mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-12 08:54:32 +08:00
Makefile.in (ipa.o, [...]): New files.
* Makefile.in (ipa.o, ipa-inline.o): New files. * cgraph.h (cgraph_remove_unreachable_nodes, cgraph_postorder, cgraph_decide_inlining_incrementally, cgraph_clone_inlined_nodes, cgraph_mark_inline_edge, cgraph_default_inline_p): Declare. * cgraphunit.c (cgraph_default_inline_p, cgraph_decide_inlining_incrementally, ncalls_inlined, nfunctions_inlined, initial_insns, overall_insns, cgraph_estimate_size_after_inlining, cgraph_estimate_growth, cgraph_clone_inlined_nodes, cgraph_mark_inline_edge, cgraph_mark_inline, cgraph_check_inline_limits, cgraph_default_inline_p, cgraph_recursive_inlining_p, update_callee_keys, lookup_recursive_calls, cgraph_decide_recursive_inlining, cgraph_set_inline_failed, cgraph_decide_inlining_of_small_functions, cgraph_decide_inlining, cgraph_decide_inlining_incrementally, cgraph_gate_inlining, pass_ipa_inline): Move to ipa-inline.c (cgraph_postorder, cgraph_remove_unreachable_nodes): Move to ipa.c * ipa.c: New file. * ipa-inline.c: New file. From-SVN: r98548
This commit is contained in:
parent
6e32e5b97a
commit
ca31b95fa3
@ -1,3 +1,24 @@
|
||||
2005-04-22 Jan Hubicka <jh@suse.cz>
|
||||
|
||||
* Makefile.in (ipa.o, ipa-inline.o): New files.
|
||||
* cgraph.h (cgraph_remove_unreachable_nodes, cgraph_postorder,
|
||||
cgraph_decide_inlining_incrementally, cgraph_clone_inlined_nodes,
|
||||
cgraph_mark_inline_edge, cgraph_default_inline_p): Declare.
|
||||
* cgraphunit.c (cgraph_default_inline_p, cgraph_decide_inlining_incrementally,
|
||||
ncalls_inlined, nfunctions_inlined, initial_insns, overall_insns,
|
||||
cgraph_estimate_size_after_inlining, cgraph_estimate_growth,
|
||||
cgraph_clone_inlined_nodes, cgraph_mark_inline_edge,
|
||||
cgraph_mark_inline, cgraph_check_inline_limits,
|
||||
cgraph_default_inline_p, cgraph_recursive_inlining_p,
|
||||
update_callee_keys, lookup_recursive_calls,
|
||||
cgraph_decide_recursive_inlining, cgraph_set_inline_failed,
|
||||
cgraph_decide_inlining_of_small_functions, cgraph_decide_inlining,
|
||||
cgraph_decide_inlining_incrementally, cgraph_gate_inlining,
|
||||
pass_ipa_inline): Move to ipa-inline.c
|
||||
(cgraph_postorder, cgraph_remove_unreachable_nodes): Move to ipa.c
|
||||
* ipa.c: New file.
|
||||
* ipa-inline.c: New file.
|
||||
|
||||
2005-04-22 Eric Botcazou <ebotcazou@libertysurf.fr>
|
||||
|
||||
* doc/invoke.texi (SPARC options): Document that -mapp-regs
|
||||
|
@ -963,7 +963,7 @@ OBJS-common = \
|
||||
|
||||
OBJS-md = $(out_object_file)
|
||||
OBJS-archive = $(EXTRA_OBJS) $(host_hook_obj) tree-inline.o \
|
||||
cgraph.o cgraphunit.o tree-nomudflap.o
|
||||
cgraph.o cgraphunit.o tree-nomudflap.o ipa.o ipa-inline.o
|
||||
|
||||
OBJS = $(OBJS-common) $(out_object_file) $(OBJS-archive)
|
||||
|
||||
@ -1976,6 +1976,10 @@ cgraph.o : cgraph.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H) \
|
||||
cgraphunit.o : cgraphunit.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H) \
|
||||
langhooks.h tree-inline.h toplev.h $(FLAGS_H) $(GGC_H) $(TARGET_H) $(CGRAPH_H) intl.h \
|
||||
pointer-set.h function.h $(TREE_GIMPLE_H) $(TREE_FLOW_H) tree-pass.h
|
||||
ipa.o : ipa.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(CGRAPH_H)
|
||||
ipa-inline.o : ipa-inline.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H) \
|
||||
langhooks.h tree-inline.h $(FLAGS_H) $(CGRAPH_H) intl.h $(TREE_FLOW_H) \
|
||||
$(COVERAGE_H)
|
||||
coverage.o : coverage.c gcov-io.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
|
||||
$(TM_H) $(RTL_H) $(TREE_H) $(FLAGS_H) output.h $(REGS_H) $(EXPR_H) function.h \
|
||||
toplev.h $(GGC_H) $(TARGET_H) langhooks.h $(COVERAGE_H) libfuncs.h \
|
||||
|
@ -226,4 +226,13 @@ void cgraph_build_static_cdtor (char which, tree body, int priority);
|
||||
void cgraph_reset_static_var_maps (void);
|
||||
void init_cgraph (void);
|
||||
|
||||
/* In ipa.c */
|
||||
bool cgraph_remove_unreachable_nodes (bool, FILE *);
|
||||
int cgraph_postorder (struct cgraph_node **);
|
||||
|
||||
/* In ipa-inline.c */
|
||||
void cgraph_decide_inlining_incrementally (struct cgraph_node *);
|
||||
void cgraph_clone_inlined_nodes (struct cgraph_edge *, bool);
|
||||
void cgraph_mark_inline_edge (struct cgraph_edge *);
|
||||
bool cgraph_default_inline_p (struct cgraph_node *);
|
||||
#endif /* GCC_CGRAPH_H */
|
||||
|
839
gcc/cgraphunit.c
839
gcc/cgraphunit.c
@ -197,15 +197,7 @@ static void cgraph_mark_functions_to_output (void);
|
||||
static void cgraph_expand_function (struct cgraph_node *);
|
||||
static tree record_call_1 (tree *, int *, void *);
|
||||
static void cgraph_mark_local_functions (void);
|
||||
static bool cgraph_default_inline_p (struct cgraph_node *n);
|
||||
static void cgraph_analyze_function (struct cgraph_node *node);
|
||||
static void cgraph_decide_inlining_incrementally (struct cgraph_node *);
|
||||
|
||||
/* Statistics we collect about inlining algorithm. */
|
||||
static int ncalls_inlined;
|
||||
static int nfunctions_inlined;
|
||||
static int initial_insns;
|
||||
static int overall_insns;
|
||||
|
||||
/* Records tree nodes seen in cgraph_create_edges. Simply using
|
||||
walk_tree_without_duplicates doesn't guarantee each node is visited
|
||||
@ -947,813 +939,6 @@ cgraph_expand_function (struct cgraph_node *node)
|
||||
}
|
||||
}
|
||||
|
||||
/* Fill array order with all nodes with output flag set in the reverse
|
||||
topological order. */
|
||||
|
||||
static int
|
||||
cgraph_postorder (struct cgraph_node **order)
|
||||
{
|
||||
struct cgraph_node *node, *node2;
|
||||
int stack_size = 0;
|
||||
int order_pos = 0;
|
||||
struct cgraph_edge *edge, last;
|
||||
|
||||
struct cgraph_node **stack =
|
||||
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
|
||||
|
||||
/* We have to deal with cycles nicely, so use a depth first traversal
|
||||
output algorithm. Ignore the fact that some functions won't need
|
||||
to be output and put them into order as well, so we get dependencies
|
||||
right through intline functions. */
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
node->aux = NULL;
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
if (!node->aux)
|
||||
{
|
||||
node2 = node;
|
||||
if (!node->callers)
|
||||
node->aux = &last;
|
||||
else
|
||||
node->aux = node->callers;
|
||||
while (node2)
|
||||
{
|
||||
while (node2->aux != &last)
|
||||
{
|
||||
edge = node2->aux;
|
||||
if (edge->next_caller)
|
||||
node2->aux = edge->next_caller;
|
||||
else
|
||||
node2->aux = &last;
|
||||
if (!edge->caller->aux)
|
||||
{
|
||||
if (!edge->caller->callers)
|
||||
edge->caller->aux = &last;
|
||||
else
|
||||
edge->caller->aux = edge->caller->callers;
|
||||
stack[stack_size++] = node2;
|
||||
node2 = edge->caller;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (node2->aux == &last)
|
||||
{
|
||||
order[order_pos++] = node2;
|
||||
if (stack_size)
|
||||
node2 = stack[--stack_size];
|
||||
else
|
||||
node2 = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
free (stack);
|
||||
return order_pos;
|
||||
}
|
||||
|
||||
|
||||
/* Perform reachability analysis and reclaim all unreachable nodes.
