Makefile.in (ipa.o, [...]): New files.

* Makefile.in (ipa.o, ipa-inline.o): New files.
	* cgraph.h (cgraph_remove_unreachable_nodes, cgraph_postorder,
	cgraph_decide_inlining_incrementally, cgraph_clone_inlined_nodes,
	cgraph_mark_inline_edge, cgraph_default_inline_p): Declare.
	* cgraphunit.c (cgraph_default_inline_p, cgraph_decide_inlining_incrementally,
	ncalls_inlined, nfunctions_inlined, initial_insns, overall_insns,
	cgraph_estimate_size_after_inlining, cgraph_estimate_growth,
	cgraph_clone_inlined_nodes, cgraph_mark_inline_edge,
	cgraph_mark_inline, cgraph_check_inline_limits,
	cgraph_default_inline_p, cgraph_recursive_inlining_p,
	update_callee_keys, lookup_recursive_calls,
	cgraph_decide_recursive_inlining, cgraph_set_inline_failed,
	cgraph_decide_inlining_of_small_functions, cgraph_decide_inlining,
	cgraph_decide_inlining_incrementally, cgraph_gate_inlining,
	pass_ipa_inline): Move to ipa-inline.c
	(cgraph_postorder, cgraph_remove_unreachable_nodes): Move to ipa.c
	* ipa.c: New file.
	* ipa-inline.c: New file.

From-SVN: r98548
This commit is contained in:
Jan Hubicka 2005-04-22 10:16:54 +02:00 committed by Jan Hubicka
parent 6e32e5b97a
commit ca31b95fa3
7 changed files with 982 additions and 842 deletions

View File

@ -1,3 +1,24 @@
2005-04-22 Jan Hubicka <jh@suse.cz>
* Makefile.in (ipa.o, ipa-inline.o): New files.
* cgraph.h (cgraph_remove_unreachable_nodes, cgraph_postorder,
cgraph_decide_inlining_incrementally, cgraph_clone_inlined_nodes,
cgraph_mark_inline_edge, cgraph_default_inline_p): Declare.
* cgraphunit.c (cgraph_default_inline_p, cgraph_decide_inlining_incrementally,
ncalls_inlined, nfunctions_inlined, initial_insns, overall_insns,
cgraph_estimate_size_after_inlining, cgraph_estimate_growth,
cgraph_clone_inlined_nodes, cgraph_mark_inline_edge,
cgraph_mark_inline, cgraph_check_inline_limits,
cgraph_default_inline_p, cgraph_recursive_inlining_p,
update_callee_keys, lookup_recursive_calls,
cgraph_decide_recursive_inlining, cgraph_set_inline_failed,
cgraph_decide_inlining_of_small_functions, cgraph_decide_inlining,
cgraph_decide_inlining_incrementally, cgraph_gate_inlining,
pass_ipa_inline): Move to ipa-inline.c
(cgraph_postorder, cgraph_remove_unreachable_nodes): Move to ipa.c
* ipa.c: New file.
* ipa-inline.c: New file.
2005-04-22 Eric Botcazou <ebotcazou@libertysurf.fr>
* doc/invoke.texi (SPARC options): Document that -mapp-regs

View File

@ -963,7 +963,7 @@ OBJS-common = \
OBJS-md = $(out_object_file)
OBJS-archive = $(EXTRA_OBJS) $(host_hook_obj) tree-inline.o \
cgraph.o cgraphunit.o tree-nomudflap.o
cgraph.o cgraphunit.o tree-nomudflap.o ipa.o ipa-inline.o
OBJS = $(OBJS-common) $(out_object_file) $(OBJS-archive)
@ -1976,6 +1976,10 @@ cgraph.o : cgraph.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H) \
cgraphunit.o : cgraphunit.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H) \
langhooks.h tree-inline.h toplev.h $(FLAGS_H) $(GGC_H) $(TARGET_H) $(CGRAPH_H) intl.h \
pointer-set.h function.h $(TREE_GIMPLE_H) $(TREE_FLOW_H) tree-pass.h
ipa.o : ipa.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(CGRAPH_H)
ipa-inline.o : ipa-inline.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H) \
langhooks.h tree-inline.h $(FLAGS_H) $(CGRAPH_H) intl.h $(TREE_FLOW_H) \
$(COVERAGE_H)
coverage.o : coverage.c gcov-io.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
$(TM_H) $(RTL_H) $(TREE_H) $(FLAGS_H) output.h $(REGS_H) $(EXPR_H) function.h \
toplev.h $(GGC_H) $(TARGET_H) langhooks.h $(COVERAGE_H) libfuncs.h \

View File

@ -226,4 +226,13 @@ void cgraph_build_static_cdtor (char which, tree body, int priority);
void cgraph_reset_static_var_maps (void);
void init_cgraph (void);
/* In ipa.c */
bool cgraph_remove_unreachable_nodes (bool, FILE *);
int cgraph_postorder (struct cgraph_node **);
/* In ipa-inline.c */
void cgraph_decide_inlining_incrementally (struct cgraph_node *);
void cgraph_clone_inlined_nodes (struct cgraph_edge *, bool);
void cgraph_mark_inline_edge (struct cgraph_edge *);
bool cgraph_default_inline_p (struct cgraph_node *);
#endif /* GCC_CGRAPH_H */

