XDELETEVEC (ranges);
}
/* Return true if STMT is a cast like:
<bb N>:
...
_123 = (int) _234;
<bb M>:
# _345 = PHI <_123(N), 1(...), 1(...)>
where _234 has bool type, _123 has single use and
bb N has a single successor M. This is commonly used in
the last block of a range test. */
static bool
final_range_test_p (gimple stmt)
{
basic_block bb, rhs_bb;
edge e;
tree lhs, rhs;
use_operand_p use_p;
gimple use_stmt;
if (!gimple_assign_cast_p (stmt))
return false;
bb = gimple_bb (stmt);
if (!single_succ_p (bb))
return false;
e = single_succ_edge (bb);
if (e->flags & EDGE_COMPLEX)
return false;
lhs = gimple_assign_lhs (stmt);
rhs = gimple_assign_rhs1 (stmt);
if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| TREE_CODE (rhs) != SSA_NAME
|| TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE)
return false;
/* Test whether lhs is consumed only by a PHI in the only successor bb. */
if (!single_imm_use (lhs, &use_p, &use_stmt))
return false;
if (gimple_code (use_stmt) != GIMPLE_PHI
|| gimple_bb (use_stmt) != e->dest)
return false;
/* And that the rhs is defined in the same loop. */
rhs_bb = gimple_bb (SSA_NAME_DEF_STMT (rhs));
if (rhs_bb == NULL
|| !flow_bb_inside_loop_p (loop_containing_stmt (stmt), rhs_bb))
return false;
return true;
}
/* Return true if BB is suitable basic block for inter-bb range test
optimization. If BACKWARD is true, BB should be the only predecessor
of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
or compared with to find a common basic block to which all conditions
branch to if true resp. false. If BACKWARD is false, TEST_BB should
be the only predecessor of BB. */
static bool
suitable_cond_bb (basic_block bb, basic_block test_bb, basic_block *other_bb,
bool backward)
{
edge_iterator ei, ei2;
edge e, e2;
gimple stmt;
gimple_stmt_iterator gsi;
bool other_edge_seen = false;
bool is_cond;
if (test_bb == bb)
return false;
/* Check last stmt first. */
stmt = last_stmt (bb);
if (stmt == NULL
|| (gimple_code (stmt) != GIMPLE_COND
&& (backward || !final_range_test_p (stmt)))
|| gimple_visited_p (stmt)
|| stmt_could_throw_p (stmt)
|| *other_bb == bb)
return false;
is_cond = gimple_code (stmt) == GIMPLE_COND;
if (is_cond)
{
/* If last stmt is GIMPLE_COND, verify that one of the succ edges
goes to the next bb (if BACKWARD, it is TEST_BB), and the other
to *OTHER_BB (if not set yet, try to find it out). */
if (EDGE_COUNT (bb->succs) != 2)
return false;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
return false;
if (e->dest == test_bb)
{
if (backward)
continue;
else
return false;
}
if (e->dest == bb)
return false;
if (*other_bb == NULL)
{
FOR_EACH_EDGE (e2, ei2, test_bb->succs)
if (!(e2->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
return false;
else if (e->dest == e2->dest)
*other_bb = e->dest;
if (*other_bb == NULL)
return false;
}
if (e->dest == *other_bb)
other_edge_seen = true;
else if (backward)
return false;
}
if (*other_bb == NULL || !other_edge_seen)
return false;
}
else if (single_succ (bb) != *other_bb)
return false;
/* Now check all PHIs of *OTHER_BB. */
e = find_edge (bb, *other_bb);
e2 = find_edge (test_bb, *other_bb);
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
/* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
corresponding to BB and TEST_BB predecessor must be the same. */
if (!operand_equal_p (gimple_phi_arg_def (phi, e->dest_idx),
gimple_phi_arg_def (phi, e2->dest_idx), 0))
{
/* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
one of the PHIs should have the lhs of the last stmt in