|
||||
This function also remove unneeded bodies of extern inline functions
|
||||
and thus needs to be done only after inlining decisions has been made. */
|
||||
static bool
|
||||
cgraph_remove_unreachable_nodes (void)
|
||||
{
|
||||
struct cgraph_node *first = (void *) 1;
|
||||
struct cgraph_node *node;
|
||||
bool changed = false;
|
||||
int insns = 0;
|
||||
|
||||
#ifdef ENABLE_CHECKING
|
||||
verify_cgraph ();
|
||||
#endif
|
||||
if (cgraph_dump_file)
|
||||
fprintf (cgraph_dump_file, "\nReclaiming functions:");
|
||||
#ifdef ENABLE_CHECKING
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
gcc_assert (!node->aux);
|
||||
#endif
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
if (node->needed && !node->global.inlined_to
|
||||
&& (!DECL_EXTERNAL (node->decl) || !node->analyzed))
|
||||
{
|
||||
node->aux = first;
|
||||
first = node;
|
||||
}
|
||||
else
|
||||
gcc_assert (!node->aux);
|
||||
|
||||
/* Perform reachability analysis. As a special case do not consider
|
||||
extern inline functions not inlined as live because we won't output
|
||||
them at all. */
|
||||
while (first != (void *) 1)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
node = first;
|
||||
first = first->aux;
|
||||
|
||||
for (e = node->callees; e; e = e->next_callee)
|
||||
if (!e->callee->aux
|
||||
&& node->analyzed
|
||||
&& (!e->inline_failed || !e->callee->analyzed
|
||||
|| !DECL_EXTERNAL (e->callee->decl)))
|
||||
{
|
||||
e->callee->aux = first;
|
||||
first = e->callee;
|
||||
}
|
||||
}
|
||||
|
||||
/* Remove unreachable nodes. Extern inline functions need special care;
|
||||
Unreachable extern inline functions shall be removed.
|
||||
Reachable extern inline functions we never inlined shall get their bodies
|
||||
eliminated.
|
||||
Reachable extern inline functions we sometimes inlined will be turned into
|
||||
unanalyzed nodes so they look like for true extern functions to the rest
|
||||
of code. Body of such functions is released via remove_node once the
|
||||
inline clones are eliminated. */
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
{
|
||||
if (!node->aux)
|
||||
{
|
||||
int local_insns;
|
||||
tree decl = node->decl;
|
||||
|
||||
node->global.inlined_to = NULL;
|
||||
if (DECL_STRUCT_FUNCTION (decl))
|
||||
local_insns = node->local.self_insns;
|
||||
else
|
||||
local_insns = 0;
|
||||
if (cgraph_dump_file)
|
||||
fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
|
||||
if (!node->analyzed || !DECL_EXTERNAL (node->decl))
|
||||
cgraph_remove_node (node);
|
||||
else
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
|
||||
for (e = node->callers; e; e = e->next_caller)
|
||||
if (e->caller->aux)
|
||||
break;
|
||||
if (e || node->needed)
|
||||
{
|
||||
struct cgraph_node *clone;
|
||||
|
||||
for (clone = node->next_clone; clone;
|
||||
clone = clone->next_clone)
|
||||
if (clone->aux)
|
||||
break;
|
||||
if (!clone)
|
||||
{
|
||||
DECL_SAVED_TREE (node->decl) = NULL;
|
||||
DECL_STRUCT_FUNCTION (node->decl) = NULL;
|
||||
DECL_INITIAL (node->decl) = error_mark_node;
|
||||
}
|
||||
cgraph_node_remove_callees (node);
|
||||
node->analyzed = false;
|
||||
}
|
||||
else
|
||||
cgraph_remove_node (node);
|
||||
}
|
||||
if (!DECL_SAVED_TREE (decl))
|
||||
insns += local_insns;
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
node->aux = NULL;
|
||||
if (cgraph_dump_file)
|
||||
fprintf (cgraph_dump_file, "\nReclaimed %i insns", insns);
|
||||
return changed;
|
||||
}
|
||||
|
||||
/* Estimate size of the function after inlining WHAT into TO. */
|
||||
|
||||
static int
|
||||
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
|
||||
struct cgraph_node *what)
|
||||
{
|
||||
tree fndecl = what->decl;
|
||||
tree arg;
|
||||
int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST);
|
||||
for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
|
||||
call_insns += estimate_move_cost (TREE_TYPE (arg));
|
||||
return (what->global.insns - call_insns) * times + to->global.insns;
|
||||
}
|
||||
|
||||
/* Estimate the growth caused by inlining NODE into all callees. */
|
||||
|
||||
static int
|
||||
cgraph_estimate_growth (struct cgraph_node *node)
|
||||
{
|
||||
int growth = 0;
|
||||
struct cgraph_edge *e;
|
||||
|
||||
for (e = node->callers; e; e = e->next_caller)
|
||||
if (e->inline_failed)
|
||||
growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
|
||||
- e->caller->global.insns);
|
||||
|
||||
/* ??? Wrong for self recursive functions or cases where we decide to not
|
||||
inline for different reasons, but it is not big deal as in that case
|
||||
we will keep the body around, but we will also avoid some inlining. */
|
||||
if (!node->needed && !DECL_EXTERNAL (node->decl))
|
||||
growth -= node->global.insns;
|
||||
|
||||
return growth;
|
||||
}
|
||||
|
||||
/* E is expected to be an edge being inlined. Clone destination node of
|
||||
the edge and redirect it to the new clone.
|
||||
DUPLICATE is used for bookkeeping on whether we are actually creating new
|
||||
clones or re-using node originally representing out-of-line function call.
|
||||
*/
|
||||
void
|
||||
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate)
|
||||
{
|
||||
struct cgraph_node *n;
|
||||
|
||||
/* We may eliminate the need for out-of-line copy to be output. In that
|
||||
case just go ahead and re-use it. */
|
||||
if (!e->callee->callers->next_caller
|
||||
&& (!e->callee->needed || DECL_EXTERNAL (e->callee->decl))
|
||||
&& duplicate
|
||||
&& flag_unit_at_a_time)
|
||||
{
|
||||
gcc_assert (!e->callee->global.inlined_to);
|
||||
if (!DECL_EXTERNAL (e->callee->decl))
|
||||
overall_insns -= e->callee->global.insns, nfunctions_inlined++;
|
||||
duplicate = 0;
|
||||
}
|
||||
else if (duplicate)
|
||||
{
|
||||
n = cgraph_clone_node (e->callee);
|
||||
cgraph_redirect_edge_callee (e, n);
|
||||
}
|
||||
|
||||
if (e->caller->global.inlined_to)
|
||||
e->callee->global.inlined_to = e->caller->global.inlined_to;
|
||||
else
|
||||
e->callee->global.inlined_to = e->caller;
|
||||
|
||||
/* Recursively clone all bodies. */
|
||||
for (e = e->callee->callees; e; e = e->next_callee)
|
||||
if (!e->inline_failed)
|
||||
cgraph_clone_inlined_nodes (e, duplicate);
|
||||
}
|
||||
|
||||
/* Mark edge E as inlined and update callgraph accordingly. */
|
||||
|
||||
void
|
||||
cgraph_mark_inline_edge (struct cgraph_edge *e)
|
||||
{
|
||||
int old_insns = 0, new_insns = 0;
|
||||
struct cgraph_node *to = NULL, *what;
|
||||
|
||||
gcc_assert (e->inline_failed);
|
||||
e->inline_failed = NULL;
|
||||
|
||||
if (!e->callee->global.inlined && flag_unit_at_a_time)
|
||||
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
|
||||
e->callee->global.inlined = true;
|
||||
|
||||
cgraph_clone_inlined_nodes (e, true);
|
||||
|
||||
what = e->callee;
|
||||
|
||||
/* Now update size of caller and all functions caller is inlined into. */
|
||||
for (;e && !e->inline_failed; e = e->caller->callers)
|
||||
{
|
||||
old_insns = e->caller->global.insns;
|
||||
new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
|
||||
what);
|
||||
gcc_assert (new_insns >= 0);
|
||||
to = e->caller;
|
||||
to->global.insns = new_insns;
|
||||
}
|
||||
gcc_assert (what->global.inlined_to == to);
|
||||
if (new_insns > old_insns)
|
||||
overall_insns += new_insns - old_insns;
|
||||
ncalls_inlined++;
|
||||
}
|
||||
|
||||
/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
|
||||
Return following unredirected edge in the list of callers
|
||||
of EDGE->CALLEE */
|
||||
|
||||
static struct cgraph_edge *
|
||||
cgraph_mark_inline (struct cgraph_edge *edge)
|
||||
{
|
||||
struct cgraph_node *to = edge->caller;
|
||||
struct cgraph_node *what = edge->callee;
|
||||
struct cgraph_edge *e, *next;
|
||||
int times = 0;
|
||||
|
||||
/* Look for all calls, mark them inline and clone recursively
|
||||
all inlined functions. */
|
||||
for (e = what->callers; e; e = next)
|
||||
{
|
||||
next = e->next_caller;
|
||||
if (e->caller == to && e->inline_failed)
|
||||
{
|
||||
cgraph_mark_inline_edge (e);
|
||||
if (e == edge)
|
||||
edge = next;
|
||||
times++;
|
||||
}
|
||||
}
|
||||
gcc_assert (times);
|
||||
return edge;
|
||||
}
|
||||
|
||||
/* Return false when inlining WHAT into TO is not good idea
|
||||
as it would cause too large growth of function bodies. */
|
||||
|
||||
static bool
|
||||
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
|
||||
const char **reason)
|
||||
{
|
||||
int times = 0;
|
||||
struct cgraph_edge *e;
|
||||
int newsize;
|
||||
int limit;
|
||||
|
||||
if (to->global.inlined_to)
|
||||
to = to->global.inlined_to;
|
||||
|
||||
for (e = to->callees; e; e = e->next_callee)
|
||||
if (e->callee == what)
|
||||
times++;
|
||||
|
||||
/* When inlining large function body called once into small function,
|
||||
take the inlined function as base for limiting the growth. */
|
||||
if (to->local.self_insns > what->local.self_insns)
|
||||
limit = to->local.self_insns;
|
||||
else
|
||||
limit = what->local.self_insns;
|
||||
|
||||
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
|
||||
|
||||
newsize = cgraph_estimate_size_after_inlining (times, to, what);
|
||||
if (newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
|
||||
&& newsize > limit)
|
||||
{
|
||||
if (reason)
|
||||
*reason = N_("--param large-function-growth limit reached");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Return true when function N is small enough to be inlined. */
|
||||
|
||||
static bool
|
||||
cgraph_default_inline_p (struct cgraph_node *n)
|
||||
{
|
||||
if (!DECL_INLINE (n->decl) || !DECL_SAVED_TREE (n->decl))
|
||||
return false;
|
||||
if (DECL_DECLARED_INLINE_P (n->decl))
|
||||
return n->global.insns < MAX_INLINE_INSNS_SINGLE;
|
||||
else
|
||||
return n->global.insns < MAX_INLINE_INSNS_AUTO;
|
||||
}
|
||||
|
||||
/* Return true when inlining WHAT would create recursive inlining.