View File

@ -197,15 +197,7 @@ static void cgraph_mark_functions_to_output (void);
static void cgraph_expand_function (struct cgraph_node *);
static tree record_call_1 (tree *, int *, void *);
static void cgraph_mark_local_functions (void);
static bool cgraph_default_inline_p (struct cgraph_node *n);
static void cgraph_analyze_function (struct cgraph_node *node);
static void cgraph_decide_inlining_incrementally (struct cgraph_node *);
/* Statistics we collect about inlining algorithm. */
static int ncalls_inlined;
static int nfunctions_inlined;
static int initial_insns;
static int overall_insns;
/* Records tree nodes seen in cgraph_create_edges. Simply using
walk_tree_without_duplicates doesn't guarantee each node is visited
@ -947,813 +939,6 @@ cgraph_expand_function (struct cgraph_node *node)
}
}
/* Fill array order with all nodes with output flag set in the reverse
topological order. */
static int
cgraph_postorder (struct cgraph_node **order)
{
struct cgraph_node *node, *node2;
int stack_size = 0;
int order_pos = 0;
struct cgraph_edge *edge, last;
struct cgraph_node **stack =
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
/* We have to deal with cycles nicely, so use a depth first traversal
output algorithm. Ignore the fact that some functions won't need
to be output and put them into order as well, so we get dependencies
right through intline functions. */
for (node = cgraph_nodes; node; node = node->next)
node->aux = NULL;
for (node = cgraph_nodes; node; node = node->next)
if (!node->aux)
{
node2 = node;
if (!node->callers)
node->aux = &last;
else
node->aux = node->callers;
while (node2)
{
while (node2->aux != &last)
{
edge = node2->aux;
if (edge->next_caller)
node2->aux = edge->next_caller;
else
node2->aux = &last;
if (!edge->caller->aux)
{
if (!edge->caller->callers)
edge->caller->aux = &last;
else
edge->caller->aux = edge->caller->callers;
stack[stack_size++] = node2;
node2 = edge->caller;
break;
}
}
if (node2->aux == &last)
{
order[order_pos++] = node2;
if (stack_size)
node2 = stack[--stack_size];
else
node2 = NULL;
}
}
}
free (stack);
return order_pos;
}
/* Perform reachability analysis and reclaim all unreachable nodes.
This function also remove unneeded bodies of extern inline functions
and thus needs to be done only after inlining decisions has been made. */
static bool
cgraph_remove_unreachable_nodes (void)
{
struct cgraph_node *first = (void *) 1;
struct cgraph_node *node;
bool changed = false;
int insns = 0;
#ifdef ENABLE_CHECKING
verify_cgraph ();
#endif
if (cgraph_dump_file)
fprintf (cgraph_dump_file, "\nReclaiming functions:");
#ifdef ENABLE_CHECKING
for (node = cgraph_nodes; node; node = node->next)
gcc_assert (!node->aux);
#endif
for (node = cgraph_nodes; node; node = node->next)
if (node->needed && !node->global.inlined_to
&& (!DECL_EXTERNAL (node->decl) || !node->analyzed))
{
node->aux = first;
first = node;
}
else
gcc_assert (!node->aux);
/* Perform reachability analysis. As a special case do not consider
extern inline functions not inlined as live because we won't output
them at all. */
while (first != (void *) 1)
{
struct cgraph_edge *e;
node = first;
first = first->aux;
for (e = node->callees; e; e = e->next_callee)
if (!e->callee->aux
&& node->analyzed
&& (!e->inline_failed || !e->callee->analyzed
|| !DECL_EXTERNAL (e->callee->decl)))
{
e->callee->aux = first;
first = e->callee;
}
}
/* Remove unreachable nodes. Extern inline functions need special care;
Unreachable extern inline functions shall be removed.
Reachable extern inline functions we never inlined shall get their bodies
eliminated.
Reachable extern inline functions we sometimes inlined will be turned into
unanalyzed nodes so they look like for true extern functions to the rest
of code. Body of such functions is released via remove_node once the
inline clones are eliminated. */
for (node = cgraph_nodes; node; node = node->next)
{
if (!node->aux)
{
int local_insns;
tree decl = node->decl;
node->global.inlined_to = NULL;
if (DECL_STRUCT_FUNCTION (decl))
local_insns = node->local.self_insns;
else
local_insns = 0;
if (cgraph_dump_file)
fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
if (!node->analyzed || !DECL_EXTERNAL (node->decl))
cgraph_remove_node (node);
else
{
struct cgraph_edge *e;
for (e = node->callers; e; e = e->next_caller)
if (e->caller->aux)
break;
if (e || node->needed)
{
struct cgraph_node *clone;
for (clone = node->next_clone; clone;
clone = clone->next_clone)
if (clone->aux)
break;
if (!clone)
{
DECL_SAVED_TREE (node->decl) = NULL;
DECL_STRUCT_FUNCTION (node->decl) = NULL;
DECL_INITIAL (node->decl) = error_mark_node;
}
cgraph_node_remove_callees (node);
node->analyzed = false;
}
else
cgraph_remove_node (node);
}
if (!DECL_SAVED_TREE (decl))
insns += local_insns;
changed = true;
}
}
for (node = cgraph_nodes; node; node = node->next)
node->aux = NULL;
if (cgraph_dump_file)
fprintf (cgraph_dump_file, "\nReclaimed %i insns", insns);
return changed;
}
/* Estimate size of the function after inlining WHAT into TO. */
static int
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
struct cgraph_node *what)
{
tree fndecl = what->decl;
tree arg;
int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST);
for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
call_insns += estimate_move_cost (TREE_TYPE (arg));
return (what->global.insns - call_insns) * times + to->global.insns;
}
/* Estimate the growth caused by inlining NODE into all callees. */
static int
cgraph_estimate_growth (struct cgraph_node *node)
{
int growth = 0;
struct cgraph_edge *e;
for (e = node->callers; e; e = e->next_caller)
if (e->inline_failed)
growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
- e->caller->global.insns);
/* ??? Wrong for self recursive functions or cases where we decide to not
inline for different reasons, but it is not big deal as in that case
we will keep the body around, but we will also avoid some inlining. */
if (!node->needed && !DECL_EXTERNAL (node->decl))
growth -= node->global.insns;
return growth;
}
/* E is expected to be an edge being inlined. Clone destination node of
the edge and redirect it to the new clone.
DUPLICATE is used for bookkeeping on whether we are actually creating new
clones or re-using node originally representing out-of-line function call.
*/
void
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate)
{
struct cgraph_node *n;
/* We may eliminate the need for out-of-line copy to be output. In that
case just go ahead and re-use it. */
if (!e->callee->callers->next_caller
&& (!e->callee->needed || DECL_EXTERNAL (e->callee->decl))
&& duplicate
&& flag_unit_at_a_time)
{
gcc_assert (!e->callee->global.inlined_to);
if (!DECL_EXTERNAL (e->callee->decl))
overall_insns -= e->callee->global.insns, nfunctions_inlined++;
duplicate = 0;
}
else if (duplicate)
{
n = cgraph_clone_node (e->callee);
cgraph_redirect_edge_callee (e, n);
}
if (e->caller->global.inlined_to)
e->callee->global.inlined_to = e->caller->global.inlined_to;
else
e->callee->global.inlined_to = e->caller;
/* Recursively clone all bodies. */
for (e = e->callee->callees; e; e = e->next_callee)
if (!e->inline_failed)
cgraph_clone_inlined_nodes (e, duplicate);
}
/* Mark edge E as inlined and update callgraph accordingly. */
void
cgraph_mark_inline_edge (struct cgraph_edge *e)
{
int old_insns = 0, new_insns = 0;
struct cgraph_node *to = NULL, *what;
gcc_assert (e->inline_failed);
e->inline_failed = NULL;