that block as PHI arg and that PHI should have 0 or 1
corresponding to it in all other range test basic blocks
considered. */
if (!is_cond)
{
if (gimple_phi_arg_def (phi, e->dest_idx)
== gimple_assign_lhs (stmt)
&& (integer_zerop (gimple_phi_arg_def (phi, e2->dest_idx))
|| integer_onep (gimple_phi_arg_def (phi,
e2->dest_idx))))
continue;
}
else
{
gimple test_last = last_stmt (test_bb);
if (gimple_code (test_last) != GIMPLE_COND
&& gimple_phi_arg_def (phi, e2->dest_idx)
== gimple_assign_lhs (test_last)
&& (integer_zerop (gimple_phi_arg_def (phi, e->dest_idx))
|| integer_onep (gimple_phi_arg_def (phi, e->dest_idx))))
continue;
}
return false;
}
}
return true;
}
/* Return true if BB doesn't have side-effects that would disallow
range test optimization, all SSA_NAMEs set in the bb are consumed
in the bb and there are no PHIs. */
static bool
no_side_effect_bb (basic_block bb)
{
gimple_stmt_iterator gsi;
gimple last;
if (!gimple_seq_empty_p (phi_nodes (bb)))
return false;
last = last_stmt (bb);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
tree lhs;
imm_use_iterator imm_iter;
use_operand_p use_p;
if (is_gimple_debug (stmt))
continue;
if (gimple_has_side_effects (stmt))
return false;
if (stmt == last)
return true;
if (!is_gimple_assign (stmt))
return false;
lhs = gimple_assign_lhs (stmt);
if (TREE_CODE (lhs) != SSA_NAME)
return false;
if (gimple_assign_rhs_could_trap_p (stmt))
return false;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
gimple use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (gimple_bb (use_stmt) != bb)
return false;
}
}
return false;
}
/* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
return true and fill in *OPS recursively. */
static bool
get_ops (tree var, enum tree_code code, VEC(operand_entry_t, heap) **ops,
struct loop *loop)
{
gimple stmt = SSA_NAME_DEF_STMT (var);
tree rhs[2];
int i;
if (!is_reassociable_op (stmt, code, loop))
return false;
rhs[0] = gimple_assign_rhs1 (stmt);
rhs[1] = gimple_assign_rhs2 (stmt);
gimple_set_visited (stmt, true);
for (i = 0; i < 2; i++)
if (TREE_CODE (rhs[i]) == SSA_NAME
&& !get_ops (rhs[i], code, ops, loop)
&& has_single_use (rhs[i]))
{
operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
oe->op = rhs[i];
oe->rank = code;
oe->id = 0;
oe->count = 1;
VEC_safe_push (operand_entry_t, heap, *ops, oe);
}
return true;
}
/* Inter-bb range test optimization. */
static void
maybe_optimize_range_tests (gimple stmt)
{
basic_block first_bb = gimple_bb (stmt);
basic_block last_bb = first_bb;
basic_block other_bb = NULL;
basic_block bb;
edge_iterator ei;
edge e;
VEC(operand_entry_t, heap) *ops = NULL;
/* Consider only basic blocks that end with GIMPLE_COND or
a cast statement satisfying final_range_test_p. All
but the last bb in the first_bb .. last_bb range
should end with GIMPLE_COND. */
if (gimple_code (stmt) == GIMPLE_COND)
{
if (EDGE_COUNT (first_bb->succs) != 2)
return;
}
else if (final_range_test_p (stmt))
other_bb = single_succ (first_bb);
else
return;
if (stmt_could_throw_p (stmt))
return;
/* As relative ordering of post-dominator sons isn't fixed,
maybe_optimize_range_tests can be called first on any
bb in the range we want to optimize. So, start searching
backwards, if first_bb can be set to a predecessor. */
while (single_pred_p (first_bb))
{
basic_block pred_bb = single_pred (first_bb);
if (!suitable_cond_bb (pred_bb, first_bb, &other_bb, true))
break;
if (!no_side_effect_bb (first_bb))
break;
first_bb = pred_bb;
}
/* If first_bb is last_bb, other_bb hasn't been computed yet.