|
||||
We call recursive inlining all cases where same function appears more than
|
||||
once in the single recursion nest path in the inline graph. */
|
||||
|
||||
static bool
|
||||
cgraph_recursive_inlining_p (struct cgraph_node *to,
|
||||
struct cgraph_node *what,
|
||||
const char **reason)
|
||||
{
|
||||
bool recursive;
|
||||
if (to->global.inlined_to)
|
||||
recursive = what->decl == to->global.inlined_to->decl;
|
||||
else
|
||||
recursive = what->decl == to->decl;
|
||||
/* Marking recursive function inline has sane semantic and thus we should
|
||||
not warn on it. */
|
||||
if (recursive && reason)
|
||||
*reason = (what->local.disregard_inline_limits
|
||||
? N_("recursive inlining") : "");
|
||||
return recursive;
|
||||
}
|
||||
|
||||
/* Recompute heap nodes for each of callees. */
|
||||
static void
|
||||
update_callee_keys (fibheap_t heap, struct fibnode **heap_node,
|
||||
struct cgraph_node *node)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
|
||||
for (e = node->callees; e; e = e->next_callee)
|
||||
if (e->inline_failed && heap_node[e->callee->uid])
|
||||
fibheap_replace_key (heap, heap_node[e->callee->uid],
|
||||
cgraph_estimate_growth (e->callee));
|
||||
else if (!e->inline_failed)
|
||||
update_callee_keys (heap, heap_node, e->callee);
|
||||
}
|
||||
|
||||
/* Enqueue all recursive calls from NODE into queue linked via aux pointers
|
||||
in between FIRST and LAST. WHERE is used for bookkeeping while looking
|
||||
int calls inlined within NODE. */
|
||||
static void
|
||||
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
|
||||
struct cgraph_edge **first, struct cgraph_edge **last)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
for (e = where->callees; e; e = e->next_callee)
|
||||
if (e->callee == node)
|
||||
{
|
||||
if (!*first)
|
||||
*first = e;
|
||||
else
|
||||
(*last)->aux = e;
|
||||
*last = e;
|
||||
}
|
||||
for (e = where->callees; e; e = e->next_callee)
|
||||
if (!e->inline_failed)
|
||||
lookup_recursive_calls (node, e->callee, first, last);
|
||||
}
|
||||
|
||||
/* Decide on recursive inlining: in the case function has recursive calls,
|
||||
inline until body size reaches given argument. */
|
||||
static void
|
||||
cgraph_decide_recursive_inlining (struct cgraph_node *node)
|
||||
{
|
||||
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
|
||||
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
|
||||
struct cgraph_edge *first_call = NULL, *last_call = NULL;
|
||||
struct cgraph_edge *last_in_current_depth;
|
||||
struct cgraph_edge *e;
|
||||
struct cgraph_node *master_clone;
|
||||
int depth = 0;
|
||||
int n = 0;
|
||||
|
||||
if (DECL_DECLARED_INLINE_P (node->decl))
|
||||
{
|
||||
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
|
||||
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
|
||||
}
|
||||
|
||||
/* Make sure that function is small enough to be considered for inlining. */
|
||||
if (!max_depth
|
||||
|| cgraph_estimate_size_after_inlining (1, node, node) >= limit)
|
||||
return;
|
||||
lookup_recursive_calls (node, node, &first_call, &last_call);
|
||||
if (!first_call)
|
||||
return;
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nPerforming recursive inlining on %s\n",
|
||||
cgraph_node_name (node));
|
||||
|
||||
/* We need original clone to copy around. */
|
||||
master_clone = cgraph_clone_node (node);
|
||||
master_clone->needed = true;
|
||||
for (e = master_clone->callees; e; e = e->next_callee)
|
||||
if (!e->inline_failed)
|
||||
cgraph_clone_inlined_nodes (e, true);
|
||||
|
||||
/* Do the inlining and update list of recursive call during process. */
|
||||
last_in_current_depth = last_call;
|
||||
while (first_call
|
||||
&& cgraph_estimate_size_after_inlining (1, node, master_clone) <= limit)
|
||||
{
|
||||
struct cgraph_edge *curr = first_call;
|
||||
|
||||
first_call = first_call->aux;
|
||||
curr->aux = NULL;
|
||||
|
||||
cgraph_redirect_edge_callee (curr, master_clone);
|
||||
cgraph_mark_inline_edge (curr);
|
||||
lookup_recursive_calls (node, curr->callee, &first_call, &last_call);
|
||||
|
||||
if (last_in_current_depth
|
||||
&& ++depth >= max_depth)
|
||||
break;
|
||||
n++;
|
||||
}
|
||||
|
||||
/* Cleanup queue pointers. */
|
||||
while (first_call)
|
||||
{
|
||||
struct cgraph_edge *next = first_call->aux;
|
||||
first_call->aux = NULL;
|
||||
first_call = next;
|
||||
}
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\n Inlined %i times, body grown from %i to %i insns\n", n,
|
||||
master_clone->global.insns, node->global.insns);
|
||||
|
||||
/* Remove master clone we used for inlining. We rely that clones inlined
|
||||
into master clone gets queued just before master clone so we don't
|
||||
need recursion. */
|
||||
for (node = cgraph_nodes; node != master_clone;
|
||||
node = node->next)
|
||||
if (node->global.inlined_to == master_clone)
|
||||
cgraph_remove_node (node);
|
||||
cgraph_remove_node (master_clone);
|
||||
}
|
||||
|
||||
/* Set inline_failed for all callers of given function to REASON. */
|
||||
|
||||
static void
|
||||
cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "Inlining failed: %s\n", reason);
|
||||
for (e = node->callers; e; e = e->next_caller)
|
||||
if (e->inline_failed)
|
||||
e->inline_failed = reason;
|
||||
}
|
||||
|
||||
/* We use greedy algorithm for inlining of small functions:
|
||||
All inline candidates are put into prioritized heap based on estimated
|
||||
growth of the overall number of instructions and then update the estimates.