if (!e->callee->global.inlined && flag_unit_at_a_time)
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
e->callee->global.inlined = true;
cgraph_clone_inlined_nodes (e, true);
what = e->callee;
/* Now update size of caller and all functions caller is inlined into. */
for (;e && !e->inline_failed; e = e->caller->callers)
{
old_insns = e->caller->global.insns;
new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
what);
gcc_assert (new_insns >= 0);
to = e->caller;
to->global.insns = new_insns;
}
gcc_assert (what->global.inlined_to == to);
if (new_insns > old_insns)
overall_insns += new_insns - old_insns;
ncalls_inlined++;
}
/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
Return following unredirected edge in the list of callers
of EDGE->CALLEE */
static struct cgraph_edge *
cgraph_mark_inline (struct cgraph_edge *edge)
{
struct cgraph_node *to = edge->caller;
struct cgraph_node *what = edge->callee;
struct cgraph_edge *e, *next;
int times = 0;
/* Look for all calls, mark them inline and clone recursively
all inlined functions. */
for (e = what->callers; e; e = next)
{
next = e->next_caller;
if (e->caller == to && e->inline_failed)
{
cgraph_mark_inline_edge (e);
if (e == edge)
edge = next;
times++;
}
}
gcc_assert (times);
return edge;
}
/* Return false when inlining WHAT into TO is not good idea
as it would cause too large growth of function bodies. */
static bool
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
const char **reason)
{
int times = 0;
struct cgraph_edge *e;
int newsize;
int limit;
if (to->global.inlined_to)
to = to->global.inlined_to;
for (e = to->callees; e; e = e->next_callee)
if (e->callee == what)
times++;
/* When inlining large function body called once into small function,
take the inlined function as base for limiting the growth. */
if (to->local.self_insns > what->local.self_insns)
limit = to->local.self_insns;
else
limit = what->local.self_insns;
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
newsize = cgraph_estimate_size_after_inlining (times, to, what);
if (newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
&& newsize > limit)
{
if (reason)
*reason = N_("--param large-function-growth limit reached");
return false;
}
return true;
}
/* Return true when function N is small enough to be inlined. */
static bool
cgraph_default_inline_p (struct cgraph_node *n)
{
if (!DECL_INLINE (n->decl) || !DECL_SAVED_TREE (n->decl))
return false;
if (DECL_DECLARED_INLINE_P (n->decl))
return n->global.insns < MAX_INLINE_INSNS_SINGLE;
else
return n->global.insns < MAX_INLINE_INSNS_AUTO;
}
/* Return true when inlining WHAT would create recursive inlining.
We call recursive inlining all cases where same function appears more than
once in the single recursion nest path in the inline graph. */
static bool
cgraph_recursive_inlining_p (struct cgraph_node *to,
struct cgraph_node *what,
const char **reason)
{
bool recursive;
if (to->global.inlined_to)
recursive = what->decl == to->global.inlined_to->decl;
else
recursive = what->decl == to->decl;
/* Marking recursive function inline has sane semantic and thus we should
not warn on it. */
if (recursive && reason)
*reason = (what->local.disregard_inline_limits
? N_("recursive inlining") : "");
return recursive;
}
/* Recompute heap nodes for each of callees. */
static void
update_callee_keys (fibheap_t heap, struct fibnode **heap_node,
struct cgraph_node *node)
{
struct cgraph_edge *e;
for (e = node->callees; e; e = e->next_callee)
if (e->inline_failed && heap_node[e->callee->uid])
fibheap_replace_key (heap, heap_node[e->callee->uid],
cgraph_estimate_growth (e->callee));
else if (!e->inline_failed)
update_callee_keys (heap, heap_node, e->callee);
}
/* Enqueue all recursive calls from NODE into queue linked via aux pointers
in between FIRST and LAST. WHERE is used for bookkeeping while looking
int calls inlined within NODE. */
static void
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
struct cgraph_edge **first, struct cgraph_edge **last)
{
struct cgraph_edge *e;
for (e = where->callees; e; e = e->next_callee)
if (e->callee == node)
{
if (!*first)
*first = e;
else
(*last)->aux = e;
*last = e;
}
for (e = where->callees; e; e = e->next_callee)
if (!e->inline_failed)
lookup_recursive_calls (node, e->callee, first, last);
}
/* Decide on recursive inlining: in the case function has recursive calls,
inline until body size reaches given argument. */
static void
cgraph_decide_recursive_inlining (struct cgraph_node *node)
{
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
struct cgraph_edge *first_call = NULL, *last_call = NULL;
struct cgraph_edge *last_in_current_depth;
struct cgraph_edge *e;
struct cgraph_node *master_clone;
int depth = 0;
int n = 0;
if (DECL_DECLARED_INLINE_P (node->decl))
{
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
}
/* Make sure that function is small enough to be considered for inlining. */
if (!max_depth
|| cgraph_estimate_size_after_inlining (1, node, node) >= limit)
return;
lookup_recursive_calls (node, node, &first_call, &last_call);
if (!first_call)
return;
if (dump_file)
fprintf (dump_file,
"\nPerforming recursive inlining on %s\n",
cgraph_node_name (node));
/* We need original clone to copy around. */
master_clone = cgraph_clone_node (node);
master_clone->needed = true;
for (e = master_clone->callees; e; e = e->next_callee)
if (!e->inline_failed)
cgraph_clone_inlined_nodes (e, true);
/* Do the inlining and update list of recursive call during process. */
last_in_current_depth = last_call;
while (first_call
&& cgraph_estimate_size_after_inlining (1, node, master_clone) <= limit)
{
struct cgraph_edge *curr = first_call;
first_call = first_call->aux;
curr->aux = NULL;
cgraph_redirect_edge_callee (curr, master_clone);
cgraph_mark_inline_edge (curr);
lookup_recursive_calls (node, curr->callee, &first_call, &last_call);
if (last_in_current_depth
&& ++depth >= max_depth)
break;
n++;
}
/* Cleanup queue pointers. */
while (first_call)
{
struct cgraph_edge *next = first_call->aux;
first_call->aux = NULL;
first_call = next;
}
if (dump_file)
fprintf (dump_file,
"\n Inlined %i times, body grown from %i to %i insns\n", n,
master_clone->global.insns, node->global.insns);
/* Remove master clone we used for inlining. We rely that clones inlined
into master clone gets queued just before master clone so we don't
need recursion. */
for (node = cgraph_nodes; node != master_clone;
node = node->next)
if (node->global.inlined_to == master_clone)
cgraph_remove_node (node);
cgraph_remove_node (master_clone);
}
/* Set inline_failed for all callers of given function to REASON. */
static void
cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
{
struct cgraph_edge *e;
if (dump_file)
fprintf (dump_file, "Inlining failed: %s\n", reason);
for (e = node->callers; e; e = e->next_caller)
if (e->inline_failed)
e->inline_failed = reason;
}
/* We use greedy algorithm for inlining of small functions:
All inline candidates are put into prioritized heap based on estimated
growth of the overall number of instructions and then update the estimates.
INLINED and INLINED_CALEES are just pointers to arrays large enough
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
static void
cgraph_decide_inlining_of_small_functions (void)
{
struct cgraph_node *node;
fibheap_t heap = fibheap_new ();
struct fibnode **heap_node =
xcalloc (cgraph_max_uid, sizeof (struct fibnode *));