Before starting forward search in last_bb successors, find
out the other_bb. */
if (first_bb == last_bb)
{
other_bb = NULL;
/* As non-GIMPLE_COND last stmt always terminates the range,
if forward search didn't discover anything, just give up. */
if (gimple_code (stmt) != GIMPLE_COND)
return;
/* Look at both successors. Either it ends with a GIMPLE_COND
and satisfies suitable_cond_bb, or ends with a cast and
other_bb is that cast's successor. */
FOR_EACH_EDGE (e, ei, first_bb->succs)
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
|| e->dest == first_bb)
return;
else if (single_pred_p (e->dest))
{
stmt = last_stmt (e->dest);
if (stmt
&& gimple_code (stmt) == GIMPLE_COND
&& EDGE_COUNT (e->dest->succs) == 2)
{
if (suitable_cond_bb (first_bb, e->dest, &other_bb, true))
break;
else
other_bb = NULL;
}
else if (stmt
&& final_range_test_p (stmt)
&& find_edge (first_bb, single_succ (e->dest)))
{
other_bb = single_succ (e->dest);
if (other_bb == first_bb)
other_bb = NULL;
}
}
if (other_bb == NULL)
return;
}
/* Now do the forward search, moving last_bb to successor bbs
that aren't other_bb. */
while (EDGE_COUNT (last_bb->succs) == 2)
{
FOR_EACH_EDGE (e, ei, last_bb->succs)
if (e->dest != other_bb)
break;
if (e == NULL)
break;
if (!single_pred_p (e->dest))
break;
if (!suitable_cond_bb (e->dest, last_bb, &other_bb, false))
break;
if (!no_side_effect_bb (e->dest))
break;
last_bb = e->dest;
}
if (first_bb == last_bb)
return;
/* Here basic blocks first_bb through last_bb's predecessor
end with GIMPLE_COND, all of them have one of the edges to
other_bb and another to another block in the range,
all blocks except first_bb don't have side-effects and
last_bb ends with either GIMPLE_COND, or cast satisfying
final_range_test_p. */
for (bb = last_bb; ; bb = single_pred (bb))
{
enum tree_code code;
tree lhs, rhs;
e = find_edge (bb, other_bb);
stmt = last_stmt (bb);
gimple_set_visited (stmt, true);
if (gimple_code (stmt) != GIMPLE_COND)
{
use_operand_p use_p;
gimple phi;
edge e2;
unsigned int d;
lhs = gimple_assign_lhs (stmt);
rhs = gimple_assign_rhs1 (stmt);
gcc_assert (bb == last_bb);
/* stmt is
_123 = (int) _234;
followed by:
<bb M>:
# _345 = PHI <_123(N), 1(...), 1(...)>
or 0 instead of 1. If it is 0, the _234
range test is anded together with all the
other range tests, if it is 1, it is ored with
them. */
single_imm_use (lhs, &use_p, &phi);
gcc_assert (gimple_code (phi) == GIMPLE_PHI);
e2 = find_edge (first_bb, other_bb);
d = e2->dest_idx;
gcc_assert (gimple_phi_arg_def (phi, e->dest_idx) == lhs);
if (integer_zerop (gimple_phi_arg_def (phi, d)))
code = BIT_AND_EXPR;
else
{
gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi, d)));
code = BIT_IOR_EXPR;
}
/* If _234 SSA_NAME_DEF_STMT is
_234 = _567 | _789;
(or &, corresponding to 1/0 in the phi arguments,
push into ops the individual range test arguments
of the bitwise or resp. and, recursively. */
if (!get_ops (rhs, code, &ops,
loop_containing_stmt (stmt))
&& has_single_use (rhs))
{
/* Otherwise, push the _234 range test itself. */
operand_entry_t oe
= (operand_entry_t) pool_alloc (operand_entry_pool);
oe->op = rhs;
oe->rank = code;
oe->id = 0;
oe->count = 1;
VEC_safe_push (operand_entry_t, heap, ops, oe);
}
continue;
}
/* Otherwise stmt is GIMPLE_COND. */
code = gimple_cond_code (stmt);
lhs = gimple_cond_lhs (stmt);
rhs = gimple_cond_rhs (stmt);
if (TREE_CODE (lhs) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (lhs))
&& ((code != EQ_EXPR && code != NE_EXPR)
|| rhs != boolean_false_node
/* Either push into ops the individual bitwise
or resp. and operands, depending on which
edge is other_bb. */
|| !get_ops (lhs, (((e->flags & EDGE_TRUE_VALUE) == 0)
^ (code == EQ_EXPR))
? BIT_AND_EXPR : BIT_IOR_EXPR, &ops,
loop_containing_stmt (stmt))))
{
/* Or push the GIMPLE_COND stmt itself. */
operand_entry_t oe
= (operand_entry_t) pool_alloc (operand_entry_pool);
oe->op = NULL;
oe->rank = (e->flags & EDGE_TRUE_VALUE)
? BIT_IOR_EXPR : BIT_AND_EXPR;
/* oe->op = NULL signs that there is no SSA_NAME
for the range test, and oe->id instead is the
basic block number, at which's end the GIMPLE_COND
is. */
oe->id = bb->index;
oe->count = 1;
VEC_safe_push (operand_entry_t, heap, ops, oe);
}
if (bb == first_bb)
break;
}
if (VEC_length (operand_entry_t, ops) > 1)
optimize_range_tests (ERROR_MARK, &ops);
VEC_free (operand_entry_t, heap, ops);
}
/* Return true if OPERAND is defined by a PHI node which uses the LHS
of STMT in it's operands. This is also known as a "destructive
update" operation. */
@ -3427,10 +4020,14 @@ reassociate_bb (basic_block bb)
{
gimple_stmt_iterator gsi;
basic_block son;
gimple stmt = last_stmt (bb);
if (stmt && !gimple_visited_p (stmt))
maybe_optimize_range_tests (stmt);
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple stmt = gsi_stmt (gsi);
stmt = gsi_stmt (gsi);
if (is_gimple_assign (stmt)
&& !stmt_could_throw_p (stmt))