|
||||
|
||||
INLINED and INLINED_CALEES are just pointers to arrays large enough
|
||||
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
|
||||
|
||||
static void
|
||||
cgraph_decide_inlining_of_small_functions (void)
|
||||
{
|
||||
struct cgraph_node *node;
|
||||
fibheap_t heap = fibheap_new ();
|
||||
struct fibnode **heap_node =
|
||||
xcalloc (cgraph_max_uid, sizeof (struct fibnode *));
|
||||
int max_insns = ((HOST_WIDEST_INT) initial_insns
|
||||
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
|
||||
|
||||
/* Put all inline candidates into the heap. */
|
||||
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
{
|
||||
if (!node->local.inlinable || !node->callers
|
||||
|| node->local.disregard_inline_limits)
|
||||
continue;
|
||||
|
||||
if (!cgraph_default_inline_p (node))
|
||||
{
|
||||
cgraph_set_inline_failed (node,
|
||||
N_("--param max-inline-insns-single limit reached"));
|
||||
continue;
|
||||
}
|
||||
heap_node[node->uid] =
|
||||
fibheap_insert (heap, cgraph_estimate_growth (node), node);
|
||||
}
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "\nDeciding on smaller functions:\n");
|
||||
while (overall_insns <= max_insns && (node = fibheap_extract_min (heap)))
|
||||
{
|
||||
struct cgraph_edge *e, *next;
|
||||
int old_insns = overall_insns;
|
||||
|
||||
heap_node[node->uid] = NULL;
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nConsidering %s with %i insns\n"
|
||||
" Estimated growth is %+i insns.\n",
|
||||
cgraph_node_name (node), node->global.insns,
|
||||
cgraph_estimate_growth (node));
|
||||
if (!cgraph_default_inline_p (node))
|
||||
{
|
||||
cgraph_set_inline_failed (node,
|
||||
N_("--param max-inline-insns-single limit reached after inlining into the callee"));
|
||||
continue;
|
||||
}
|
||||
for (e = node->callers; e; e = next)
|
||||
{
|
||||
next = e->next_caller;
|
||||
if (e->inline_failed)
|
||||
{
|
||||
struct cgraph_node *where;
|
||||
|
||||
if (cgraph_recursive_inlining_p (e->caller, e->callee,
|
||||
&e->inline_failed)
|
||||
|| !cgraph_check_inline_limits (e->caller, e->callee,
|
||||
&e->inline_failed))
|
||||
{
|
||||
if (dump_file)
|
||||
fprintf (dump_file, " Not inlining into %s:%s.\n",
|
||||
cgraph_node_name (e->caller), e->inline_failed);
|
||||
continue;
|
||||
}
|
||||
next = cgraph_mark_inline (e);
|
||||
where = e->caller;
|
||||
if (where->global.inlined_to)
|
||||
where = where->global.inlined_to;
|
||||
|
||||
if (heap_node[where->uid])
|
||||
fibheap_replace_key (heap, heap_node[where->uid],
|
||||
cgraph_estimate_growth (where));
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined into %s which now has %i insns.\n",
|
||||
cgraph_node_name (e->caller),
|
||||
e->caller->global.insns);
|
||||
}
|
||||
}
|
||||
|
||||
cgraph_decide_recursive_inlining (node);
|
||||
|
||||
/* Similarly all functions called by the function we just inlined
|
||||
are now called more times; update keys. */
|
||||
update_callee_keys (heap, heap_node, node);
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined for a net change of %+i insns.\n",
|
||||
overall_insns - old_insns);
|
||||
}
|
||||
while ((node = fibheap_extract_min (heap)) != NULL)
|
||||
if (!node->local.disregard_inline_limits)
|
||||
cgraph_set_inline_failed (node, N_("--param inline-unit-growth limit reached"));
|
||||
fibheap_delete (heap);
|
||||
free (heap_node);
|
||||
}
|
||||
|
||||
/* Decide on the inlining. We do so in the topological order to avoid
|
||||
expenses on updating data structures. */
|
||||
|
||||
static void
|
||||
cgraph_decide_inlining (void)
|
||||
{
|
||||
struct cgraph_node *node;
|
||||
int nnodes;
|
||||
struct cgraph_node **order =
|
||||
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
|
||||
int old_insns = 0;
|
||||
int i;
|
||||
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
initial_insns += node->local.self_insns;
|
||||
overall_insns = initial_insns;
|
||||
|
||||
nnodes = cgraph_postorder (order);
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nDeciding on inlining. Starting with %i insns.\n",
|
||||
initial_insns);
|
||||
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
node->aux = 0;
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "\nInlining always_inline functions:\n");
|
||||
|
||||
/* In the first pass mark all always_inline edges. Do this with a priority
|
||||
so none of our later choices will make this impossible. */
|
||||
for (i = nnodes - 1; i >= 0; i--)
|
||||
{
|
||||
struct cgraph_edge *e, *next;
|
||||
|
||||
node = order[i];
|
||||
|
||||
if (!node->local.disregard_inline_limits)
|
||||
continue;
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nConsidering %s %i insns (always inline)\n",
|
||||
cgraph_node_name (node), node->global.insns);
|
||||
old_insns = overall_insns;
|
||||
for (e = node->callers; e; e = next)
|
||||
{
|
||||
next = e->next_caller;
|
||||
if (!e->inline_failed)
|
||||
continue;
|
||||
if (cgraph_recursive_inlining_p (e->caller, e->callee,
|
||||
&e->inline_failed))
|
||||
continue;
|
||||
cgraph_mark_inline_edge (e);
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined into %s which now has %i insns.\n",
|
||||
cgraph_node_name (e->caller),
|
||||
e->caller->global.insns);
|
||||
}
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined for a net change of %+i insns.\n",
|
||||
overall_insns - old_insns);
|
||||
}
|
||||
|
||||
if (!flag_really_no_inline)
|
||||
{
|
||||
cgraph_decide_inlining_of_small_functions ();
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "\nDeciding on functions called once:\n");
|
||||
|
||||
/* And finally decide what functions are called once. */
|
||||
|
||||
for (i = nnodes - 1; i >= 0; i--)
|
||||
{
|
||||
node = order[i];
|
||||
|
||||
if (node->callers && !node->callers->next_caller && !node->needed
|
||||
&& node->local.inlinable && node->callers->inline_failed
|
||||
&& !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
|
||||
{
|
||||
bool ok = true;
|
||||
struct cgraph_node *node1;
|
||||
|
||||
/* Verify that we won't duplicate the caller. */
|
||||
for (node1 = node->callers->caller;
|
||||
node1->callers && !node1->callers->inline_failed
|
||||
&& ok; node1 = node1->callers->caller)
|
||||
if (node1->callers->next_caller || node1->needed)
|
||||
ok = false;
|
||||
if (ok)
|
||||
{
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nConsidering %s %i insns.\n"
|
||||
" Called once from %s %i insns.\n",
|
||||
cgraph_node_name (node), node->global.insns,
|
||||
cgraph_node_name (node->callers->caller),
|
||||
node->callers->caller->global.insns);
|
||||
|
||||
old_insns = overall_insns;
|
||||
|
||||
if (cgraph_check_inline_limits (node->callers->caller, node,
|
||||
NULL))
|
||||
{
|
||||
cgraph_mark_inline (node->callers);
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined into %s which now has %i insns"
|
||||
" for a net change of %+i insns.\n",
|
||||
cgraph_node_name (node->callers->caller),
|
||||
node->callers->caller->global.insns,
|
||||
overall_insns - old_insns);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inline limit reached, not inlined.\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* We will never output extern functions we didn't inline.
|
||||
??? Perhaps we can prevent accounting of growth of external
|
||||
inline functions. */
|
||||
cgraph_remove_unreachable_nodes ();
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nInlined %i calls, eliminated %i functions, "
|
||||
"%i insns turned to %i insns.\n\n",
|
||||
ncalls_inlined, nfunctions_inlined, initial_insns,
|
||||
overall_insns);
|
||||
free (order);
|
||||
}
|
||||
|
||||
/* Decide on the inlining. We do so in the topological order to avoid
|
||||
expenses on updating data structures. */
|
||||
|
||||
static void
|
||||
cgraph_decide_inlining_incrementally (struct cgraph_node *node)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
|
||||
/* First of all look for always inline functions. */
|
||||
for (e = node->callees; e; e = e->next_callee)
|
||||
if (e->callee->local.disregard_inline_limits
|
||||
&& e->inline_failed
|
||||
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
|
||||
/* ??? It is possible that renaming variable removed the function body
|
||||
in duplicate_decls. See gcc.c-torture/compile/20011119-2.c */
|
||||
&& DECL_SAVED_TREE (e->callee->decl))
|
||||
cgraph_mark_inline (e);
|
||||
|
||||
/* Now do the automatic inlining. */
|
||||
if (!flag_really_no_inline)
|
||||
for (e = node->callees; e; e = e->next_callee)
|
||||
if (e->callee->local.inlinable
|
||||
&& e->inline_failed
|
||||
&& !e->callee->local.disregard_inline_limits
|
||||
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
|
||||
&& cgraph_check_inline_limits (node, e->callee, &e->inline_failed)
|
||||
&& DECL_SAVED_TREE (e->callee->decl))
|
||||
{
|
||||
if (cgraph_default_inline_p (e->callee))
|
||||
cgraph_mark_inline (e);
|
||||
else
|
||||
e->inline_failed
|
||||
= N_("--param max-inline-insns-single limit reached");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Return true when CALLER_DECL should be inlined into CALLEE_DECL. */
|
||||
|
||||
bool
|
||||
@ -2014,27 +1199,3 @@ init_cgraph (void)
|
||||
{
|
||||
cgraph_dump_file = dump_begin (TDI_cgraph, NULL);
|
||||
}
|
||||
|
||||
/* When inlining shall be performed. */
|
||||
static bool
|
||||
cgraph_gate_inlining (void)
|
||||
{
|
||||
return flag_inline_trees;
|
||||
}
|
||||
|
||||
struct tree_opt_pass pass_ipa_inline =
|
||||
{
|
||||
"inline", /* name */
|
||||
cgraph_gate_inlining, /* gate */
|
||||
cgraph_decide_inlining, /* execute */
|
||||
NULL, /* sub */
|
||||
NULL, /* next */
|
||||
0, /* static_pass_number */
|
||||
TV_INTEGRATION, /* tv_id */
|
||||
0, /* properties_required */
|
||||
PROP_trees, /* properties_provided */
|
||||
0, /* properties_destroyed */
|
||||
0, /* todo_flags_start */
|
||||
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
|
||||
0 /* letter */
|
||||
};
|
||||
|
@ -177,14 +177,12 @@ struct eh_region GTY(())
|
||||
/* Retain the cleanup expression even after expansion so that
|
||||
we can match up fixup regions. */
|
||||
struct eh_region_u_cleanup {
|
||||
tree exp;
|
||||
struct eh_region *prev_try;
|
||||
} GTY ((tag ("ERT_CLEANUP"))) cleanup;
|
||||
|
||||
/* The real region (by expression and by pointer) that fixup code
|
||||
should live in. */
|
||||
struct eh_region_u_fixup {
|
||||
tree cleanup_exp;
|
||||
struct eh_region *real_region;
|
||||
bool resolved;
|
||||
} GTY ((tag ("ERT_FIXUP"))) fixup;
|
||||
|
740
gcc/ipa-inline.c
Normal file
740
gcc/ipa-inline.c
Normal file
@ -0,0 +1,740 @@
|
||||
/* Inlining decision heuristics.