int max_insns = ((HOST_WIDEST_INT) initial_insns
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
/* Put all inline candidates into the heap. */
for (node = cgraph_nodes; node; node = node->next)
{
if (!node->local.inlinable || !node->callers
|| node->local.disregard_inline_limits)
continue;
if (!cgraph_default_inline_p (node))
{
cgraph_set_inline_failed (node,
N_("--param max-inline-insns-single limit reached"));
continue;
}
heap_node[node->uid] =
fibheap_insert (heap, cgraph_estimate_growth (node), node);
}
if (dump_file)
fprintf (dump_file, "\nDeciding on smaller functions:\n");
while (overall_insns <= max_insns && (node = fibheap_extract_min (heap)))
{
struct cgraph_edge *e, *next;
int old_insns = overall_insns;
heap_node[node->uid] = NULL;
if (dump_file)
fprintf (dump_file,
"\nConsidering %s with %i insns\n"
" Estimated growth is %+i insns.\n",
cgraph_node_name (node), node->global.insns,
cgraph_estimate_growth (node));
if (!cgraph_default_inline_p (node))
{
cgraph_set_inline_failed (node,
N_("--param max-inline-insns-single limit reached after inlining into the callee"));
continue;
}
for (e = node->callers; e; e = next)
{
next = e->next_caller;
if (e->inline_failed)
{
struct cgraph_node *where;
if (cgraph_recursive_inlining_p (e->caller, e->callee,
&e->inline_failed)
|| !cgraph_check_inline_limits (e->caller, e->callee,
&e->inline_failed))
{
if (dump_file)
fprintf (dump_file, " Not inlining into %s:%s.\n",
cgraph_node_name (e->caller), e->inline_failed);
continue;
}
next = cgraph_mark_inline (e);
where = e->caller;
if (where->global.inlined_to)
where = where->global.inlined_to;
if (heap_node[where->uid])
fibheap_replace_key (heap, heap_node[where->uid],
cgraph_estimate_growth (where));
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i insns.\n",
cgraph_node_name (e->caller),
e->caller->global.insns);
}
}
cgraph_decide_recursive_inlining (node);
/* Similarly all functions called by the function we just inlined
are now called more times; update keys. */
update_callee_keys (heap, heap_node, node);
if (dump_file)
fprintf (dump_file,
" Inlined for a net change of %+i insns.\n",
overall_insns - old_insns);
}
while ((node = fibheap_extract_min (heap)) != NULL)
if (!node->local.disregard_inline_limits)
cgraph_set_inline_failed (node, N_("--param inline-unit-growth limit reached"));
fibheap_delete (heap);
free (heap_node);
}
/* Decide on the inlining. We do so in the topological order to avoid
expenses on updating data structures. */
static void
cgraph_decide_inlining (void)
{
struct cgraph_node *node;
int nnodes;
struct cgraph_node **order =
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
int old_insns = 0;
int i;
for (node = cgraph_nodes; node; node = node->next)
initial_insns += node->local.self_insns;
overall_insns = initial_insns;
nnodes = cgraph_postorder (order);
if (dump_file)
fprintf (dump_file,
"\nDeciding on inlining. Starting with %i insns.\n",
initial_insns);
for (node = cgraph_nodes; node; node = node->next)
node->aux = 0;
if (dump_file)
fprintf (dump_file, "\nInlining always_inline functions:\n");
/* In the first pass mark all always_inline edges. Do this with a priority
so none of our later choices will make this impossible. */
for (i = nnodes - 1; i >= 0; i--)
{
struct cgraph_edge *e, *next;
node = order[i];
if (!node->local.disregard_inline_limits)
continue;
if (dump_file)
fprintf (dump_file,
"\nConsidering %s %i insns (always inline)\n",
cgraph_node_name (node), node->global.insns);
old_insns = overall_insns;
for (e = node->callers; e; e = next)
{
next = e->next_caller;
if (!e->inline_failed)
continue;
if (cgraph_recursive_inlining_p (e->caller, e->callee,
&e->inline_failed))
continue;
cgraph_mark_inline_edge (e);
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i insns.\n",
cgraph_node_name (e->caller),
e->caller->global.insns);
}
if (dump_file)
fprintf (dump_file,
" Inlined for a net change of %+i insns.\n",
overall_insns - old_insns);
}
if (!flag_really_no_inline)
{
cgraph_decide_inlining_of_small_functions ();
if (dump_file)
fprintf (dump_file, "\nDeciding on functions called once:\n");
/* And finally decide what functions are called once. */
for (i = nnodes - 1; i >= 0; i--)
{
node = order[i];
if (node->callers && !node->callers->next_caller && !node->needed
&& node->local.inlinable && node->callers->inline_failed
&& !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
{
bool ok = true;
struct cgraph_node *node1;
/* Verify that we won't duplicate the caller. */
for (node1 = node->callers->caller;
node1->callers && !node1->callers->inline_failed
&& ok; node1 = node1->callers->caller)
if (node1->callers->next_caller || node1->needed)
ok = false;
if (ok)
{
if (dump_file)
fprintf (dump_file,
"\nConsidering %s %i insns.\n"
" Called once from %s %i insns.\n",
cgraph_node_name (node), node->global.insns,
cgraph_node_name (node->callers->caller),
node->callers->caller->global.insns);
old_insns = overall_insns;
if (cgraph_check_inline_limits (node->callers->caller, node,
NULL))
{
cgraph_mark_inline (node->callers);
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i insns"
" for a net change of %+i insns.\n",
cgraph_node_name (node->callers->caller),
node->callers->caller->global.insns,
overall_insns - old_insns);
}
else
{
if (dump_file)
fprintf (dump_file,
" Inline limit reached, not inlined.\n");
}
}
}
}
}
/* We will never output extern functions we didn't inline.
??? Perhaps we can prevent accounting of growth of external
inline functions. */
cgraph_remove_unreachable_nodes ();
if (dump_file)
fprintf (dump_file,
"\nInlined %i calls, eliminated %i functions, "
"%i insns turned to %i insns.\n\n",
ncalls_inlined, nfunctions_inlined, initial_insns,
overall_insns);
free (order);
}
/* Decide on the inlining. We do so in the topological order to avoid
expenses on updating data structures. */
static void
cgraph_decide_inlining_incrementally (struct cgraph_node *node)
{
struct cgraph_edge *e;
/* First of all look for always inline functions. */
for (e = node->callees; e; e = e->next_callee)
if (e->callee->local.disregard_inline_limits
&& e->inline_failed
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
/* ??? It is possible that renaming variable removed the function body
in duplicate_decls. See gcc.c-torture/compile/20011119-2.c */
&& DECL_SAVED_TREE (e->callee->decl))
cgraph_mark_inline (e);
/* Now do the automatic inlining. */
if (!flag_really_no_inline)
for (e = node->callees; e; e = e->next_callee)
if (e->callee->local.inlinable
&& e->inline_failed
&& !e->callee->local.disregard_inline_limits
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
&& cgraph_check_inline_limits (node, e->callee, &e->inline_failed)
&& DECL_SAVED_TREE (e->callee->decl))
{
if (cgraph_default_inline_p (e->callee))
cgraph_mark_inline (e);
else
e->inline_failed
= N_("--param max-inline-insns-single limit reached");
}
}
/* Return true when CALLER_DECL should be inlined into CALLEE_DECL. */
bool
@ -2014,27 +1199,3 @@ init_cgraph (void)
{
cgraph_dump_file = dump_begin (TDI_cgraph, NULL);
}
/* When inlining shall be performed. */
static bool
cgraph_gate_inlining (void)
{
return flag_inline_trees;
}
struct tree_opt_pass pass_ipa_inline =
{
"inline", /* name */
cgraph_gate_inlining, /* gate */
cgraph_decide_inlining, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_INTEGRATION, /* tv_id */
0, /* properties_required */
PROP_trees, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};

View File

@ -177,14 +177,12 @@ struct eh_region GTY(())
/* Retain the cleanup expression even after expansion so that
we can match up fixup regions. */
struct eh_region_u_cleanup {
tree exp;
struct eh_region *prev_try;
} GTY ((tag ("ERT_CLEANUP"))) cleanup;
/* The real region (by expression and by pointer) that fixup code
should live in. */
struct eh_region_u_fixup {
tree cleanup_exp;
struct eh_region *real_region;
bool resolved;
} GTY ((tag ("ERT_FIXUP"))) fixup;

740
gcc/ipa-inline.c Normal file
View File

@ -0,0 +1,740 @@
/* Inlining decision heuristics.
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
Contributed by Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Inlining decision heuristics
We separate inlining decisions from the inliner itself and store it
inside callgraph as so called inline plan. Refer to cgraph.c
documentation about particular representation of inline plans in the
callgraph.
There are three major parts of this file:
cgraph_mark_inline implementation
This function allow to mark given call inline and performs neccesary
modifications of cgraph (production of the clones and updating overall
statistics)
inlining heuristics limits
These functions allow to check that particular inlining is allowed
by the limits specified by user (allowed function growth, overall unit
growth and so on).
inlining heuristics
This is implementation of IPA pass aiming to get as much of benefit
from inlining obeying the limits checked above.
The implementation of particular heuristics is separated from
the rest of code to make it easier to replace it with more complicated
implementation in the future. The rest of inlining code acts as a
library aimed to modify the callgraph and verify that the parameters
on code size growth fits.
To mark given call inline, use cgraph_mark_inline function, the
verification is performed by cgraph_default_inline_p and
cgraph_check_inline_limits.
The heuristics implements simple knapsack style algorithm ordering
all functions by their "profitability" (estimated by code size growth)
and inlining them in priority order.
cgraph_decide_inlining implements heuristics taking whole callgraph
into account, while cgraph_decide_inlining_incrementally considers
only one function at a time and is used in non-unit-at-a-time mode. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "tree-inline.h"
#include "langhooks.h"
#include "flags.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "timevar.h"
#include "params.h"
#include "fibheap.h"
#include "intl.h"
#include "tree-pass.h"
/* Statistics we collect about inlining algorithm. */
static int ncalls_inlined;
static int nfunctions_inlined;
static int initial_insns;
static int overall_insns;
/* Estimate size of the function after inlining WHAT into TO. */
static int
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
struct cgraph_node *what)
{
tree fndecl = what->decl;
tree arg;
int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST);
for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
call_insns += estimate_move_cost (TREE_TYPE (arg));
return (what->global.insns - call_insns) * times + to->global.insns;
}
/* E is expected to be an edge being inlined. Clone destination node of
the edge and redirect it to the new clone.
DUPLICATE is used for bookkeeping on whether we are actually creating new
clones or re-using node originally representing out-of-line function call.
*/
void
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate)
{
struct cgraph_node *n;
/* We may eliminate the need for out-of-line copy to be output. In that
case just go ahead and re-use it. */
if (!e->callee->callers->next_caller
&& (!e->callee->needed || DECL_EXTERNAL (e->callee->decl))
&& duplicate
&& flag_unit_at_a_time)
{
gcc_assert (!e->callee->global.inlined_to);
if (!DECL_EXTERNAL (e->callee->decl))
overall_insns -= e->callee->global.insns, nfunctions_inlined++;
duplicate = 0;
}
else if (duplicate)
{
n = cgraph_clone_node (e->callee);
cgraph_redirect_edge_callee (e, n);
}
if (e->caller->global.inlined_to)
e->callee->global.inlined_to = e->caller->global.inlined_to;
else
e->callee->global.inlined_to = e->caller;
/* Recursively clone all bodies. */
for (e = e->callee->callees; e; e = e->next_callee)
if (!e->inline_failed)
cgraph_clone_inlined_nodes (e, duplicate);
}
/* Mark edge E as inlined and update callgraph accordingly. */
void
cgraph_mark_inline_edge (struct cgraph_edge *e)
{
int old_insns = 0, new_insns = 0;
struct cgraph_node *to = NULL, *what;
gcc_assert (e->inline_failed);
e->inline_failed = NULL;
if (!e->callee->global.inlined && flag_unit_at_a_time)
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
e->callee->global.inlined = true;
cgraph_clone_inlined_nodes (e, true);
what = e->callee;
/* Now update size of caller and all functions caller is inlined into. */
for (;e && !e->inline_failed; e = e->caller->callers)
{
old_insns = e->caller->global.insns;
new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
what);
gcc_assert (new_insns >= 0);
to = e->caller;
to->global.insns = new_insns;
}
gcc_assert (what->global.inlined_to == to);
if (new_insns > old_insns)
overall_insns += new_insns - old_insns;
ncalls_inlined++;
}
/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
Return following unredirected edge in the list of callers
of EDGE->CALLEE */
static struct cgraph_edge *
cgraph_mark_inline (struct cgraph_edge *edge)
{
struct cgraph_node *to = edge->caller;
struct cgraph_node *what = edge->callee;
struct cgraph_edge *e, *next;
int times = 0;
/* Look for all calls, mark them inline and clone recursively
all inlined functions. */
for (e = what->callers; e; e = next)
{
next = e->next_caller;
if (e->caller == to && e->inline_failed)
{
cgraph_mark_inline_edge (e);
if (e == edge)
edge = next;
times++;
}
}
gcc_assert (times);
return edge;
}
/* Estimate the growth caused by inlining NODE into all callees. */
static int
cgraph_estimate_growth (struct cgraph_node *node)
{
int growth = 0;
struct cgraph_edge *e;
for (e = node->callers; e; e = e->next_caller)
if (e->inline_failed)
growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
- e->caller->global.insns);
/* ??? Wrong for self recursive functions or cases where we decide to not
inline for different reasons, but it is not big deal as in that case
we will keep the body around, but we will also avoid some inlining. */
if (!node->needed && !DECL_EXTERNAL (node->decl))
growth -= node->global.insns;
return growth;
}
/* Return false when inlining WHAT into TO is not good idea
as it would cause too large growth of function bodies. */
static bool
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