|
||||
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
|
||||
Contributed by Jan Hubicka
|
||||
|
||||
This file is part of GCC.
|
||||
|
||||
GCC is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License as published by the Free
|
||||
Software Foundation; either version 2, or (at your option) any later
|
||||
version.
|
||||
|
||||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GCC; see the file COPYING. If not, write to the Free
|
||||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||||
02111-1307, USA. */
|
||||
|
||||
/* Inlining decision heuristics
|
||||
|
||||
We separate inlining decisions from the inliner itself and store it
|
||||
inside callgraph as so called inline plan. Refer to cgraph.c
|
||||
documentation about particular representation of inline plans in the
|
||||
callgraph.
|
||||
|
||||
There are three major parts of this file:
|
||||
|
||||
cgraph_mark_inline implementation
|
||||
|
||||
This function allow to mark given call inline and performs neccesary
|
||||
modifications of cgraph (production of the clones and updating overall
|
||||
statistics)
|
||||
|
||||
inlining heuristics limits
|
||||
|
||||
These functions allow to check that particular inlining is allowed
|
||||
by the limits specified by user (allowed function growth, overall unit
|
||||
growth and so on).
|
||||
|
||||
inlining heuristics
|
||||
|
||||
This is implementation of IPA pass aiming to get as much of benefit
|
||||
from inlining obeying the limits checked above.
|
||||
|
||||
The implementation of particular heuristics is separated from
|
||||
the rest of code to make it easier to replace it with more complicated
|
||||
implementation in the future. The rest of inlining code acts as a
|
||||
library aimed to modify the callgraph and verify that the parameters
|
||||
on code size growth fits.
|
||||
|
||||
To mark given call inline, use cgraph_mark_inline function, the
|
||||
verification is performed by cgraph_default_inline_p and
|
||||
cgraph_check_inline_limits.
|
||||
|
||||
The heuristics implements simple knapsack style algorithm ordering
|
||||
all functions by their "profitability" (estimated by code size growth)
|
||||
and inlining them in priority order.
|
||||
|
||||
cgraph_decide_inlining implements heuristics taking whole callgraph
|
||||
into account, while cgraph_decide_inlining_incrementally considers
|
||||
only one function at a time and is used in non-unit-at-a-time mode. */
|
||||
|
||||
#include "config.h"
|
||||
#include "system.h"
|
||||
#include "coretypes.h"
|
||||
#include "tm.h"
|
||||
#include "tree.h"
|
||||
#include "tree-inline.h"
|
||||
#include "langhooks.h"
|
||||
#include "flags.h"
|
||||
#include "cgraph.h"
|
||||
#include "diagnostic.h"
|
||||
#include "timevar.h"
|
||||
#include "params.h"
|
||||
#include "fibheap.h"
|
||||
#include "intl.h"
|
||||
#include "tree-pass.h"
|
||||
|
||||
/* Statistics we collect about inlining algorithm. */
|
||||
static int ncalls_inlined;
|
||||
static int nfunctions_inlined;
|
||||
static int initial_insns;
|
||||
static int overall_insns;
|
||||
|
||||
/* Estimate size of the function after inlining WHAT into TO. */
|
||||
|
||||
static int
|
||||
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
|
||||
struct cgraph_node *what)
|
||||
{
|
||||
tree fndecl = what->decl;
|
||||
tree arg;
|
||||
int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST);
|
||||
for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
|
||||
call_insns += estimate_move_cost (TREE_TYPE (arg));
|
||||
return (what->global.insns - call_insns) * times + to->global.insns;
|
||||
}
|
||||
|
||||
/* E is expected to be an edge being inlined. Clone destination node of
|
||||
the edge and redirect it to the new clone.
|
||||
DUPLICATE is used for bookkeeping on whether we are actually creating new
|
||||
clones or re-using node originally representing out-of-line function call.
|
||||
*/
|
||||
void
|
||||
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate)
|
||||
{
|
||||
struct cgraph_node *n;
|
||||
|
||||
/* We may eliminate the need for out-of-line copy to be output. In that
|
||||
case just go ahead and re-use it. */
|
||||
if (!e->callee->callers->next_caller
|
||||
&& (!e->callee->needed || DECL_EXTERNAL (e->callee->decl))
|
||||
&& duplicate
|
||||
&& flag_unit_at_a_time)
|
||||
{
|
||||
gcc_assert (!e->callee->global.inlined_to);
|
||||
if (!DECL_EXTERNAL (e->callee->decl))
|
||||
overall_insns -= e->callee->global.insns, nfunctions_inlined++;
|
||||
duplicate = 0;
|
||||
}
|
||||
else if (duplicate)
|
||||
{
|
||||
n = cgraph_clone_node (e->callee);
|
||||
cgraph_redirect_edge_callee (e, n);
|
||||
}
|
||||
|
||||
if (e->caller->global.inlined_to)
|
||||
e->callee->global.inlined_to = e->caller->global.inlined_to;
|
||||
else
|
||||
e->callee->global.inlined_to = e->caller;
|
||||
|
||||
/* Recursively clone all bodies. */
|
||||
for (e = e->callee->callees; e; e = e->next_callee)
|
||||
if (!e->inline_failed)
|
||||
cgraph_clone_inlined_nodes (e, duplicate);
|
||||
}
|
||||
|
||||
/* Mark edge E as inlined and update callgraph accordingly. */
|
||||
|
||||
void
|
||||
cgraph_mark_inline_edge (struct cgraph_edge *e)
|
||||
{
|
||||
int old_insns = 0, new_insns = 0;
|
||||
struct cgraph_node *to = NULL, *what;
|
||||
|
||||
gcc_assert (e->inline_failed);
|
||||
e->inline_failed = NULL;
|
||||
|
||||
if (!e->callee->global.inlined && flag_unit_at_a_time)
|
||||
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
|
||||
e->callee->global.inlined = true;
|
||||
|
||||
cgraph_clone_inlined_nodes (e, true);
|
||||
|
||||
what = e->callee;
|
||||
|
||||
/* Now update size of caller and all functions caller is inlined into. */
|
||||
for (;e && !e->inline_failed; e = e->caller->callers)
|
||||
{
|
||||
old_insns = e->caller->global.insns;
|
||||
new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
|
||||
what);
|
||||
gcc_assert (new_insns >= 0);
|
||||
to = e->caller;
|
||||
to->global.insns = new_insns;
|
||||
}
|
||||
gcc_assert (what->global.inlined_to == to);
|
||||
if (new_insns > old_insns)
|
||||
overall_insns += new_insns - old_insns;
|
||||
ncalls_inlined++;
|
||||
}
|
||||
|
||||
/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
|
||||
Return following unredirected edge in the list of callers
|
||||
of EDGE->CALLEE */
|
||||
|
||||
static struct cgraph_edge *
|
||||
cgraph_mark_inline (struct cgraph_edge *edge)
|
||||
{
|
||||
struct cgraph_node *to = edge->caller;
|
||||
struct cgraph_node *what = edge->callee;
|
||||
struct cgraph_edge *e, *next;
|
||||
int times = 0;
|
||||
|
||||
/* Look for all calls, mark them inline and clone recursively
|
||||
all inlined functions. */
|
||||
for (e = what->callers; e; e = next)
|
||||
{
|
||||
next = e->next_caller;
|
||||
if (e->caller == to && e->inline_failed)
|
||||
{
|
||||
cgraph_mark_inline_edge (e);
|
||||
if (e == edge)
|
||||
edge = next;
|
||||
times++;
|
||||
}
|
||||
}
|
||||
gcc_assert (times);
|
||||
return edge;
|
||||
}
|
||||
|
||||
/* Estimate the growth caused by inlining NODE into all callees. */
|
||||
|
||||
static int
|
||||
cgraph_estimate_growth (struct cgraph_node *node)
|
||||
{
|
||||
int growth = 0;
|
||||
struct cgraph_edge *e;
|
||||
|
||||
for (e = node->callers; e; e = e->next_caller)
|
||||
if (e->inline_failed)
|
||||
growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
|
||||
- e->caller->global.insns);
|
||||
|
||||
/* ??? Wrong for self recursive functions or cases where we decide to not
|
||||