const char **reason)
{
int times = 0;
struct cgraph_edge *e;
int newsize;
int limit;
if (to->global.inlined_to)
to = to->global.inlined_to;
for (e = to->callees; e; e = e->next_callee)
if (e->callee == what)
times++;
/* When inlining large function body called once into small function,
take the inlined function as base for limiting the growth. */
if (to->local.self_insns > what->local.self_insns)
limit = to->local.self_insns;
else
limit = what->local.self_insns;
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
newsize = cgraph_estimate_size_after_inlining (times, to, what);
if (newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
&& newsize > limit)
{
if (reason)
*reason = N_("--param large-function-growth limit reached");
return false;
}
return true;
}
/* Return true when function N is small enough to be inlined. */
bool
cgraph_default_inline_p (struct cgraph_node *n)
{
if (!DECL_INLINE (n->decl) || !DECL_SAVED_TREE (n->decl))
return false;
if (DECL_DECLARED_INLINE_P (n->decl))
return n->global.insns < MAX_INLINE_INSNS_SINGLE;
else
return n->global.insns < MAX_INLINE_INSNS_AUTO;
}
/* Return true when inlining WHAT would create recursive inlining.
We call recursive inlining all cases where same function appears more than
once in the single recursion nest path in the inline graph. */
static bool
cgraph_recursive_inlining_p (struct cgraph_node *to,
struct cgraph_node *what,
const char **reason)
{
bool recursive;
if (to->global.inlined_to)
recursive = what->decl == to->global.inlined_to->decl;
else
recursive = what->decl == to->decl;
/* Marking recursive function inline has sane semantic and thus we should
not warn on it. */
if (recursive && reason)
*reason = (what->local.disregard_inline_limits
? N_("recursive inlining") : "");
return recursive;
}
/* Recompute heap nodes for each of callees. */
static void
update_callee_keys (fibheap_t heap, struct fibnode **heap_node,
struct cgraph_node *node)
{
struct cgraph_edge *e;
for (e = node->callees; e; e = e->next_callee)
if (e->inline_failed && heap_node[e->callee->uid])
fibheap_replace_key (heap, heap_node[e->callee->uid],
cgraph_estimate_growth (e->callee));
else if (!e->inline_failed)
update_callee_keys (heap, heap_node, e->callee);
}
/* Enqueue all recursive calls from NODE into queue linked via aux pointers
in between FIRST and LAST. WHERE is used for bookkeeping while looking
int calls inlined within NODE. */
static void
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
struct cgraph_edge **first, struct cgraph_edge **last)
{
struct cgraph_edge *e;
for (e = where->callees; e; e = e->next_callee)
if (e->callee == node)
{
if (!*first)
*first = e;
else
(*last)->aux = e;
*last = e;
}
for (e = where->callees; e; e = e->next_callee)
if (!e->inline_failed)
lookup_recursive_calls (node, e->callee, first, last);
}
/* Decide on recursive inlining: in the case function has recursive calls,
inline until body size reaches given argument. */
static void
cgraph_decide_recursive_inlining (struct cgraph_node *node)
{
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
struct cgraph_edge *first_call = NULL, *last_call = NULL;
struct cgraph_edge *last_in_current_depth;
struct cgraph_edge *e;
struct cgraph_node *master_clone;
int depth = 0;
int n = 0;
if (DECL_DECLARED_INLINE_P (node->decl))
{
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
}
/* Make sure that function is small enough to be considered for inlining. */
if (!max_depth
|| cgraph_estimate_size_after_inlining (1, node, node) >= limit)
return;
lookup_recursive_calls (node, node, &first_call, &last_call);
if (!first_call)
return;
if (dump_file)
fprintf (dump_file,
"\nPerforming recursive inlining on %s\n",
cgraph_node_name (node));
/* We need original clone to copy around. */
master_clone = cgraph_clone_node (node);
master_clone->needed = true;
for (e = master_clone->callees; e; e = e->next_callee)
if (!e->inline_failed)
cgraph_clone_inlined_nodes (e, true);
/* Do the inlining and update list of recursive call during process. */
last_in_current_depth = last_call;
while (first_call
&& cgraph_estimate_size_after_inlining (1, node, master_clone) <= limit)
{
struct cgraph_edge *curr = first_call;
first_call = first_call->aux;
curr->aux = NULL;
cgraph_redirect_edge_callee (curr, master_clone);
cgraph_mark_inline_edge (curr);
lookup_recursive_calls (node, curr->callee, &first_call, &last_call);
if (last_in_current_depth
&& ++depth >= max_depth)
break;
n++;
}
/* Cleanup queue pointers. */
while (first_call)
{
struct cgraph_edge *next = first_call->aux;
first_call->aux = NULL;
first_call = next;
}
if (dump_file)
fprintf (dump_file,
"\n Inlined %i times, body grown from %i to %i insns\n", n,
master_clone->global.insns, node->global.insns);
/* Remove master clone we used for inlining. We rely that clones inlined
into master clone gets queued just before master clone so we don't
need recursion. */
for (node = cgraph_nodes; node != master_clone;
node = node->next)
if (node->global.inlined_to == master_clone)
cgraph_remove_node (node);
cgraph_remove_node (master_clone);
}
/* Set inline_failed for all callers of given function to REASON. */
static void
cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
{
struct cgraph_edge *e;
if (dump_file)
fprintf (dump_file, "Inlining failed: %s\n", reason);
for (e = node->callers; e; e = e->next_caller)
if (e->inline_failed)
e->inline_failed = reason;
}
/* We use greedy algorithm for inlining of small functions:
All inline candidates are put into prioritized heap based on estimated
growth of the overall number of instructions and then update the estimates.
INLINED and INLINED_CALEES are just pointers to arrays large enough
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
static void
cgraph_decide_inlining_of_small_functions (void)
{
struct cgraph_node *node;
fibheap_t heap = fibheap_new ();
struct fibnode **heap_node =
xcalloc (cgraph_max_uid, sizeof (struct fibnode *));
int max_insns = ((HOST_WIDEST_INT) initial_insns
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
/* Put all inline candidates into the heap. */
for (node = cgraph_nodes; node; node = node->next)
{
if (!node->local.inlinable || !node->callers
|| node->local.disregard_inline_limits)
continue;
if (!cgraph_default_inline_p (node))
{
cgraph_set_inline_failed (node,
N_("--param max-inline-insns-single limit reached"));
continue;
}
heap_node[node->uid] =
fibheap_insert (heap, cgraph_estimate_growth (node), node);
}
if (dump_file)
fprintf (dump_file, "\nDeciding on smaller functions:\n");
while (overall_insns <= max_insns && (node = fibheap_extract_min (heap)))
{
struct cgraph_edge *e, *next;
int old_insns = overall_insns;
heap_node[node->uid] = NULL;
if (dump_file)
fprintf (dump_file,
"\nConsidering %s with %i insns\n"
" Estimated growth is %+i insns.\n",
cgraph_node_name (node), node->global.insns,
cgraph_estimate_growth (node));
if (!cgraph_default_inline_p (node))
{
cgraph_set_inline_failed (node,
N_("--param max-inline-insns-single limit reached after inlining into the callee"));
continue;
}
for (e = node->callers; e; e = next)
{
next = e->next_caller;
if (e->inline_failed)
{
struct cgraph_node *where;
if (cgraph_recursive_inlining_p (e->caller, e->callee,
&e->inline_failed)
|| !cgraph_check_inline_limits (e->caller, e->callee,
&e->inline_failed))
{
if (dump_file)
fprintf (dump_file, " Not inlining into %s:%s.\n",
cgraph_node_name (e->caller), e->inline_failed);
continue;
}
next = cgraph_mark_inline (e);
where = e->caller;
if (where->global.inlined_to)
where = where->global.inlined_to;
if (heap_node[where->uid])
fibheap_replace_key (heap, heap_node[where->uid],
cgraph_estimate_growth (where));
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i insns.\n",
cgraph_node_name (e->caller),
e->caller->global.insns);
}
}
cgraph_decide_recursive_inlining (node);
/* Similarly all functions called by the function we just inlined
are now called more times; update keys. */
update_callee_keys (heap, heap_node, node);
if (dump_file)
fprintf (dump_file,
" Inlined for a net change of %+i insns.\n",
overall_insns - old_insns);
}
while ((node = fibheap_extract_min (heap)) != NULL)
if (!node->local.disregard_inline_limits)
cgraph_set_inline_failed (node, N_("--param inline-unit-growth limit reached"));
fibheap_delete (heap);
free (heap_node);
}
/* Decide on the inlining. We do so in the topological order to avoid
expenses on updating data structures. */
static void
cgraph_decide_inlining (void)
{
struct cgraph_node *node;
int nnodes;
struct cgraph_node **order =
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
int old_insns = 0;
int i;
for (node = cgraph_nodes; node; node = node->next)
initial_insns += node->local.self_insns;
overall_insns = initial_insns;
nnodes = cgraph_postorder (order);
if (dump_file)
fprintf (dump_file,
"\nDeciding on inlining. Starting with %i insns.\n",
initial_insns);
for (node = cgraph_nodes; node; node = node->next)
node->aux = 0;
if (dump_file)
fprintf (dump_file, "\nInlining always_inline functions:\n");
/* In the first pass mark all always_inline edges. Do this with a priority
so none of our later choices will make this impossible. */
for (i = nnodes - 1; i >= 0; i--)
{
struct cgraph_edge *e, *next;
node = order[i];
if (!node->local.disregard_inline_limits)
continue;
if (dump_file)
fprintf (dump_file,
"\nConsidering %s %i insns (always inline)\n",
cgraph_node_name (node), node->global.insns);
old_insns = overall_insns;
for (e = node->callers; e; e = next)
{
next = e->next_caller;
if (!e->inline_failed)
continue;
if (cgraph_recursive_inlining_p (e->caller, e->callee,
&e->inline_failed))
continue;
cgraph_mark_inline_edge (e);
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i insns.\n",
cgraph_node_name (e->caller),
e->caller->global.insns);
}
if (dump_file)
fprintf (dump_file,
" Inlined for a net change of %+i insns.\n",
overall_insns - old_insns);
}
if (!flag_really_no_inline)
{
cgraph_decide_inlining_of_small_functions ();
if (dump_file)
fprintf (dump_file, "\nDeciding on functions called once:\n");
/* And finally decide what functions are called once. */
for (i = nnodes - 1; i >= 0; i--)
{
node = order[i];
if (node->callers && !node->callers->next_caller && !node->needed
&& node->local.inlinable && node->callers->inline_failed
&& !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
{
bool ok = true;
struct cgraph_node *node1;
/* Verify that we won't duplicate the caller. */
for (node1 = node->callers->caller;
node1->callers && !node1->callers->inline_failed
&& ok; node1 = node1->callers->caller)
if (node1->callers->next_caller || node1->needed)
ok = false;
if (ok)
{
if (dump_file)
fprintf (dump_file,
"\nConsidering %s %i insns.\n"
" Called once from %s %i insns.\n",
cgraph_node_name (node), node->global.insns,
cgraph_node_name (node->callers->caller),
node->callers->caller->global.insns);
old_insns = overall_insns;
if (cgraph_check_inline_limits (node->callers->caller, node,
NULL))
{
cgraph_mark_inline (node->callers);
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i insns"
" for a net change of %+i insns.\n",
cgraph_node_name (node->callers->caller),
node->callers->caller->global.insns,
overall_insns - old_insns);
}
else
{
if (dump_file)
fprintf (dump_file,
" Inline limit reached, not inlined.\n");
}
}
}
}
}
/* We will never output extern functions we didn't inline.
??? Perhaps we can prevent accounting of growth of external
inline functions. */
cgraph_remove_unreachable_nodes (false, dump_file);
if (dump_file)
fprintf (dump_file,
"\nInlined %i calls, eliminated %i functions, "
"%i insns turned to %i insns.\n\n",
ncalls_inlined, nfunctions_inlined, initial_insns,
overall_insns);
free (order);
}
/* Decide on the inlining. We do so in the topological order to avoid
expenses on updating data structures. */
void
cgraph_decide_inlining_incrementally (struct cgraph_node *node)
{
struct cgraph_edge *e;
/* First of all look for always inline functions. */
for (e = node->callees; e; e = e->next_callee)
if (e->callee->local.disregard_inline_limits
&& e->inline_failed
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
/* ??? It is possible that renaming variable removed the function body
in duplicate_decls. See gcc.c-torture/compile/20011119-2.c */
&& DECL_SAVED_TREE (e->callee->decl))
cgraph_mark_inline (e);
/* Now do the automatic inlining. */
if (!flag_really_no_inline)
for (e = node->callees; e; e = e->next_callee)
if (e->callee->local.inlinable
&& e->inline_failed
&& !e->callee->local.disregard_inline_limits
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
&& cgraph_check_inline_limits (node, e->callee, &e->inline_failed)
&& DECL_SAVED_TREE (e->callee->decl))
{
if (cgraph_default_inline_p (e->callee))
cgraph_mark_inline (e);
else
e->inline_failed
= N_("--param max-inline-insns-single limit reached");
}
}
/* When inlining shall be performed. */
static bool
cgraph_gate_inlining (void)
{
return flag_inline_trees;
}
struct tree_opt_pass pass_ipa_inline =
{
"inline", /* name */
cgraph_gate_inlining, /* gate */
cgraph_decide_inlining, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_INTEGRATION, /* tv_id */
0, /* properties_required */
PROP_trees, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};