inline for different reasons, but it is not big deal as in that case
|
||||
we will keep the body around, but we will also avoid some inlining. */
|
||||
if (!node->needed && !DECL_EXTERNAL (node->decl))
|
||||
growth -= node->global.insns;
|
||||
|
||||
return growth;
|
||||
}
|
||||
|
||||
/* Return false when inlining WHAT into TO is not good idea
|
||||
as it would cause too large growth of function bodies. */
|
||||
|
||||
static bool
|
||||
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
|
||||
const char **reason)
|
||||
{
|
||||
int times = 0;
|
||||
struct cgraph_edge *e;
|
||||
int newsize;
|
||||
int limit;
|
||||
|
||||
if (to->global.inlined_to)
|
||||
to = to->global.inlined_to;
|
||||
|
||||
for (e = to->callees; e; e = e->next_callee)
|
||||
if (e->callee == what)
|
||||
times++;
|
||||
|
||||
/* When inlining large function body called once into small function,
|
||||
take the inlined function as base for limiting the growth. */
|
||||
if (to->local.self_insns > what->local.self_insns)
|
||||
limit = to->local.self_insns;
|
||||
else
|
||||
limit = what->local.self_insns;
|
||||
|
||||
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
|
||||
|
||||
newsize = cgraph_estimate_size_after_inlining (times, to, what);
|
||||
if (newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
|
||||
&& newsize > limit)
|
||||
{
|
||||
if (reason)
|
||||
*reason = N_("--param large-function-growth limit reached");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Return true when function N is small enough to be inlined. */
|
||||
|
||||
bool
|
||||
cgraph_default_inline_p (struct cgraph_node *n)
|
||||
{
|
||||
if (!DECL_INLINE (n->decl) || !DECL_SAVED_TREE (n->decl))
|
||||
return false;
|
||||
if (DECL_DECLARED_INLINE_P (n->decl))
|
||||
return n->global.insns < MAX_INLINE_INSNS_SINGLE;
|
||||
else
|
||||
return n->global.insns < MAX_INLINE_INSNS_AUTO;
|
||||
}
|
||||
|
||||
/* Return true when inlining WHAT would create recursive inlining.
|
||||
We call recursive inlining all cases where same function appears more than
|
||||
once in the single recursion nest path in the inline graph. */
|
||||
|
||||
static bool
|
||||
cgraph_recursive_inlining_p (struct cgraph_node *to,
|
||||
struct cgraph_node *what,
|
||||
const char **reason)
|
||||
{
|
||||
bool recursive;
|
||||
if (to->global.inlined_to)
|
||||
recursive = what->decl == to->global.inlined_to->decl;
|
||||
else
|
||||
recursive = what->decl == to->decl;
|
||||
/* Marking recursive function inline has sane semantic and thus we should
|
||||
not warn on it. */
|
||||
if (recursive && reason)
|
||||
*reason = (what->local.disregard_inline_limits
|
||||
? N_("recursive inlining") : "");
|
||||
return recursive;
|
||||
}
|
||||
|
||||
/* Recompute heap nodes for each of callees. */
|
||||
static void
|
||||
update_callee_keys (fibheap_t heap, struct fibnode **heap_node,
|
||||
struct cgraph_node *node)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
|
||||
for (e = node->callees; e; e = e->next_callee)
|
||||
if (e->inline_failed && heap_node[e->callee->uid])
|
||||
fibheap_replace_key (heap, heap_node[e->callee->uid],
|
||||
cgraph_estimate_growth (e->callee));
|
||||
else if (!e->inline_failed)
|
||||
update_callee_keys (heap, heap_node, e->callee);
|
||||
}
|
||||
|
||||
/* Enqueue all recursive calls from NODE into queue linked via aux pointers
|
||||
in between FIRST and LAST. WHERE is used for bookkeeping while looking
|
||||
int calls inlined within NODE. */
|
||||
static void
|
||||
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
|
||||
struct cgraph_edge **first, struct cgraph_edge **last)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
for (e = where->callees; e; e = e->next_callee)
|
||||
if (e->callee == node)
|
||||
{
|
||||
if (!*first)
|
||||
*first = e;
|
||||
else
|
||||
(*last)->aux = e;
|
||||
*last = e;
|
||||
}
|
||||
for (e = where->callees; e; e = e->next_callee)
|
||||
if (!e->inline_failed)
|
||||
lookup_recursive_calls (node, e->callee, first, last);
|
||||
}
|
||||
|
||||
/* Decide on recursive inlining: in the case function has recursive calls,
|
||||
inline until body size reaches given argument. */
|
||||
static void
|
||||
cgraph_decide_recursive_inlining (struct cgraph_node *node)
|
||||
{
|
||||
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
|
||||
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
|
||||
struct cgraph_edge *first_call = NULL, *last_call = NULL;
|
||||
struct cgraph_edge *last_in_current_depth;
|
||||
struct cgraph_edge *e;
|
||||
struct cgraph_node *master_clone;
|
||||
int depth = 0;
|
||||
int n = 0;
|
||||
|
||||
if (DECL_DECLARED_INLINE_P (node->decl))
|
||||
{
|
||||
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
|
||||
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
|
||||
}
|
||||
|
||||
/* Make sure that function is small enough to be considered for inlining. */
|
||||
if (!max_depth
|
||||
|| cgraph_estimate_size_after_inlining (1, node, node) >= limit)
|
||||
return;
|
||||
lookup_recursive_calls (node, node, &first_call, &last_call);
|
||||
if (!first_call)
|
||||
return;
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nPerforming recursive inlining on %s\n",
|
||||
cgraph_node_name (node));
|
||||
|
||||
/* We need original clone to copy around. */
|
||||
master_clone = cgraph_clone_node (node);
|
||||
master_clone->needed = true;
|
||||
for (e = master_clone->callees; e; e = e->next_callee)
|
||||
if (!e->inline_failed)
|
||||
cgraph_clone_inlined_nodes (e, true);
|
||||
|
||||
/* Do the inlining and update list of recursive call during process. */
|
||||
last_in_current_depth = last_call;
|
||||
while (first_call
|
||||
&& cgraph_estimate_size_after_inlining (1, node, master_clone) <= limit)
|
||||
{
|
||||
struct cgraph_edge *curr = first_call;
|
||||
|
||||
first_call = first_call->aux;
|
||||
curr->aux = NULL;
|
||||
|
||||
cgraph_redirect_edge_callee (curr, master_clone);
|
||||
cgraph_mark_inline_edge (curr);
|
||||
lookup_recursive_calls (node, curr->callee, &first_call, &last_call);
|
||||
|
||||
if (last_in_current_depth
|
||||
&& ++depth >= max_depth)
|
||||
break;
|
||||
n++;
|
||||
}
|
||||
|
||||
/* Cleanup queue pointers. */
|
||||
while (first_call)
|
||||
{
|
||||
struct cgraph_edge *next = first_call->aux;
|
||||
first_call->aux = NULL;
|
||||
first_call = next;
|
||||
}
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\n Inlined %i times, body grown from %i to %i insns\n", n,
|
||||
master_clone->global.insns, node->global.insns);
|
||||
|
||||
/* Remove master clone we used for inlining. We rely that clones inlined
|
||||
into master clone gets queued just before master clone so we don't
|
||||
need recursion. */
|
||||
for (node = cgraph_nodes; node != master_clone;
|
||||
node = node->next)
|
||||
if (node->global.inlined_to == master_clone)
|
||||
cgraph_remove_node (node);
|
||||
cgraph_remove_node (master_clone);
|
||||
}
|
||||
|
||||
/* Set inline_failed for all callers of given function to REASON. */
|
||||
|
||||
static void
|
||||
cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "Inlining failed: %s\n", reason);
|
||||
for (e = node->callers; e; e = e->next_caller)
|
||||
if (e->inline_failed)
|
||||
e->inline_failed = reason;
|
||||
}
|
||||
|
||||
/* We use greedy algorithm for inlining of small functions:
|
||||
All inline candidates are put into prioritized heap based on estimated
|
||||
growth of the overall number of instructions and then update the estimates.