207
gcc/ipa.c Normal file
View File

@ -0,0 +1,207 @@
/* Basic IPA optimizations and utilities.
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "cgraph.h"
/* Fill array order with all nodes with output flag set in the reverse
topological order. */
int
cgraph_postorder (struct cgraph_node **order)
{
struct cgraph_node *node, *node2;
int stack_size = 0;
int order_pos = 0;
struct cgraph_edge *edge, last;
struct cgraph_node **stack =
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
/* We have to deal with cycles nicely, so use a depth first traversal
output algorithm. Ignore the fact that some functions won't need
to be output and put them into order as well, so we get dependencies
right through intline functions. */
for (node = cgraph_nodes; node; node = node->next)
node->aux = NULL;
for (node = cgraph_nodes; node; node = node->next)
if (!node->aux)
{
node2 = node;
if (!node->callers)
node->aux = &last;
else
node->aux = node->callers;
while (node2)
{
while (node2->aux != &last)
{
edge = node2->aux;
if (edge->next_caller)
node2->aux = edge->next_caller;
else
node2->aux = &last;
if (!edge->caller->aux)
{
if (!edge->caller->callers)
edge->caller->aux = &last;
else
edge->caller->aux = edge->caller->callers;
stack[stack_size++] = node2;
node2 = edge->caller;
break;
}
}
if (node2->aux == &last)
{
order[order_pos++] = node2;
if (stack_size)
node2 = stack[--stack_size];
else
node2 = NULL;
}
}
}
free (stack);
return order_pos;
}
/* Perform reachability analysis and reclaim all unreachable nodes.
If BEFORE_INLINING_P is true this function is called before inlining
decisions has been made. If BEFORE_INLINING_P is false this function also
removes unneeded bodies of extern inline functions. */
bool
cgraph_remove_unreachable_nodes (bool before_inlining_p, FILE *dump_file)
{
struct cgraph_node *first = (void *) 1;
struct cgraph_node *node;
bool changed = false;
int insns = 0;
#ifdef ENABLE_CHECKING
verify_cgraph ();
#endif
if (dump_file)
fprintf (dump_file, "\nReclaiming functions:");
#ifdef ENABLE_CHECKING
for (node = cgraph_nodes; node; node = node->next)
gcc_assert (!node->aux);
#endif
for (node = cgraph_nodes; node; node = node->next)
if (node->needed && !node->global.inlined_to
&& ((!DECL_EXTERNAL (node->decl))
|| !node->analyzed
|| before_inlining_p))
{
node->aux = first;
first = node;
}
else
gcc_assert (!node->aux);
/* Perform reachability analysis. As a special case do not consider
extern inline functions not inlined as live because we won't output
them at all. */
while (first != (void *) 1)
{
struct cgraph_edge *e;
node = first;
first = first->aux;
for (e = node->callees; e; e = e->next_callee)
if (!e->callee->aux
&& node->analyzed
&& (!e->inline_failed || !e->callee->analyzed
|| (!DECL_EXTERNAL (e->callee->decl))
|| before_inlining_p))
{
e->callee->aux = first;
first = e->callee;
}
}
/* Remove unreachable nodes. Extern inline functions need special care;
Unreachable extern inline functions shall be removed.
Reachable extern inline functions we never inlined shall get their bodies
eliminated.
Reachable extern inline functions we sometimes inlined will be turned into
unanalyzed nodes so they look like for true extern functions to the rest
of code. Body of such functions is released via remove_node once the
inline clones are eliminated. */
for (node = cgraph_nodes; node; node = node->next)
{
if (!node->aux)
{
int local_insns;
tree decl = node->decl;
node->global.inlined_to = NULL;
if (DECL_STRUCT_FUNCTION (decl))
local_insns = node->local.self_insns;
else
local_insns = 0;
if (dump_file)
fprintf (dump_file, " %s", cgraph_node_name (node));
if (!node->analyzed || !DECL_EXTERNAL (node->decl)
|| before_inlining_p)
cgraph_remove_node (node);
else
{
struct cgraph_edge *e;
for (e = node->callers; e; e = e->next_caller)
if (e->caller->aux)
break;
if (e || node->needed)
{
struct cgraph_node *clone;
for (clone = node->next_clone; clone;
clone = clone->next_clone)
if (clone->aux)
break;
if (!clone)
{
DECL_SAVED_TREE (node->decl) = NULL;
DECL_STRUCT_FUNCTION (node->decl) = NULL;
DECL_INITIAL (node->decl) = error_mark_node;
node->analyzed = false;
}
cgraph_node_remove_callees (node);
node->analyzed = false;
}
else
cgraph_remove_node (node);
}
if (!DECL_SAVED_TREE (decl))
insns += local_insns;
changed = true;
}
}
for (node = cgraph_nodes; node; node = node->next)
node->aux = NULL;
if (dump_file)
fprintf (dump_file, "\nReclaimed %i insns", insns);
return changed;
}