|
||||
|
||||
INLINED and INLINED_CALEES are just pointers to arrays large enough
|
||||
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
|
||||
|
||||
static void
|
||||
cgraph_decide_inlining_of_small_functions (void)
|
||||
{
|
||||
struct cgraph_node *node;
|
||||
fibheap_t heap = fibheap_new ();
|
||||
struct fibnode **heap_node =
|
||||
xcalloc (cgraph_max_uid, sizeof (struct fibnode *));
|
||||
int max_insns = ((HOST_WIDEST_INT) initial_insns
|
||||
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
|
||||
|
||||
/* Put all inline candidates into the heap. */
|
||||
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
{
|
||||
if (!node->local.inlinable || !node->callers
|
||||
|| node->local.disregard_inline_limits)
|
||||
continue;
|
||||
|
||||
if (!cgraph_default_inline_p (node))
|
||||
{
|
||||
cgraph_set_inline_failed (node,
|
||||
N_("--param max-inline-insns-single limit reached"));
|
||||
continue;
|
||||
}
|
||||
heap_node[node->uid] =
|
||||
fibheap_insert (heap, cgraph_estimate_growth (node), node);
|
||||
}
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "\nDeciding on smaller functions:\n");
|
||||
while (overall_insns <= max_insns && (node = fibheap_extract_min (heap)))
|
||||
{
|
||||
struct cgraph_edge *e, *next;
|
||||
int old_insns = overall_insns;
|
||||
|
||||
heap_node[node->uid] = NULL;
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nConsidering %s with %i insns\n"
|
||||
" Estimated growth is %+i insns.\n",
|
||||
cgraph_node_name (node), node->global.insns,
|
||||
cgraph_estimate_growth (node));
|
||||
if (!cgraph_default_inline_p (node))
|
||||
{
|
||||
cgraph_set_inline_failed (node,
|
||||
N_("--param max-inline-insns-single limit reached after inlining into the callee"));
|
||||
continue;
|
||||
}
|
||||
for (e = node->callers; e; e = next)
|
||||
{
|
||||
next = e->next_caller;
|
||||
if (e->inline_failed)
|
||||
{
|
||||
struct cgraph_node *where;
|
||||
|
||||
if (cgraph_recursive_inlining_p (e->caller, e->callee,
|
||||
&e->inline_failed)
|
||||
|| !cgraph_check_inline_limits (e->caller, e->callee,
|
||||
&e->inline_failed))
|
||||
{
|
||||
if (dump_file)
|
||||
fprintf (dump_file, " Not inlining into %s:%s.\n",
|
||||
cgraph_node_name (e->caller), e->inline_failed);
|
||||
continue;
|
||||
}
|
||||
next = cgraph_mark_inline (e);
|
||||
where = e->caller;
|
||||
if (where->global.inlined_to)
|
||||
where = where->global.inlined_to;
|
||||
|
||||
if (heap_node[where->uid])
|
||||
fibheap_replace_key (heap, heap_node[where->uid],
|
||||
cgraph_estimate_growth (where));
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined into %s which now has %i insns.\n",
|
||||
cgraph_node_name (e->caller),
|
||||
e->caller->global.insns);
|
||||
}
|
||||
}
|
||||
|
||||
cgraph_decide_recursive_inlining (node);
|
||||
|
||||
/* Similarly all functions called by the function we just inlined
|
||||
are now called more times; update keys. */
|
||||
update_callee_keys (heap, heap_node, node);
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined for a net change of %+i insns.\n",
|
||||
overall_insns - old_insns);
|
||||
}
|
||||
while ((node = fibheap_extract_min (heap)) != NULL)
|
||||
if (!node->local.disregard_inline_limits)
|
||||
cgraph_set_inline_failed (node, N_("--param inline-unit-growth limit reached"));
|
||||
fibheap_delete (heap);
|
||||
free (heap_node);
|
||||
}
|
||||
|
||||
/* Decide on the inlining. We do so in the topological order to avoid
|
||||
expenses on updating data structures. */
|
||||
|
||||
static void
|
||||
cgraph_decide_inlining (void)
|
||||
{
|
||||
struct cgraph_node *node;
|
||||
int nnodes;
|
||||
struct cgraph_node **order =
|
||||
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
|
||||
int old_insns = 0;
|
||||
int i;
|
||||
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
initial_insns += node->local.self_insns;
|
||||
overall_insns = initial_insns;
|
||||
|
||||
nnodes = cgraph_postorder (order);
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nDeciding on inlining. Starting with %i insns.\n",
|
||||
initial_insns);
|
||||
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
node->aux = 0;
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "\nInlining always_inline functions:\n");
|
||||
|
||||
/* In the first pass mark all always_inline edges. Do this with a priority
|
||||
so none of our later choices will make this impossible. */
|
||||
for (i = nnodes - 1; i >= 0; i--)
|
||||
{
|
||||
struct cgraph_edge *e, *next;
|
||||
|
||||
node = order[i];
|
||||
|
||||
if (!node->local.disregard_inline_limits)
|
||||
continue;
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nConsidering %s %i insns (always inline)\n",
|
||||
cgraph_node_name (node), node->global.insns);
|
||||
old_insns = overall_insns;
|
||||
for (e = node->callers; e; e = next)
|
||||
{
|
||||
next = e->next_caller;
|
||||
if (!e->inline_failed)
|
||||
continue;
|
||||
if (cgraph_recursive_inlining_p (e->caller, e->callee,
|
||||
&e->inline_failed))
|
||||
continue;
|
||||
cgraph_mark_inline_edge (e);
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined into %s which now has %i insns.\n",
|
||||
cgraph_node_name (e->caller),
|
||||
e->caller->global.insns);
|
||||
}
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined for a net change of %+i insns.\n",
|
||||
overall_insns - old_insns);
|
||||
}
|
||||
|
||||
if (!flag_really_no_inline)
|
||||
{
|
||||
cgraph_decide_inlining_of_small_functions ();
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "\nDeciding on functions called once:\n");
|
||||
|
||||
/* And finally decide what functions are called once. */
|
||||
|
||||
for (i = nnodes - 1; i >= 0; i--)
|
||||
{
|
||||
node = order[i];
|
||||
|
||||
if (node->callers && !node->callers->next_caller && !node->needed
|
||||
&& node->local.inlinable && node->callers->inline_failed
|
||||
&& !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
|
||||
{
|
||||
bool ok = true;
|
||||
struct cgraph_node *node1;
|
||||
|
||||
/* Verify that we won't duplicate the caller. */
|
||||
for (node1 = node->callers->caller;
|
||||
node1->callers && !node1->callers->inline_failed
|
||||
&& ok; node1 = node1->callers->caller)
|
||||
if (node1->callers->next_caller || node1->needed)
|
||||
ok = false;
|
||||
if (ok)
|
||||
{
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nConsidering %s %i insns.\n"
|
||||
" Called once from %s %i insns.\n",
|
||||
cgraph_node_name (node), node->global.insns,
|
||||
cgraph_node_name (node->callers->caller),
|
||||
node->callers->caller->global.insns);
|
||||
|
||||
old_insns = overall_insns;
|
||||
|
||||
if (cgraph_check_inline_limits (node->callers->caller, node,
|
||||
NULL))
|
||||
{
|
||||
cgraph_mark_inline (node->callers);
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inlined into %s which now has %i insns"
|
||||
" for a net change of %+i insns.\n",
|
||||
cgraph_node_name (node->callers->caller),
|
||||
node->callers->caller->global.insns,
|
||||
overall_insns - old_insns);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
" Inline limit reached, not inlined.\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* We will never output extern functions we didn't inline.
|
||||
??? Perhaps we can prevent accounting of growth of external
|
||||
inline functions. */
|
||||
cgraph_remove_unreachable_nodes (false, dump_file);
|
||||
|
||||
if (dump_file)
|
||||
fprintf (dump_file,
|
||||
"\nInlined %i calls, eliminated %i functions, "
|
||||
"%i insns turned to %i insns.\n\n",
|
||||
ncalls_inlined, nfunctions_inlined, initial_insns,
|
||||
overall_insns);
|
||||
free (order);
|
||||
}
|
||||
|
||||
/* Decide on the inlining. We do so in the topological order to avoid
|
||||
expenses on updating data structures. */
|
||||
|
||||
void
|
||||
cgraph_decide_inlining_incrementally (struct cgraph_node *node)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
|
||||
/* First of all look for always inline functions. */
|
||||
for (e = node->callees; e; e = e->next_callee)
|
||||
if (e->callee->local.disregard_inline_limits
|
||||
&& e->inline_failed
|
||||
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
|
||||
/* ??? It is possible that renaming variable removed the function body
|
||||
in duplicate_decls. See gcc.c-torture/compile/20011119-2.c */
|
||||
&& DECL_SAVED_TREE (e->callee->decl))
|
||||
cgraph_mark_inline (e);
|
||||
|
||||
/* Now do the automatic inlining. */
|
||||
if (!flag_really_no_inline)
|
||||
for (e = node->callees; e; e = e->next_callee)
|
||||
if (e->callee->local.inlinable
|
||||
&& e->inline_failed
|
||||
&& !e->callee->local.disregard_inline_limits
|
||||
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
|
||||
&& cgraph_check_inline_limits (node, e->callee, &e->inline_failed)
|
||||
&& DECL_SAVED_TREE (e->callee->decl))
|
||||
{
|
||||
if (cgraph_default_inline_p (e->callee))
|
||||
cgraph_mark_inline (e);
|
||||
else
|
||||
e->inline_failed
|
||||
= N_("--param max-inline-insns-single limit reached");
|
||||
}
|
||||
}
|
||||
|
||||
/* When inlining shall be performed. */
|
||||
static bool
|
||||
cgraph_gate_inlining (void)
|
||||
{
|
||||
return flag_inline_trees;
|
||||
}
|
||||
|
||||
struct tree_opt_pass pass_ipa_inline =
|
||||
{
|
||||
"inline", /* name */
|
||||
cgraph_gate_inlining, /* gate */
|
||||
cgraph_decide_inlining, /* execute */
|
||||
NULL, /* sub */
|
||||
NULL, /* next */
|
||||
0, /* static_pass_number */
|
||||
TV_INTEGRATION, /* tv_id */
|
||||
0, /* properties_required */
|
||||
PROP_trees, /* properties_provided */
|
||||
0, /* properties_destroyed */
|
||||
0, /* todo_flags_start */
|
||||
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
|
||||
0 /* letter */
|
||||
};
|
207
gcc/ipa.c
Normal file
207
gcc/ipa.c
Normal file
@ -0,0 +1,207 @@
|
||||
/* Basic IPA optimizations and utilities.
|
||||
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GCC.
|
||||
|
||||
GCC is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License as published by the Free
|
||||
Software Foundation; either version 2, or (at your option) any later
|
||||
version.
|
||||
|
||||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GCC; see the file COPYING. If not, write to the Free
|
||||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||||
02111-1307, USA. */
|
||||
|
||||
#include "config.h"
|
||||
#include "system.h"
|
||||
#include "coretypes.h"
|
||||
#include "tm.h"
|
||||
#include "cgraph.h"
|
||||
|
||||
/* Fill array order with all nodes with output flag set in the reverse
|
||||
topological order. */
|
||||
|
||||
int
|
||||
cgraph_postorder (struct cgraph_node **order)
|
||||
{
|
||||
struct cgraph_node *node, *node2;
|
||||
int stack_size = 0;
|
||||
int order_pos = 0;
|
||||
struct cgraph_edge *edge, last;
|
||||
|
||||
struct cgraph_node **stack =
|
||||
xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
|
||||
|
||||
/* We have to deal with cycles nicely, so use a depth first traversal
|
||||
output algorithm. Ignore the fact that some functions won't need
|
||||
to be output and put them into order as well, so we get dependencies
|
||||
right through intline functions. */
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
node->aux = NULL;
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
if (!node->aux)
|
||||
{
|
||||
node2 = node;
|
||||
if (!node->callers)
|
||||
node->aux = &last;
|
||||
else
|
||||
node->aux = node->callers;
|
||||
while (node2)
|
||||
{
|
||||
while (node2->aux != &last)
|
||||
{
|
||||
edge = node2->aux;
|
||||
if (edge->next_caller)
|
||||
node2->aux = edge->next_caller;
|
||||
else
|
||||
node2->aux = &last;
|
||||
if (!edge->caller->aux)
|
||||
{
|
||||
if (!edge->caller->callers)
|
||||
edge->caller->aux = &last;
|
||||
else
|
||||
edge->caller->aux = edge->caller->callers;
|
||||
stack[stack_size++] = node2;
|
||||
node2 = edge->caller;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (node2->aux == &last)
|
||||
{
|
||||
order[order_pos++] = node2;
|
||||
if (stack_size)
|
||||
node2 = stack[--stack_size];
|
||||
else
|
||||
node2 = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
free (stack);
|
||||
return order_pos;
|
||||
}
|
||||
|
||||
/* Perform reachability analysis and reclaim all unreachable nodes.
|
||||
If BEFORE_INLINING_P is true this function is called before inlining
|
||||
decisions has been made. If BEFORE_INLINING_P is false this function also
|
||||
removes unneeded bodies of extern inline functions. */
|
||||
|
||||
bool
|
||||
cgraph_remove_unreachable_nodes (bool before_inlining_p, FILE *dump_file)
|
||||
{
|
||||
struct cgraph_node *first = (void *) 1;
|
||||
struct cgraph_node *node;
|
||||
bool changed = false;
|
||||
int insns = 0;
|
||||
|
||||
#ifdef ENABLE_CHECKING
|
||||
verify_cgraph ();
|
||||
#endif
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "\nReclaiming functions:");
|
||||
#ifdef ENABLE_CHECKING
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
gcc_assert (!node->aux);
|
||||
#endif
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
if (node->needed && !node->global.inlined_to
|
||||
&& ((!DECL_EXTERNAL (node->decl))
|
||||
|| !node->analyzed
|
||||
|| before_inlining_p))
|
||||
{
|
||||
node->aux = first;
|
||||
first = node;
|
||||
}
|
||||
else
|
||||
gcc_assert (!node->aux);
|
||||
|
||||
/* Perform reachability analysis. As a special case do not consider
|
||||
extern inline functions not inlined as live because we won't output
|
||||
them at all. */
|
||||
while (first != (void *) 1)
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
node = first;
|
||||
first = first->aux;
|
||||
|
||||
for (e = node->callees; e; e = e->next_callee)
|
||||
if (!e->callee->aux
|
||||
&& node->analyzed
|
||||
&& (!e->inline_failed || !e->callee->analyzed
|
||||
|| (!DECL_EXTERNAL (e->callee->decl))
|
||||
|| before_inlining_p))
|
||||
{
|
||||
e->callee->aux = first;
|
||||
first = e->callee;
|
||||
}
|
||||
}
|
||||
|
||||
/* Remove unreachable nodes. Extern inline functions need special care;
|
||||
Unreachable extern inline functions shall be removed.
|
||||
Reachable extern inline functions we never inlined shall get their bodies
|
||||
eliminated.
|
||||
Reachable extern inline functions we sometimes inlined will be turned into
|
||||
unanalyzed nodes so they look like for true extern functions to the rest
|
||||
of code. Body of such functions is released via remove_node once the
|
||||
inline clones are eliminated. */
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
{
|
||||
if (!node->aux)
|
||||
{
|
||||
int local_insns;
|
||||
tree decl = node->decl;
|
||||
|
||||
node->global.inlined_to = NULL;
|
||||
if (DECL_STRUCT_FUNCTION (decl))
|
||||
local_insns = node->local.self_insns;
|
||||
else
|
||||
local_insns = 0;
|
||||
if (dump_file)
|
||||
fprintf (dump_file, " %s", cgraph_node_name (node));
|
||||
if (!node->analyzed || !DECL_EXTERNAL (node->decl)
|
||||
|| before_inlining_p)
|
||||
cgraph_remove_node (node);
|
||||
else
|
||||
{
|
||||
struct cgraph_edge *e;
|
||||
|
||||
for (e = node->callers; e; e = e->next_caller)
|
||||
if (e->caller->aux)
|
||||
break;
|
||||
if (e || node->needed)
|
||||
{
|
||||
struct cgraph_node *clone;
|
||||
|
||||
for (clone = node->next_clone; clone;
|
||||
clone = clone->next_clone)
|
||||
if (clone->aux)
|
||||
break;
|
||||
if (!clone)
|
||||
{
|
||||
DECL_SAVED_TREE (node->decl) = NULL;
|
||||
DECL_STRUCT_FUNCTION (node->decl) = NULL;
|
||||
DECL_INITIAL (node->decl) = error_mark_node;
|
||||
node->analyzed = false;
|
||||
}
|
||||
cgraph_node_remove_callees (node);
|
||||
node->analyzed = false;
|
||||
}
|
||||
else
|
||||
cgraph_remove_node (node);
|
||||
}
|
||||
if (!DECL_SAVED_TREE (decl))
|
||||
insns += local_insns;
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
for (node = cgraph_nodes; node; node = node->next)
|
||||
node->aux = NULL;
|
||||
if (dump_file)
|
||||
fprintf (dump_file, "\nReclaimed %i insns", insns);
|
||||
return changed;
|
||||
}
|
Loading…
Reference in New Issue
Block a user